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Nuclear relaxation and antiferromagnetic critical effects in organic conductors
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%e present and analyze H relaxation data of the spin-density-eave transition on oriented di-

tetramethyltetraselenafulvalenium phosphorus hexafluoride [(TMTSF}2PF6] single crystals at am-

bient pressure. A deiled analysis of the methyl-group rotation contribution to the nuclear relaxa-

tion rate T» is made in the temperature domain precursor to the transition. %e show that the

singular profile of T» can be well described as an antiferromagnetic critical effect with a three-

dimensional classical exponent. The scaling form of the critical quantity (T»T) in low-

dimensional antiferromagnets with a nesting vector exhibiting a dimensionality crossover in tem-

perature is derived and discussed in connection with the data.

I. INTRODUCTION

The spin-density-wave (SDW) state which exists at low
temperature in some members of the ditetramethyl-
tetraselenafulvalene [(TMTSF)iX] family of organic con-
ductors has been studied in some detail for the rather
similar cases where X=PF6 or AsF6. This phenomenon
is of functional interest, owing to it proximity to super-
conductivity in the general phase diagram of (TMTSF)iX
conlpounds.

The possibility of a SDW low-temperature state at am-
bient pressure was first suggested by Walsh et al. , ' on the
basis of an observed nonlinearity of the electrical conduc-
tivity in the semiconducting ground state below T, —12
K. Although the meaning of these nonlinearities is still
open to discussion, magnetic effects have been detected in
susceptibility and EPR measurements with only a small
anomaly of the powder Faraday susceptibilitiess but an
abrupt vanishing of the EPR susceptibihty at the transi-
tion."

The SDW nature of the ground state has hen firmly
established by Faraday susceptibility studies of the aniso-
tropies on (TMTSF)2AsFs (Ref. 5) and (TMTSF)2PF6
(Ref. 6) single crystals. These measurements have also al-
lowed the determination of the easy axis for the magneti-
zation of the SDW state along the b' direction and a
spin-fJop field around 4.8 KOe at liquid-helium tempera-
ture. Additional spectroscopic studies of the magnetic
modes have been provided by the observation of the elec-
tron antiferromagnetic resonance in the SDW state of
(TMTSF)2PF6 (Ref. 7).

NMR techniques have also been used to study the SD%
state. Direct evidence for a magnetic ground state comes
from NMR experiments on Se (I = —,') (Ref. 8). The
NMR line in (TMTSF)zPF6 broadens inhomogeneously
due to the occurrence of internal magnetic fields below 12
K and becomes too broad to be detected at lower tempera-
tures.

Similarly, a broadening of the NMR line has been ob-
served at 12 K for the 'H of the methyl groups, but there,
the nuclear resonance remains visible in the SDW state.
The concomitant decrease of the 'H homogeneous
linewidth (1/T2) demonstrates the inhomogeneous nature
of the line broadening.

Among the few observable quantities that can give
direct microscopic information about the singular nature
of the electronic system both near and far from the SDW
transition, the nuclear spin-lattice relaxation rate T& is
certainly one of the best probes for the characterization of
magnetic correlations of all scales. As mentioned above,
the proton resonance is the only resonance in
(TMTSF)2PF6 which can be followed through the magnet-
ic transition. NMR data have revealed an anomaly in
1/Ti('H) at the transition. ' But since these results were
obtained on powder samples, anisotropy effects and a
proper determination of the critical profile of 1/T, were
altered in these experiments. Single-crystal work there-
fore appears to be necessary for the NMR study of aniso-
tropic systems such as (TMTSF)2X. Thus, we present, in
this work, the first 'H relaxation-rate measurements on
oriented (TMTSF)2PF6 performed through the SDW tran-
sition.

However, when studying proton resonance in
(TMTSF)2X systems, great care should be taken concern-
ing the origin of the mechanism for spin-lattice relaxa-
tion. Protons in these compounds all belong to methyl
groups (CH3) which can rotate around an axis. This
methyl-group rotation is classically thermally activated at
high temperature and can be described by quantum tun-
neling at low temperature. The resulting tinM-dependent
modulation of the H-H dipolar interaction within each
CH3 group therefore becomes a powerful channel for ' H
spin-lattice relaxation which can, under certain cir-
cumstances, mask the effects in which we are particularly
interested in the present study, namely, the influence of
electron-spin correlations on the H spin-lattice relaxation.
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The relaxation due to methyl rotation becomes negligi-
ble at high temperature when the CH& motion becomes
fast compared to the nuclear Larmor frequency. A
damping of the rotation- (or quantum-tunneling-) induced
relaxation is also expected at low temperatures. However,
a careful study of the temperature dependence of 1/T('H)
must be performed below 30 K in order to evaluate the
relative weight of extrinsic (CHi rotation) and intrinsic re-
laxation mechanisms in the magnetic transition-
temperature domain. The experimental section is devoted
to the study of the 'H relaxation below 30 K leading to
the estimate of extrinsic relaxation in the low-temperature
regime.

The behavior of Ti ' around the SDW transition is
then analyzed in terms of a power-law divergence at T, .
The theory section presents a model which strongly sup-
ports that 1/T, near T, is dominated by SDW critical
fluctuations and, accordingly, that quasiparticles do not
contribute significantly to the relaxation in this region. '

For the model considered, scaling properties are found to
be compatible with a general prediction of the theory of
critical phenomena for anisotropic systems. The results
obtained should apply to all SDW phases of the
(TMTSF)&X series with nesting properties which undergo
a dimensionality crossover.

II. EXPERIMENTAL RESULTS

The measurements were performed with a single crystal
of typical size 5X0.5X0.5 mm, with respect to tempera-
ture at various magnetic field magnitudes and orientations
in the plane perpendicular to the a axis of the single crys-
tal. The magnetic field values, namely, 2.6, 4.1, 5.2, and
6.4 kOe, were chosen to be above and below the spin-fiop
field of 4.8 kOe. For these field values, the relaxation
rate was measured with a ir-m /2 pulse sequence or a spin-
echo technique. The recovery of the magnetization fol-
lowed an exponential time dependence in terms of the
change of the dependent variable. The relative stability of
the temperature between different measurements was
better than 0.2 K. Figure 1 gives the relaxation rate
versus temperature between 30 and 10 K at different mag-
netic fields. The frequency-dependent peak of 1/Ti in
the vicinity of 20 K can be attributed to the CH& rotation
and the anomaly near 11 K is related to the SDW transi-
tion. Above 50 K, 1/Ti shows qualitatively the same
temperature dependence observed for (TMTSF)zC104
(Ref. 9) with a peak and a shoulder at 55 and 75 K,
respectively.

The theory of relaxation via CHi rotation has been
largely developed by Clough" with the following result
for 1/Ti.
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FIG. 1. Relaxation rate (T~ ') of (TMTSF)2PF6 versus the
temperature for magnetic fields 2.63 kOe (11.2 MHz), 4.09 kOe
(17.4 MHz), 5.21 kOe (22.2 MHz), and 6.44 kOe (27.4 MHz).
The results at 6.44 kOe are given for different orientations of
the field in the b'&(c* plane: &(, 90' (c ); 5, 60', 4, 45', 0,
30'; ~ and o, 0' (b'). The curves are plotted with the aid of Eq.
(1) and values of Table I.

where co„ is the nuclear Larmor frequency, a =co, /co„, co,
is the tunneling frequency, and r is the thermally activat-
ed reorientation time, r=roexp(E/T), with E the activa-
tion energy.

In Eq. (1},the C, and Ci terms describe the classical
reorientation contribution in the three-modal potential
and the quantum-tunneling contribution, respectively.
Figures 2(a) and 2(b) show the frequency dependence of
the 1/Ti, „peak value and of the temperature Tc where
this peak arises.

First, we can eliminate quantum tunneling with
ro, &&co„as the dominant source of relaxation near 20 K,
since if this were the case, 1/Ti, „would be frequency
independent in contradiction to the data in Fig. 2(a).
Thus we are left for the interpretation of 1/Ti in the vi-
cinity of 20 K with two other possibilities:

(i) the relaxation is dominated by the classical term Ci
in Eq. (1);

(ii) quantum tunneling with co, «co„ is dominant.
In both cases, the activation energy E can be derived

from the frequency dependence of To since

1 z 4z

1+co„r 1+4a)„r

1 1 061
ln (2)

4~

1+(1—a) co„r 1+ (2 a) co„r—
4v

1+(1+a)co„r 1+(2+a}co„r

Data in Fig. 2(b) lead to E =120 K. According to the
theory of Clough, " 120 K is a small activation energy,
providing ru, &&~„, in contradiction to the starting hy-
pothesis (ii). Furthermore, recent H line-shape data in
(TMTSF}zX (Ref. 12} give no indication of fast quantum
tunneligg at lour temperature. The relaxation rate in the
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TABLE I. Values of To(E) used for the analysis of the
methyl-group contribution to the relaxation rate T&

' at low

temperature.

f (MHz)

21.7
20.8
20.0
18.5

27.4
22.2
17.4
11.2

50 ~OO

f-1 (10-9q}

f(MHZ} 5p

dence of T, has been reported on (TMTSF)zAsF6 single
crystals. The value of T, ' at 13 K is about 0.5 s ' and
field independent, in agreement with earlier powder data
obtained at higher field (12 kOe}, where the CH3 contri-
bution is shifted towards higher temperatures ( =25 K).

Finally, we proceed to an analysis of the 1/Ti tempera-
ture dependence at the field of 6.44 kOe in the vicinity of
T„Fig. 4. The log-log plot of Ti ' versus (T T, )/T, —
in the domain T, &T&13 K gives the slopes —0.4,—0.4, and —0.65, corresponding, respectively, to the
three field orientations in the b'-c' plane: 90' (c'), 0'
(b'), and 45'. Therefore, on average, T i

' behaves like

Ti '-(
~

T T,
~
/T, )—' (T, =11.3 K} . (3)

FIG. 2. (a) Frequency dependence of the maximum value for
T~ '(T& '

) for the methyl-group contribution. (b) Frequency
dependence for the temperature (TD) for the occurrence of
T1 max

The data in the T & T, region are also aligned on a paral-
lel line of slope ——,

' or so. With an eivor bar of approxi-
mately 10% for the Ti ' data, the critical form (3) thus
reasonably describes both sides of the transition.

The ——,
' power-law divergence of Ti ' displayed on

Fig. 4 at 6.44 kOe, is also true for other values of Ho.

20-K temperature region is thus determined by the classi-
cal contribution Ci in Eq. (1), with the following set of
parameters, To ——22 K, E=120 K, and C~ ——0.22)(10
s . Next, we have drawn, in Fig. 1, the theoretical con-
tribution to the relaxation, which is expected from the
classical reorientation at different magnetic fields, using
data in Fig. 2 and the parameters of Table I. Hence, we
feel confident in ascribing the sharp T i '('H) anomaly ob-
served near 11 K to the onset of the SDW state with a
negligible contribution coming from CH3-group rotation.

In Fig. 3 we report 1/Ti data in the low-temperature
regiine (3.5—20 K) at different magnetic fields. We have
also plotted the contribution to the relaxation coming
from the CH& reorientation after the above-mentioned
analysis. At all magnetic fields but 2.6 kOe, the tempera-
ture dependence of 1/Ti in the vicinity of T, is not infiu-
enced by extrinsic contributions. A slight anisotropy of
1/T&, for Ho lying in the b-c plane, is noticed at T ~ T,
when Ho is larger than the spin-flop field of 4.8 kOe.

When Ho is smaller than the spin-flap field, the free in-
duction decay (FID) can only be observed for Ho~ ~c'. For
other field orientations, the FID becomes too narrow to be
detected (T2 -3 ps) with our experimental setup. We
have also noticed a small increase of T, when Ho is
varied through the spin-flop field (T, =10.6 and 11.3 K
for Ho & or &HsF, respectively). A similar field depen-
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FIG. 3. Temperature dependence of the relaxation rate Tl '

in the vicinity of the antiferromagnetic transition for four values
of the external field (see Fig. 1). The dashed lines represent the
methyl-group contribution from the analysis of Fig. 1 and the
solid guide lines are the electronic (critical) contribution to T~ '

in ( T —T, ) '~2. For the field orientation, see Fig. 1.
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FIG. 5. Diagrammatic series for the SD% susceptibility P in
the random-phase approximation. The solid (dashed) lines refer
to +kq- ( —kq —) going electrons. The arrows outside the ele-
mentary bubble (Po) are for the spin orientations. The wiggly
line is the forward electron-electron scattering at T, [g,(T„)].
For the 1D corrections to g, see the Appendix.

T» Tg
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FIG. 4. Log-log plot of the relaxation rate T~ ' at 6.44 kOe
normalized by the value taken at 13 K versus the critical tem-
perature width ( T —T, )/T, with T, =11.3 K. The dashed lines
refer to the classical exponent 2 for a three-dimensional antifer-

romagnet. Arrows refer to the data obtained at T & T, . For the
field orientation, see Fig. 1,

These results on (TMTSF)2PF6 single crystal contrast
with the powder data, ' which do not reveal a clear diver-
gence at T„but rather show a somewhat asymmetric
bump at the transition. This tends to prove that the direc-
tion of the field is probably relevant for the relaxation in
the vicinity as well as below the transition. Although
small, such an anisotropy is already present in the b'-c'
plane at 6.4 kOe (cf. Fig. 3), but is expected to be bigger in
the a direction.

IG. THEORY

In order to specify the ingredients of our model for the
evaluation of T& ', which we want to be valid for all
SDW transitions in (TMTSF)zX with two-dimensional
(2D) or three-dimensional (3D) nesting, we must em-
phasize that the paramagnetic phase in these compounds
is metallic and does not show any apparent resistivity
minimum in contrast with antiferromagnets of the
(TMTTF)2X series (where TMTTF denotes tetramethyl-
tetrathiafulvalene). ' This means that there is no gap for
the charge degrees of freedom' and therefore a weak-
coupling picture for the nesting properties of the quasi-1D
electron gas is valid. For perfect nesting conditions, it
predicts a SDW instability at finite temperature whenever
the forward scattering part of the Coulomb interaction is
repulsive (g2 &0). In the present model (see also the end
of Sec. IV), we will assume that the appearance of the 2D
or 3D nesting properties coincides with the 1D to 2D
dimensionality crossover temperature, '

T =T'(t /E )
"'

where T„=tt,/n. is the free-electron-gas crossover tem-
perature with tb as the biggest transverse overlap in-
tegral oriented in the b direction. Here we have assumed,
for the electronic spectrum, a square lattice of weakly
coupled tight-binding chains with dq as the transverse lat-

tice constant. 8 is an exponent that depends on Coulomb

interactions. ' ' In order to take into account the 1D
fluctuation effects when T & T„, it is preferable to use the
effective value of gz given by the 1D renormalization-
group equations at T, .' In the present model, the effect
of backward (gi ) and umklapp (gi) scatterings are incor-
porated through additional renormalization of gq (Ref.
14) at T„In th. e following, the total effective coupling
relevant to SDW at T„will be simply written as gz( T„).

The general expression for T i
' is given by's

Ti =2/~T g AqA qXt(q, tojv)lco«v
q

where Aq is the hyperfine contact matrix element between
the conduction electrons and the nuclear spins with q as
the transferred wave vector. co& y~HO is the——nuclear
Larmor frequency, y«v is the gyromagnetic ratio of the
nucleus, and Ho is the applied magnetic field. Xi' is the
imaginary part of the transverse susceptibility. Neglect-
ing the magnetic anisotropy in g2(T, ), the quantity of in-
terest becomes X"(q,co«v)/c0& in the limit cot«~0. As
shown in the Appendix, within the random-phase approx-
imation (RPA), the total imaginary part of the susceptibil-
ity of the system takes the form

Z1D(T )Xo(q N)
X'(q, coN ) =

I 1+[g2(T, )/2]XO(q, ~«v) I'

Here, X«i(") is the bare real (imaginary) part of the suscep-
tibility for wave vector q near the perfect nesting vector
Qo ——(2kr, m/di, m/dt ) of the SDW instability. The
form (5) in the numerator coincides with the 1D 2kF con-
tribution to X" in the limit T~T„and ZiD(T, ) is a scal-
ing factor that corresponds to the 1D 2kF auxiliary sus-
ceptibility' at T„which is defined as

'BX iD
ZiD( T):mVp—

where EF &ED& T is a cutoff energy. If we neglect the
1D corrections to X, Z«D ——1 and we recover from (A6)
and (5), the usual RPA for X as shown diagrammatically
in Fig. 5.

If we insert the full expansion (5) into (4) we find

AqA qXO(q, co~)
T =2@'TZ, (T„)g

~xI I+(gz(T )/2P'o(q ~x)l

where the imaginary (Xo) and real (Xo) parts of the ele-
rnent bubble in Fig. 1 are written, respectively, as
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~ Aq Xo'(q, co~)= g ~ Aq
~

In[E+(K)]—n[E (K—q)]I5(co& E—+(K)+E (K—q)}
k

=Trp(EF)(
~

A
~

}Fs5(co/ E—+(KF) E—(KF—q)),

where n (x)= (e"~ + 1) ' and

n[E+(K)]—n[E (K—q)], T z
Xo(q, co~)=—Pg =(nVp) ' ln

qD +go, (T)q, +(os(T)qI, +go, (T)q, (7b)

E+(k) is the electronic energy for right- (+ ) and left-
( —) going electrons near the open Fermi surface. p(EF)
is the density of states at the Fermi level and (

~
A~

~ )Fs
stands for the average over the entire Fermi surface for
the volume-independent hyperfine matrix element

Az
——Av /~V. For Xo, we have taken a small-q exPansion

ai'ouild Qo since only long-wavelength SDW fluctuation
modes give the dominant contribution to X and T i

' near
the critical temperature T, =Eo exp[ 2m'VF/g—i(T„)],
which is determined by the divergence of X with (7b). If

I

the 30 nesting properties take place below T„, one has
Eo —T„. The characteristic length go, (T)=0.46t;d;/T
gives the shortest length considered for SDW fluctuation
modes in the i direction (i =a, b, and c). As far as the
quasi-1D electronic spectrum of (TMTSF)2PF6 is con-
cerned, it is characterized by the anisotropic sequence
t, =3000 K.=15' -450t, .

Around T„ the sum over q in (6), with the constraint
given in (7a), is made up to g; (T, ) in the i direction
with the following result in three dimensions:

d d
Tl ~VNT[P(EF}] (

I
~

I &FsZiD(T ) [go, (T 4'os(T Co, (T )1 (8)

with

g2( T„) g2( T„) T —T,
r = ln(T/T, ) =

2 fTVF 27TUF

The classical exponent —, of r in (8) is compatible with
earlier calculations of Moriya and Ueda and Maniv. '

For dimensions 1&d&3, one must replace r '~
by

r ' ' The coeff.icient in large parentheses is connect-
ed with the fluctuation effect on T, ', due to the strong
anisotropy of the electronic system. From the work of
Bourbonnais et al. ,

i it is also interesting to note that the
1D auxiliary susceptibility factor ZiD(T„) in (8) coincides
precisely with the 1D SDW fluctuation contributions to
T] ', namely that

ZiD(T, ) =
~q ~

&T„/V~
XiD(9 own )/oiX .

( Ti T)iD' ——KCiD(T/Eo) ' (Eo & T) T„),
(TiT)~', =KZiD(T„) (T &T&)T,),

( T, T),, '=KZ, D(T„)
O, a O, b O, c

—1/2

(«& 1), (9c)

where K=myN[p(EF}] (
~

A
~

} and C,D is a 1D
microscopic constant. y~D is the 10 auxiliary suscepti-

On the other hand, the region T„&T &&T„X"=X0Z'~D,
and we recover with (7a) the Korringa law
(TiT) '=const. Therefore, as a function of the tempera-
ture, (Ti T) ' can be separated in the following three dif-
ferent contributions:

bility exponent [ZiD(T)=CiD(T/Eo) ' ]. A point of
major importance here concerns the 3D critical form (9c)
for (TiT) ', which has the well-known general scaling
form predicted in the theory of critical phenomena for an-
isotropic systems. Indeed, in the notation of Pfeuty
et a1.,

2 for example, the form (9c) can be written like

(9d)

with v=y, D and U= —,
'

as the critical exponents of
( T, T) ' in the 1D and 3D regimes, respectively.
/=1 —8 is the crossover exponent, tb acts as the
symmetry-breaking parameter, and A„ is a complicated
nonuniversal constant which does not depend explicitly on
tb. It is worth mentioning that the above general form of
(TiT) ' can also be derived from the dynamic scaling
properties of J d~qX"(q, oi)/co in (1) near the critical
point.

IV. DISCUSSION

We can now focus on the 'H-(TMTSF)zPF6 data given
in Fig. 3. As mentioned before, in the strongly enhanced
rgion, Fig. 4 clearly shows that the 30-RPA r ' dom-
inates the critical region. On the other hand, we note
from Fig. 3 and (9c) that the data fail to overcome the
methyl-group effects on the Korringa regime that should
take place at T) 13 K. The (TiT) '=const law in this
region was apparently present in the higher-field data of
Andrieux et al. , but no detailed analysis of the methyl-
group contribution was performed for these data (see also
the end of this section).

In the RPA we can estimate from (8} the region for
T i

' where a clear departure from the linear regime (9b) is
expected to be observed, namely when ( Ti ),, '/
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(Ti ')x,„-l. This defines the "critical width" in the
RPA:

o ta~ tRPA ~t RPA
tbt,

where

(10)

~tRPA [2~ VF/g2(T )][Op, (T )/do ]

stands for the isotropic contribution to fluctuations,
which is quite small: Strap~ —10 ', if one takes
g2(T„}/2mVf &0.5 in a weak-coupling picture of the
transition for (TMTSF)2PF6 at ambient pressure. Experi-
mentally, the data of Fig. 3 give Et =0.1, and one needs
from (10) an anisotropy factor of t, /ti, t, —10, which is in
reasonable agreement with accepted values as mentioned
before 2P, 2l

As (Ti T) behaves like a critical quantity, we can es-
timate the range of validity of the present RPA treatment
near T, [cf. (9c)] by looking at the Ginzburg critical
width b,tG, which gives, in units of T„ the region around

T, where the RPA treatment is inapplicable and where
nonclassical exponents for (Ti T) ' should prevail. From
the Landau-Ginzburg approximation of the free-energy
functional, ' it is given by

4

AtG ——Atg (11)
tb t~

b, tG refers to the isotropic Ginzburg critical width that
has the same structure as an isotropic Bardeen-Cooper-
Schrieffer (BCS) superconductor and is therefore quite
small: btG —10 ' . The factor of enhancement on the
right-hand side of (11) comes from the anisotropy of the
electronic spectrum and, from before, it is of the order of
10 . Consequently, it is not sufficient to allow an observ-
able departure from the r 'i law and, therefore, the
RPA form (9c) can be considered a good approximation
essentially everywhere near T, .

It is interesting to note that the above treatment should
only apply for itinerant quasi-1D antiferromagnets. In
fact, for a ferromagnet, the q dependence of X"(q,~) is
quite different, as is effectively the case in the RPA lim-
it where Xp(q, co) ~co/q and (T, T) 'ccr ' for d =3.
Physically, this means that the particular q dependence
for relaxation time of electronic spin excitations that com-
pose uniform or staggered critical fluctuations becomes
highly relevant for the dynamical part of i, Therefore,
the analysis of Ti ' data alone in the critical regime al-
lows a clear differentiation between the antiferrornagnetic
and the ferromagnetic ground state.

We would like to conclude by commenting on the data
of Figs. 3 and 4 with another possible mechanism that can
give rise to an antiferromagnetic ground state and to simi-
lar critical effects on T& '. The longitudinal nesting of
the Fermi surface through the vector Qp ——(2kF, 0,0), for
example, has recently been proposed as a possible driving
force for SDW transitions in (TMTSF)qX compounds.
In that case, the vector Qp is 1D and the nesting takes
place in the 1D region (T & T„). In the RPA, this mecha-
nism also yields to a r 'i critical profile for Ti ' (i = —, )

but there is no Korringa law outside AtRPA because of 1D

antiferromagnetic correlations ( T, & T„). Though the
longitudinal nesting model has not yet received any mi-
croscopic justification for (TMTSF)iX compounds, it
emerges, however, that a clear distinction between this
mechanism and the one used in the present work will only
be possible by a detailed analysis of the nonuniform

(q&0} contribution of correlations to the relaxation in the
paramagnetic phase (T & T, ). However, in order to avoid
the methyl-group contribution to the H relaxation in this
temperature domain, an NMR experiment on Se has to
be prescribed.
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APPENDIX: DERIVATION OF THE STAGGERED
RPA SUSCEPTIBILITY AT T & T

aX' giX'=—
,

= 1+ Xo
BXp

(Al)

For (g2/2)Xp « 1, this gives rise to the perturbation series
of X:

X '(x)=1—gqXp(x)+ (A2)

If we are interested in the 1D regime of correlations, we

have, in the standard notation, '

x =max( T, VFq, N)
Xp(x) =(m. VF) 'ln

for the real part of Xp. Due to the logarithmic structure
of X ', Solyom' has shown that for T & EF, X

' is a scaling
quantity which satisfies the homgeneity relation:

X '(x/EF)=ZiD(Ep/EF )[1 g2(Ep)Xp(x/Ep—)+ ' ' '

(A3)
X '(x/EF ) =Z,D(Ep/EF }X'(x/Ep),

where x &Ep &EF. ZiD(Ep/EF) and gz(Ep) are, respec
tively, the real part of the 1D auxiliary 2kF SDW suscep-
tibility and the effective forward scattering coupling
evaluated at x=Eo. Both can be evaluated using the
renormalization-group method. ' ' For the model pro-
posed in Sec. III, the RPA expression for X near
Qp (2kF, m/di, ~/di )

——at T & T„can also be calculated
via the diagrams of Fig. 5, except for the inclusion of the
10 2k+ corrections for the energy range T ~Eo &Ez.
This can be done by setting Ep ——T„ in (A3) with the re-
sult

In the RPA the auxiliary SDW susceptibility corre-
sponding to the series of diagrams of Fig. 5 is given by

—2
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ZiD( T„)
X '(q, co) =

I I+ [gz( T„)/2]Xo(q, co) I'

From the definition (Al) of X, we can write

+2ZiD/gz and we get, for the real part of X,
(A4)

Xo(q, co)+X'iD( T„)
X'(q, co) =

I + [gp( T ) /2]X0(q, ~ )
(A6)

[2/gi( T„)]ZiD( T„)
X (q ~)= —f,X'~Xo=- +C.

ro 1+[gi(T, )/2]XO(q, a))
X"(q,~)=Xo(q,~)X '(q, co) (~ 0),

and from (A5), this finally leads to the expression

(A7)

In the limit co~0, we can write, for the imaginary part,

C is an integration constant that can be fixed by the 1D
condition X'=X when T =T„. This gives C=X~D

ZiD( T„)Xo'(q,co)X"(q, co) =
I I+ [gq( T )/2]XO(q, co) I
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