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The path-integral approach is used for determining quantum corrections to the free energy of
nonlinear systems. An effective potential, to be inserted in the configurational integral, is construct-
ed by a new variational scheme which gives the quantum modification of the potential due to the
anharmonic part together with the frequency renormalization. The single anharmonic oscillator is
studied first. Then the extension to fields is presented and a new general expression for the partition
function is given. The method is applied to the sine-Gordon chain and explicit calculations of the
specific heat are shown.

I. INTRODUCTION

Presently, great interest is being devoted to reexamining
methods which allow reduction of quantum statistical-
mechanical calculations to classical ones. ' Indeed, in
the latter case, the few well-known analytical methods for
evaluating the phase-space integrals can be impiementei
by efficient numerical techniques. Following this trend,
Monte Carlo simulations have been extended to the quan-
tum case, ' ' using the Trotter formula for spin systems.
Alsa, Wigner expansions find increasing applications to
fluid and solid models.

In one-dimensional physics the transfer-matrix ap-
proach is also available for the classical equilibrium prop-
erties. However, experiments on one-dimensional magnet-
ic chains show that purely classical models are not always
satisfactory for interpreting the features of the specific
heat in the ferromagnet CsNiFi (Refs. 9 and 10) and in
the antiferromagnets TMMC[(CH3)4NMnCli] (Ref. 11)
and CHAB [(C6HiiNH3)CuBr3]. ' Quantum corrections
to sine-Gordon and nearly sine-Gordon chains' '" were
taken into account in the semiclassical (low-coupling) lim-
it, restricted to the noninteracting soliton approximation,
which is not valid in the range of temperatures where the
peak of the specific heat occurs. "

In order to evaluate quantum effects in the high-
temperature regime, expansions based on the coherent
states' and a rearrangeinent of the Wigner series' have
been proposed. Similar rearrangements of the Wigner
series, by means of an expansion in powers of the interac-
tion potential, have been recently proposed' for different
applications.

%e think that the path-integral approach' is the ideal
tool for the treatment of quantum fluctuations. Indeed,
starting fram the classical partition function, this method
permits one to construct an "effective" potential to be in-
serted in a configurational integral.

In preliminary work' we have given a brief account of
a path-integral approach which improves upon previous
variational treatments. ' All of the quantum effects of
the harmonic part of the potential are considered, while
the variational principle in the first cumulant approxima-
tion is used to account for the quantum corrections due to

the anharmonic part. An application to the sine-Gordon
chain was given in order to discuss specific-heat measure-
ments on real magnetic chains.

In this paper we explain the method in detail. In Sec. II
we present this variational principle apphed to a single
anharrnonic oscillator, directly deriving the frequency re-
normalization and all limiting cases. An explicit effective
potential for all temperatures is calculated for single- and
double-well anharmonic potentials. In Sec. III we extend
the method to fields. Its application to the sine-Gordon
chain is developed in Sec. IV, where explicit calculations
of the specific heat are shown and the results for real sys-
tems are discussed. In Sec. V we draw some conclusions.

II. PARTITION FUNCTION FOR AN
ANHARMONIC OSCILLATOR

S [x (u )]= f du —x (u ) + V(x (u ) )
0

(2.2)

Due to the weil-known first-order cumulant inequality for
the free energy'

1F&Fo+ (S—So)s0
(2.3)

we shall approximately evaluate (2.1) by calculating

—pFO ~ [ ]
—s ~so[x(u)]

x(0)=x(PS)

where we assume for So the functional

p5
So[x(u)]= I du —x +w(x)+b(x)(x —x)

0

(2.4)

+ —co (x)(x —x)m

2
(2.5)

The path-integral form of the partition function of an
anharmonic oscillator is'

Z =e ~ = &[x(u)]e " ("'"') (2.l)
x(0)=x(PA)

where P=ll(ksT), the functional integral is evaluated
over all of the closed paths and
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with x= g%

pA'
X Q, X=X Q ~

The functions w (x ),co (x) will be determined in such a
way to minimize the right-hand side (rhs) of Eq. (2.3),
while b(x) turns out to disappear from the final result.
In this way, improving previous approaches, ' ' ' we con-
sider all of the quantum effects of the harinonic part of
the potential, while the variational principle determines
the frequency co (X) and the quantum spread of the
anharmonic part of the potential. It is also convenient to
introduce the notation

f=f(x)= —,Pleo(x) (2.6)

which governs the amount of quantum effects.
The evaluation of the functional integral (2.4) will be

performed by summing first over all of the paths with a
prescribed average x and then integrating over all of the
possible values of x. Introducing the constraint x =g by
the appropriate 5 function and letting z(u) =x (u) —g, we

get

where the result is

P~o m

P{g)fzQexpQ2+2z2+jPz
@{0)=z {PA) o 2 2 P

' 1/2 f e
—pw (g')

sinhf

(2.7)

(2.&)

In order to minimize the inequality (2.3), we must evaluate the term 1/p(S —So)s, which, for the considered action,
can prove to be equal to ( V —V() )s . ' A lengthy but straightforward calculation gives

(v —v, ), =eP~o m

2mA2p

' 1/2

&
—Pm{() RPf

6masinh f
' 1/2

M(g)—
1/2

w(g)+ (2.9)

where with

M(()= qV +qe-&'", (2.10) V,rr(g)=w(g) ——ln(f/sinhf) .1
(2.14)

and

1a a(g)
2 f(g)

cothf (g') —f (2.11)

Observing that [the superscript (2n) denotes the 2nth
derivativej

n

w(g') =
6ma

and the average ( V —Vo)s vailishes. For these reasons,

we are allowed to introduce an effective potential V,rf in
the configurational integral

pF —P
p'2

—pv ff(g) (2.13)

The quantity a governs the quantum spread of the po-
tential given by A (g). For real values of f it gives a
behavior determined by an harmonic oscillator in the
ground state (p~ao) to that of a free particle (p~O).
Negative values of o) (g) and consequently imaginary
values of f can be allowed provided that the temperature
is so high that the paths can never go very far from z(0)
due to a large kinetic energy (f=i v,

i
v

i (n) Indeed, as. .
shown in the following, our variational principle prevents
this limiting situation and gives always real values off for
lowest temperatures. Taking the minimum of (2.3) with
respect to w (g), we find

' 1/2

fop
(2.12)

(~a)-)/2e —v /a y 5(2n)(~)
0n~ 4

(2.15)

we get the following equivalent expression for w (g)

(~) g 1 a V(2~)(() plaf
(2.16)

m„0n! 4

=—f dq "V(g (~+)(~ )a-'" e (2.17)

defining the frequency co(g) of the harmonic part of the
approximate functional So. This self-consistent equation
cannot give negative solutions for (o (g) such that f=in.

In order to obtain the best approximation to I' we still
have to minimize I0 with respect to co, i.e., with respect
to f. The equation 5Fo/5f= 0 reads
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which would produce unphysical divergences. In particu-
lar, for T=O, the value of co (g) must always be positive.
This can be verified for all physical potentials.

Let us consider the partition function in the two ex-
treme temperature limits, namely very high (p~O) and
very low (p~ao) temperatures. The first one corre-
sponds to a quasi-classical situation. From Eqs. (2.14)
and (2.17) we have

~2 V(2)(g)
m

(2.18)

and we find

ici(g) = V(g)+O(P'), (2.19)

so that only the first term of the expansion of the loga-
rithm in Eq. (2.14) has to be retained, giving

y + V(2) (2.20)

which reproduces the first correction in the Wigner expan-
s)on 1,21,22

In the opposite limit, P~ go, the integral (2.13) can be
performed by the saddle-point method. Considering g
as the minimum of V,tt, we find for the free energy in the
low coupling limit

oscillator and the height (p, /4A, ) of the barrier in the
double-well case.

Looking for real solutions of f, we observe that the
left-hand side (lhs) of (2.24} represents a function taking
its maximum value, equal to unity, for f=0 and mono-
tonically decreasing when f tends to infinity. The condi-
tion for real solutions to exist is therefore

F= , fic—o(g )+—ln(1 —e )+g, +g&(p), (2.21) 2

where gi is the zero-point correction and gz(p) is a fur-
ther temperature correction due to the anharmonicity.
The main behavior of the system is that of an harmonic
oscillator whose frequency is modified by the quantum
fluctuations, cz( T =0)=i}I/(mco), through Eq. (2.17).

It is worthwhile to note that the one-loop "renormaliza-
tion" is directly derived by our variational principle, since
the self-consistent equation (2.17) does not produce any
secular term. The improvement obtained by using varia-
tional methods with respect to perturbative ones, where
regularization procedures are in order, ' appears to be evi-
dent.

Let us now apply the method to an anharmonic oscilla-
tor with an interaction potential

2

V(g)= —g'+&, X~O,
4

(2.22)

the negative sign corresponding to a double-mell potential.
From Eq. (2.12) we have

'2

io(g) = V(g) —3A,
4

(2.23}

and the self-consistent equation for f reads
'4

cothf ——= — t f —2 — t(3y +1),3 1 4 3 2 4

f f Q Q

(2.24)

where we have introduced the dimensionless quantities
1/2 1/2

2irt A, A, 4A,Q=4, y= — g, t=
mp p pp

(2.2S)

The first one is the quantum" parameter giving the ratio
between the energy of the ground state of the harmonic

— -' —:1-3y0 1
2 4

(2.26}

It is important to note that the solution for v, if any,
remains bounded away from +ir at any temperature and
depends continuously on p, having v=O for T~ no and
1/T =2(4/Q) (1—3y ), when, of course, the latter quan-
tity is positive. We stress this point, as it implies that no
singularity or unphysical result can arise in the partition
function at all temperatures, both for the double-well and
single minimum potentials.

For T=O the effective potential reads
2

2

4
1 —3A,

PP?l CO

'2

—27K, +O()t, )
me@ 4m'

(2.28)

and the self-consistent equation for the frequency becomes

f1lQ7 = —p+3ky + 2 A.
P7l 6)

(2.29)

From the last two equations the minimum of the poten-

Hence, if the temperature is sufficiently low, we always
have real solutions for Eq. (2.24). For a double-well po-
tential at highest temperatures, possible negative values of
co (g) can arise, depending on g, until to the classical value
mco = V' '(g), for P=O.

In the following we consider the more interesting
double-well potential. At increasing temperatures, Eq.
(2.2S) is not satisfied: we have imaginary co and conse-
quently f=iv with —m &v&m. Equation (2.24) becomes
in this case

4

cotgv ——= — t v +2 — t(3y —1) . (2.27)
3 1 4 3 4
v v Q Q
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(2.30}

tial is found to be, up to the first order in the coupling
constant, at the value

' 1/2

~ =+ &

4 1o.

~(g )=
m

where the renormalized frequency at minimum, co(g ), is
determined by Eq. (2.29) and turns out to be

1/2

(1——,', Q)+O(g') . (2.31)

t= ~o-4
0

0

~
~

—SI(Q)/Q
7r

(2.32)

with

I(g) =-,' (I+~g )'"[E(q)—v QIC(~}], (2.33)

where E and E are the complete elliptic integrals of the
argument

(2.34)

The function I(Q) decreases monotonically from its
value —', at Q=O so that we are allowed to neglect the tun-
neling shift for Q &0.5, its value being less than 4%%uo of
the anharmonic correction. The free energy for T~O can
be essentially represented by

F=TAco(g )+ —,6 A, + —ln(1 —e ) . (2.35)
fP 1 phm( f —)

IJ,Ttl

The self-consistent equation (2.24) has been solved for
coi(y) for different values of the temperatures at Q = —,'.
It appears that all of the frequencies tend to become real
when the temperature approaches zero (Fig. 1). The effec-
tive potential, to be introduced in the configurational in-
tegral is plotted in Fig. 2. From its behavior the physical
meaning of the quantum effects, according to our treat-
ment, can be easily inferred: the quantum fluctuations
make softer the potential, so that the jumps across the
barrier activated by the temperature are enhanced.

This frequency renormalization derives from the quan-
tum effect of the anharmonicity, taken into account in a
perturbative way. This would be exhaustive for the
single-well potential. In our case, the quantum tunnehng
is also present and, of course, it cannot be accounted by
our first cumulant theory [see Eq. (2.3)]. Therefore our
treatment holds whenever the frequency renormalization
is much greater than the effects of the quantum tunneling.
The latter, in turn, can be easily evaluated and results in

' 1/2

FIG. 1. Dimcnsionlcss quantity Qi =+coij1/p4 vs

y=(A, /p)'~g at different temperatures with g= 4 for the

double-mell potential.

where again the functional integral is evaluated over all of
the closed paths in the configuration space of the system
and where

mS[x(u)]= J du —g x, (u)+ V(x(u)) (32)

Moreover we shall consider potentials of the form
N

V(x) = g x,B,bxb+g g u (x, ),0 0
a,b= —N a= —N

(3.3)

where we assume that the symmetric matrix B,b contains
completely the harmonic part of the interaction. These
potentials are general enough to cover many models which
are frequently met in apphcations. We also require
periodic boundary conditions for our system and transla-
tion invariance for the matrix B, namely,

vert

V(o)

+a+(2N + 1) Xu ~ ~o +c,b +c ~ub

The situation is therefore very similar to that of a single
oscillator, except for a number of additional technical
complications which we must take into account.

According to the procedure developed in Sec. II, we
shall calculate the "approximate" free energy I'o deter-
mined by the functional

III. PARTITION FUNCTION FOR A
SELF-INTERACTING SCALAR FIELD

Having discussed the partition function for the single
anharmonic oscillator, we now study a system of (2N + 1)
interaction points I x, I, i

a
i

& N, which reduces to a sca-
181 fllcld 111 tllc 111111t N~ oo. Wc shall calculate thc parti-
tion function

Z =e ~ = N[x(u)]e " ("'"') (3 1}(x (D)) =Ix (pi%)I

0-
0

FIG. 2. Effective potential versus y at different temperatures
with Q =—„'.
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So[x(u)]= J du —g x, +w(X)+ g w, (x)[x,(u) —x, ]+—,
' g [x,(u) x—, ]w,b(x)[xb(u) —xk]

a= —X a= —X a,b= —N

(3 5)

where, as in (2.5) X, is the average of x, (u), and the coefficients w, w„w,& are going to be determined by the minimum
problem posed by the inequality (2.3), which keeps holding. As w,s is a symmetric matrix, it can be diagonalized by an
orthogonal matrix Uk, with determinant equal to unity. We define the eigenfrequencies cok according to

N

Uk was Ujs ™haik&jk (3.6)
a, b =-N

and, for each E, we again introduce the quantities corresponding to (2.6) and (2.10), namely,

fk= 2p~k,
1

ak ——
z (fi,cothfk —1) .

2m fkz

(3.7)

ii~(() ~ fk 4

~ sinhfk(g)
PFo m

e
2 sruti'P

(3.8)

The calculation of the partition function e is done by first diagonalizing the matrix w,b and then proceeding as in
Sec. II. The result is the expected one, i.e.,

(2N + 1)/2

In a similar way

( V —Vo)s ——e PFO

2W P

' (2N+1)/2

e
—Pw(()

k= —N

iri'p fk
6mak sinhfk

x ~(g)—
k= —N

6mak

iri p

'1/2'
m&kfk

w(g)+
k=-~ P'

(3.9)

with

A (()=
(2N + 1)/2 N

g V U g+ exP — gk ak
k= —N

(3.10)

Minimizing (2.3) with respect to w we get

k/a(k

(g)= f drl V(U ri+g)
k n (nnk)'

mok k

k= n +P' (3.11)

and again ( V —Vo)s ——0. Therefore, using the expansion (2.16) for each k we define an effective potential V,ff(g)
which accounts for the self-consistent one-loop corrections

N oo N

V, (g)=V(g)+ y (UBU ) „+g y y y U
k= —N n=la= —N k= —N

u (2n)(g

m~kfk 1
~ fk

ln
k= —N +p p k= —X S nhfk

(3.12)

Using (3.12) we can write

(2N +1)/2

J dpe " . (3.13)

We now consider the minimum of Fo with respect to

w,s. It is shown in Appendix A that the search for the
extrema with respect to w,b is equivalent to that with
respect to cok(g) and to the elements of the diagonalizing
matrix Uk, (g'), once the appropriate constraints are im-
posed. The variational principle for these quantities leads
to the following self-consistent equations:
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U;. &.b+ ~.b(g) Ukb=eok5. k

o,b= —X m

with
2

~.,(g)=S„f dgu("[(U'g+g). ] gk=-b («k)'"
5

u (2n +2)(g
co

2

(3.14)

(3.15)

by the orthogonality of U and

g2p h'

X (U&U')kb =
k= —X . 24m a= —X

by the properties of the trace. Finally, since

m«fk 1
" fk

22 +— In
A'p' P k „»»fk

(3.19)

(3.20)

where we have defined the quantum renormalization fac-
tor

is vanishing up to terms of the second order in P, so that
from (3.12) we find

D, (g) = g Uk, (g)
k= —N

(3.16)

Moreover, using Eqs. (3.14) and (3.15), the expression of
the effective potential can be recast in the more compact
orm

g2p
V ff($)=V(g)+ g [8„+gu ' '(g, )]

a= —X

gp N g2
=V(()+ g 2 V(g), P~O.

24m,
(3.21)

k
V,rr(g) = V(()——g ln

sinh k

—g, u "(g, )
(n —1) (2~~ a

a= —Nn=2 nl
(3.17)

ak, ri'p ~ 2 iri'p

4 24m k ~ 24m
(3.18)

The self-consistent equations (3.14) and (3.15), although
easily solvable for a single anharmonic oscillator, become
formidable for interacting fields and their solution could
be obtained by a numerical procedure. However, the a
priori knowledge of the classical "trajectory" is not in
principle required.

The expression (3.17) for the effective potential holds at
any value of P. However, as it occurs in the case of the
anharmonic oscillator, the high- and low-temperature lim-
its produce a simpler expression for V,ri, which allow a
better understanding of its physical content. The high-
temperature limit is easy to calculate. From the defini-
tions (3.7) we have ab ~f213/6m +0(p ) as p~0, so that
ak is actually independent of k up to terms of the second
order in P. But in this case

T

%e thus recognize that the correction to the classical
potential is just the first term of the Wigner expansion, as
found in Ref. 18: indeed this limit is not sensitive of the
quantum properties of the harmonic oscillators that have
been completely accounted for in the functional So.

We now consider the limit of low temperatures, P~ oo.
From (3.13) it appears that in this case the most appropri-
ate way to calculate the partition function is by using the
saddle-point method. Its application requires the
knowledge of the minima of the effective potential: we
suppose that the absolute minima of V,ff, i.e., the vacua,
are represented by constant configurations, g, =const, and
we are going to study the contribution to the partition
function of any vacuum sector. The contribution from
solitons, whenever such solutions are allowed, can be han-
dled along the same pattern: a detailed calculation will be
worked out in the next section for the sine-Gordon case.

Let us consider the case g, =const. From (3.15) it can
be seen that the elements P„are constant and indepen-
dent of the index a: hence the matrix P is a constant mul-
tiple of the identity matrix and U is just the matrix which
diagonalizes 8. Due to the condition (3.4) of translation
invariance for 8, the matrix U can be explicitly calculated
and reads

2

2%+ 1

1/2cos, —N&k& —1
2mka

2%+1

sin, 1&k &N .2mka

2%+1
2

2%+1

Ab, =Ub (g, =const)= (2%+1) '~2, k =0
' 1/2

(3.22)

At low temperatures equation (3.7) gives

(3.23)

(3.22) for Ub, the quantum renormalization factor (3.16)
reads

Observing that ak=a b and using the explicit form

ND=X -X
k= —x 2 . k= —x 2m ok

as P~ ao (3.24)
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N

~iamb kb =Qk5ik ~

a,b=-N
(3.25)

recovering a previous result. ' ' This expression can be
inserted in Eq. (3.14) and, through Eq. (3.15), we obtain
the usual self-consistent equation for the renormalized
frequencies of the small oscillations around the vacuum.
Note that in this case P~ and Uk, ——Ak, are constant
with g.

Another important limiting situation occurs when the
coupling g is low. We consider, as unperturbed frequen-
cies Qk the square roots of the eigenfunctions of the ma-
trix 8 or

straightforward. The equivalent free energy Fo describes
a system of quantuin harmonic oscillators with an added
contribution due to nonlinearity calculated by a configura-
tional integral in which the parameters of the potential are
modified by the quantum fluctuations.

IV. SINE-GORDON CHAIN

In order to show in detail the applicability of our
method, we consider the discrete sine-Gordon chain with
lattice constant a. %'e have

V(q)) ma y [ ) Q()(q b q)b+) ) Q)cos()ob] ('4 1)
b

We can now expand the matrix U«(g) defined in Eq.
(3.14) according to

Uia =~ia+g~~a'(1) (3.26)

Following the procedure explained in Appendix B we ob-
tain

so that

B,b ——Q()(25,b —5, b )
—5, b ~) )+Q)5,b,
2

ii (q)) =mQ) g 1 — cosq)b—2 fb

b

(4.2)

o)k —Qk+ g ~ka~aa=Qk+o)(
ma

(3.27)
In the continuum limit this system exhibits kink soli-

tons with classical energy Es —8ma QoQ). The quantum
behavior of the system is ruled by the parameter

f(0)

sinhf( )
J

N

ln
~ k= N—

(o) "fk '
(o) '

)(3 k--b fk" 2fk"
(3.28)

Some explanations are in order about the validity and
the meaning of this expansion. Note first that even if Qk
vanishes for some value of k, Eq. (3.28) is valid rovided
that the temperature is not too low, so to have fI,

' « 1; in
this condition the main contribution to (3.28) comes from
terms with high Qk. Moreover, the perturbative expan-
sion (3.26) apparently fails when Qk goes to zero, where a
low coupling can completely modify the spectrum of the
small oscillations. (Typical instances occur when noncon-
stant minima like solitons or solitary waves are con-
sidered. ) However, for fI,"«1, the error deriving from
the use of (3.28) is again very small. On the other hand,
the nonperturbative effects, as the presence of translation
modes, are correctly included in the configurational in-
tegral.

Eventually, after some algebra, we can write the expres-
sion of the effective potential for low values of g as

Letting f» ' ——(p))iQ»/2) and fk" (pfau'k"—/—2), the loga-
rithmic term in the effective potential (3.17) can be given
by the form

Q =fiQ)/E, (4.3)

Qk ——Q)+4Qosin (kal2) . (4.5)

Up to some inessential additive constants, the effective
potential of Eq. (3.17) specifies to

Veff(q') 2 ma Qoy (q'b q b+1) rf ln
b Sill

T

D
ma Q)—pe ~ 1+—cosq)b, (4.6)

while from Eq. (3.15) we have

P,b
——5,bma Q)(e cosq)b —1) . (4.7)

generally known as the "coupling parameter"' (the cou-
pling parameter of Ref. 13 is 8 times larger). The
strength of the anharmonicity of the system (4.1) is mea-
sured by

e=1/(4R ) =(Qi/2Q()) (4.4)

where R represents the length of the kink in lattice
units. ' For largest values of R (displacive limit' ), the
discrete chain is well described by a continuum model.

The frequency of the radiation in the classical case is
given by

N

V,ff(g') = V(g) ——g ln
)(I k= N

f(o)

sinhfk '

)'

1 D+ g g & (2a)(g
a= —An =1

(3.29)

On this particular case it can be explicitly checked by
the use of Eq. (3.16) that (3.14) cannot produce negative
values of cok for lower and lower temperatures.

In this temperature range the main contribution to the
partition function arises from local minima. These are
given by the following equation:

As shown in Eq. (3.28), the quantities ak in Eq. (3.29)
can be approximately evaluated using fko', so that the
quantum renormalization factor D turns out to be in-
dependent of g and the calculation of V,ff becoilles

Qo(2q)b q'b+) q'b —) )+—Q)e—» q'bn
2 2 —D/2

&k P„=O .
4 "

ilgwu

(4.8)
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For low coupling we observe that the third term is of
higher order in Qi so that in the continuum limit Eq. (4.8)
becomes the well-known sine-Gordon equation with the
renormalized frequency Q i

——Q iexp( —D /4).
For P~ 00 the only contribution derives from the vacu-

um sector y& ——0. Taking into account thai Uk, is in-
dependent of qr, being the matrix that diagonalizes 8~
[see Eq. (3.22)] we obtain from (3.14) .the self-consistent
equation

haik =4Qosin (ka/2)+Qiexp[ —Do(T =0)/2],
1

(4.9a)

D,(T =0)=
2&+& k 2ma2a)k

At lowest order, Do(T =0) turns out to be
I

(T 0) 8QR g 2R
n(1+4R2)'~ (1+4R )'/ (4.9b)

in agreement with previous results. "
When the temperature increases, the quantum renor-

malization factor Do( T) decreases, indicating that the sys-
tem becomes more and more classical. According to Eq.
(3.16) for the case yb ——0, we find at lowest order in terms
of the reduced temperature t =kq T/Es, with
p=(1+a)'~,

I

4 R 4 QR 1+p
Do(t) = g (nor) + — ~ (nm)i

pt 16R

2
' 2 —1/2

(4.10)

The behavior of Do(t) is plotted in Fig. 3 for Q=0.1 and
R =2 and 10. (See Appendix C for details. )

For nonvanishing T the contribution of other local
minima (i.e., static solitons) y=y' ' must be included.
The diagonalizing matrix Uk, is now space dependent,
representing the new density of states caused by the modi-
fication of the spectrum of small oscillations by the pres-
ence of the soliton in the dilute-gas approximation.
However, it has been shown' ' that the corrections to the
factor D are vanishing for infinite length of the system.
Therefore, the qr dependent Uk„which takes into account
the phase shift of the radiation, ' must be inserted only
to evaluate the logarithmic term.

As mentioned in the Introduction, some magnetic
chains present some interesting features of the specific
heat "" which seem to be caused by sine-Gordon soli-
tons. However, the peak of the specific heat occurs in a
range of temperatures (t-0.2) where the dilute-gas ap-
proximation is no more valid and the contribution of
soliton-soliton interactions must be taken into account yet
in the classical case. ~ On the other hand, the quantum
renormalization factor Do(t) is only 30% of the value at
T=O in this range of temperatures (see Fig. 3), signalizing
that, at least for low coupling, the quantum fluctuations
should not affect too much the nonlinear contribution. It
is instead essential to entirely consider the quantum char-
acter of the harmonic oscillators. "

The expansion (3.29), valid in the displacive limit
(@&&1) appears to be promising in these conditions, ex-
tending the results obtained by a Wigner-type expansion. '

Using the equation (3.29) we obtain

—PFOe

' (2%+1)/2
ltlQ i)iPQosin( ka /2) P220 2 2 2 —Do/2II h g Q k 2

~%exp —p
2 y [Qo(f'b f'I 1) 2—Q'e ' —«& ]sinh A Qosin ka 2 b

(4.11)

This expression for the free energy, valid for t ~ Q/2, constitutes an important improvement with respect to previous
theories. In order to give a physical meaning to (4.11) we first consider the high-temperature limit. In this case we re-
cover from (4.11) the first Wigner correction (3.21):

(2N + 1)irPP2QO ma Qo 2 i iri2p+ g (yb —ps+i) —ma Qi 1 — comps
24 24EBQ

(4.12)

The first term represents the quantum correction' of the
oscillators of frequency 2Qosin(ka/2) due to the interac-
tion of nearest neighbors. At this order they are

uivalent to (2% +1) Einstein oscillators with frequency
2QO. The quantum effects related to the sine-Gordon

cosine potential are accounted by a simple renormaliza-
tion of the frequency Qi.

For decreasing temperatures, the quantum effects must
be completely considered for the aforementioned harmon-
ic oscillators, while the renormalization of the frequency
Qi, with the appropriate D factor, is again consistent.
Therefore the free energy (4.11) presents a Debye behavior
mth an added renormalized contribution due to the non-
linearity, in agreement with the fully quantum results

based on the massive Thirring mode1.
Summing up, the nonlinear quantum contribution to

the free energy can be reduced to the calculation of a clas-
sical configurational integral where all modifications of
the radiation due to nonlinearity are included. %e are
thus able to overcome the dilute-gas approximation and
use the well-known classical techniques, as the
interacting-soliton model, high-temperature expansions,
and eventually transfer-matrix numerical calculations.

In the classical case the full nonlinear contribution to
the specific heat, 5C, is much lower than the first-order
transfer-matrix result. The latter coincides with the
dilute-soliton gas approximation. The quantity RSC is
a universal function of the reduced temperature t. It has
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DO(t j R~5

0.2.

0.1 0.2 0.3

O.P

FIG. 3. Quantum renormalization factor Do(t) versus the re-

duced temperature t =k&T/E~ of a sine-Gordon chain for dif-
ferent R with Q=0.1.

been shown2 that the large difference with respect to the
classical dilute-soliton gas approximation is mainly due to
the soliton-soliton interaction (see Fig. 4 and Appendix
D). Therefore it is evident that the quantum correction
must be superimposed to the interacting system rather
than to the dilute-gas results. In this framework, for
evaluating the quantum 5C in the region of the peak
through Eq. (4.11), we can simply replace Qi with
Qtexp( D/4) in t—he classical expansions given in Appen-
dix D. The results are given in Figs. 4 and 5. For the
considered range of R and Q, the quantum corrections,
which are indeed important for the harmonic part, do not
much affect the anharmonic contribution in quantitative
agreement with the results of the quantum sine-Gordon
myel 30,31,33

If the one-dimensional ferromagnetic CsNiFs could be
thought as a fully easy-magnetization-plane system and
consequently as a sine-Gordon system, the appropriate pa-
rameters would be Q=0.11 and 8=5 for a magnetic field
of about 5 kG. Hence, as shown in Fig. 5, the quantum
effects on the nonlinear contribution to the specific heat
would be small, not overcoming 10%. However, the ex-
perimental data are much lower than this prediction,
showing the already observed inadequacy of the easy-
magnetization-plane model, A theory which could take

Q =0.1

FIG. 5. Nonlinear contribution to the specific heat versus t
at Q=0.11 and R=5 (dashed line). The solid line is the classi-
cal result. Triangles are experimental data from Ref. 9 as
presented in Ref. 33. Dotted line as in Fig. 4.

into account the out-of-plane fluctuations is essential, but
it cannot be limited to the dilute-soliton gas approxima-
tion. '

V. CONCLUSIONS

The new variational approach, developed here, seems to
offer a useful tool for calculating the quantum corrections
to the classical free energy. Our theory unifies the
methods described in Refs. 5, 13, and 16 giving a correct
effective potential to be inserted in the configuration in-
tegral, at any temperature, in the low-coupling limit.
Moreover, the frequency renormalization is a direct conse-
quence of our variational principle.

The expansion for small anharmonicity [Eq. (3.29)] has
been applied to the sine-Gordon chain the displactive lim-
it showing, as a new result, that the specific heat can be
calculated by the previous classical expression with a sim-
ple renormalization of the frequency. Moreover, in this
limit, the quantum renormalization factor is approximate-
ly evaluated using the spectrum of the small oscillations
around the vacuum.

The method appears to be very general and can be sim-

ply extended to the calculation of static correlation func-
tions. Work is in progress in this direction, together with
its application to other nonlinear models which could
better describe some real system.

APPENDIX A

0,
0

FIG. 4. Nonlinear contribution to specific heat of a sine-

Gordon chain versus t. Solid line represents the classical result.
Dotted hne represents the classical result without soliton-soliton
interaction. Dashed lines represent quantum results for Q=0.1,
R=2 and 10.

We present here the explicit evaluation of the minimum
of Fo with respect to u,b. Since the matrix m~b is sym-
metric it can be diagonalized by an orthogonal matrix
Uk, . We therefore split the problem in two steps: First
we calculate the minimum of Fo with respect to the eigen-
frequencies of w, b, i.e., equivalently, with respect to f».
Secondly, we minimize with respect to Uk, . Of course
some care is due in this second step, and we have to use
Lagrange multipliers to account for the orthogonality
constraints on the matrix Uk, . %e have
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(x)

=—'(UBU )kk+g g g Uk
~fk 4

U2

l= —N

n —1

4fk 5&k
P

(n —1)! &2132 Bfk
(A 1)

so that the equation 5Fol5fk ——0 gives

+p2 N

fk = g Uk [B.b+gP.b(k)] Ukb»
4

(A2)

where Pb is given one of the following two expressions:
n

P,b 5,b g-—
n=o l= —N

&
(2n +1)(g

U2 a
la nt

N —&k ~~k2

=5,b J drju( '[(U )2+/), ]
k=-)v (~&k)'"

(A3)

Equation (A2) shows that the quantities mcok are the diagonal elements of the symmetric matrix U(B+gP)U . Ac-
tually we shall prove that the latter matrix can be supposed diagonal, so that mr0~ are just its eigenvalues.

The minimum with respect to U must be evaluated under the orthogonality constraint

UU —I=0
so that, letting

M ( g) —Veff(g) +Tr[( UU T I)A,]—
where A, is the matrix of the Lagrange multipliers, we have to solve the system

aM(g) aM(g)
BU Bi,ki

(A4)

(A5)

(A6)

The second of these equations gives the constraint (A4). To write the explicit form of the first equation, we calculate
the variation of M, ~, under a variation b, U. After some lengthy algebra, we get

N u (2n)(g
bM =2 g [(b,U)BU ]kk+2g

k=-N a, k= N—
n —1

N

l= —N k= —N
[(b U)U (A, +A, )]kk (A7)

from which it is straightforward to compute the deriva-
tive of M with respect to Ub . As U is nonsingular, the
first of equations (A6) is equivalent to

(AS)

whose explicit form reads

~ k =&k5.2

from Eq. (A9) we get the commutation relation

(A10)

[U(B+gP)U ] k+ —,'(A, +A, );k ——0. (A9)

But (A, +A, ) is symmetric, so that, defining the diagonal
matrix

Therefore, there exists an orthogonal matrix U deter-
mining a similarity transformation which simultaneously
diagonalizes both U(B+gP)U and A. Since A is al-
ready diagonal, we can suppose, without loss of generality,
that Ucommutes with A. By substituting Uwith UUwe
conclude that, up to an inessential redefinition of U, the
matrix U(B+gP)U is diagonal. Equation (A2) is then
written in the general form given by Eq. (3.14).

APPENDIX B

We present the detailed derivation of (3.27). Observing
that, up to the first order in g we have (in matrix nota-
tion)

U-'=(~ +g~(")-'=(I g~ '~ —)~(

[A, U(B+gP)U ]=0. (Al 1) equation (3.14) gives
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APPENDIX D

+g~&~ ']kk .
However,

(~'"a~ -' —~as -'w"'~ -')„„

(&2)

~k=flk+g(~&~ ')Ik

i.e., to (3.27).

APPENDIX C

(84)

The quantum renormalization factor Do for the vacu-
um sector has the general expression (3.24). Under the
usual conditions we shall replace the sum by an integral.
Recalling the explicit form (3.7) for ak and using the no-
tations introduced in Sec. IV, we find that a convenient
expression for calculating Do at low temperatures is

x 2t
coth

Do(t)=SQR I dx (Cl)
[(x'—1)(A' —x')]'"

[A=(1+4R )'~2] which gives immediately (4.9) for
T=O.

To evaluate Do at high temperature, instead, the fol-
lowing form turns out to be more convenient:

1
cothx ——

X4Q RDo(t)= f„d x»» „, , 'C2
[(x —A~)(Ai —x 2) )

'~2

where Ai QI2t and——A2 ——(Q/2t)A. By using the well-
known expansion

1 x
cothx ——=2 g z zix +n

(C3)

and performing the change of variable x ~x, we get

4Q R " "z dx
Do(t) = J~' (x+n'1r )[(x —A')(A' —x)]' '

(C4)

whose evaluation is elementary and gives (4.10). For very
high temperatures the series (4.10) gives

2
Do —— +0(1/t ) (C5)

describing the asymptotic vanishing of the renormaliza-
tion factor when the system approaches the classical re-
gime.

=[~"'~-',~a~ -'],„(B3)
and from (3.25) we note that ( AHA ');k ——0;5;k is a diag-
onal matrix. Therefore, the evaluation of the (k, k) ma-
trix element of the commutator (83) gives a vanishing re-
sult and Eq. (82) reduces to

The well-known formula which allows the calculation
of the specific heat from the free energy is

C= —T = —2kP kPBT' d13 Bp'
(Dl)

~, (r) =16'/2r/ne'~' .g b„t",
n=0

7;,(t)= e '~' ln ~ , r 1-+-ln ~64
'

4 4
t

——t 1+—ln8 t

and y=0.5772 denotes the Euler-Mascheroni constant.
The explicit values of the coefficients A„of Eq. (D2) as
well as a„and b„of Eqs. (D3) and (D4) can be found in
Refs. 5 and 27. It must be observed that the low-
temperature expansion (D3) has a transparent physical in-
terpretation in the framework of an interacting-soliton
theory. ' Indeed the first series in (D3) gives the contri-
bution of radiation and radiation-radiation interaction; the
function rs accounts for the one-soliton and radiation-
soliton interaction and, finally, ass contains two solitons
interacting both between themselves and with radiation.

According to what we have developed in Sec. IV, the
free-energy including the quantum corrections in the low-
coupling approximation is obtained from (D2) and (D3)
by replacing the soliton energy Es with its renormalized
counterpart

Es'~'=Esexp( D/4) . —

Consequently, also the reduced temperature t must be
substituted by te t exp(D/4). As the re——normalization
factor is t dependent [see, e.g. (4.10)], the appropriate cau-
tion is needed to evaluate the derivatives giving the specif-
ic heat (Dl).

In the classical case the free energy E,i is expressed in
terms of high- and low-temperature approximations. A
standard high-temperature expansion gives

00

F,)
——(2N+1) 1+ g Ap„ iq

" ' (D2)
n=1

with q =(4t) =(PEs/2) . At low temperature an ex-
pansion for the classical free energy has been found by us-

ing an accurate transfer equation approach and reads

EsF„=(2N +1) g a„t" ~, (t) ~„(r—), (D3)
n=1

4

where
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