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%e reexamine weakly disordered itinerant fermion systems, interacting via a Hubbard-type di-

mensionless contact repulsion 7 close to a magnetic instability, in the diffusive regime. The relative
weights of the paramagnon and the first-order I Hartree-Pock contributions to the spin susceptibili-

ty g are compared using perturbation theory. It is pointed out that, in two dimensions, the
paramagnon contribution to the lnT singularity of P vanishes identically and the only contribution is
due to the first-order I Hartree-Pock term. In contrast, in three dimensions, both contributions
enter equally in the T'~ dependence of P. It is also emphasized that the most singular dependences
in T are the least singular in the Stoner factor (1—I) ' and vice versa. This is important for calcu-
lating the main corrections to the interaction induced by the disorder. For that purpose, important
T =0 contributions are involved, coming from diagrams usually neglected in the literature (their T
dependence being not singular). These are responsible for pushing the system closer to, or farther
away from, the magnetic instability.

I. INTRODUCTION

In a recent paper, ' weakly disordered itinerant fernuons
were reexamined in three dimensions (3D) in the diffusive
regime. The particular case of a strong contact repulsion
among opposite spins was considered, I & 1, for which the
system is close to a magnetic instabiTity and exhibits
strong spin fluctuations, often called "paramagnons. "2

Most researchers have studied the so-called weakly local-
ized (or rather, the weakly disordered) regime, in the case
where the fermions interact through screened Coulomb in-
teractions. Reference 4 however, also briefly examined
the Hubbard contact interaction in 3D and 2D, and Ref. 1

was closely connected with Ref. 4. Reference 1 studied
the low-temperature dependence of the spin susceptibility
X(T) given by the diagrams containing disordered
pariunagnons and only particle-hole diffusion processes
since these are the ones which drive the system away from
the metal-insulator transition, when the disorder (eF~)
increases (eF is the Fermi energy and r the fermion life-
time due to impurity scattering). For sake of clarity, we
recall here the definition of the particle-hole diffusion
propagators, called phDP's in Ref. 1: a n-phDP diagram
tis a diagram which contains n vertex corrections, each of
them involving a propagator formed by an infinite ladder
of impurity scattering in the particle-hole channel. Two
main points were made in Ref. 1, for the three-
dimensional case.

(i) Diagrams containing 2-phDP and one paramagnon,
which cancel if a screened Coulomb interaction replaces
the paramagnon, do not cancel in the Hubbard case (al-
though they were assumed to be negligible in Ref. 4, even
for a Hubbard interaction). They give a contribution to
X(T) proportional to T ~ /(1 I)'~ . —

(ii) The same 2-phDP diagrams also modify X(0) by a
term proportional to (1 I ) '~, which pushe—s the system

closer to the magnetic instability than in absence of disor-
der.

Diagrams with 3-phDP plus one paramagnon, and dia-
grams with 4-phDP plus two paramagnons of equal fre-
quencies, were shown in Ref. 1 to add to X(T) terms pro-
portional to T'~ in 3D, with nondivergent coefficients
when I~1 (similar to those found in Ref. 4 with only
minor differences in the numerical coefficients; this will
be clarified here).

The above remarks made in Ref. 1 in 3D were based
upon a detailed diagrammatic analysis taking into account
spin constraints imposed by the very nature of the interac-
tion (of contact type among opposite spina). Reference 1

restricted itself to 3D since the two-dimensional case re-
veals pathological singularities in the absence of disorder
[Ref. 7(a)], and that, in the presence of disorder, nondif-
fusive regimes must be considered together with the dif-
fusive one near the magnetic instability [Ref. 7(b)]. More
precisely, in the three-dimensional case only vanishing
moments are relevant both for the magnetic instability
and for the weak localization; in contrast in 2D, all mo-
ments from 0 to 2kF are relevant for the magnetic insta-
bility, so that the diffusive regime kFqr & 1, as well as the
one 1 & k~qv & 4@Fr, must be considered on equal footing.
This yields different temperature and impurity concentra-
tion dependences in all the physical properties of the sys-
tern.

%ith this warning in mind, we will still examine here
the partial contributions to X(T) due to the diffusiue re
gime in weakly disordered two-dimensional fermion sys-
tems with strong contact repulsion among opposite spins.
This will be done in order to make a comparison with the
three-dimensional case of Ref. 1 and with previous work
with the same hypotheses. %e will thus restrict ourselves
to the regime k~q~~ 1 or Dq ~~ ', where D is the dif-
fusion coefficien. [Note that the regime kFq~& 1 would
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not contain any lnT: for instance when r '-0, X(T)
contains only T terms when T~O.] The detailed struc-

tures of the diagrams are the same in 2d and 3d; they
have be(m displayed in Ref. 1 and thus will not be dupli-
cated here. The main differences will come out from dif-
ferent dimensional integrations over the momenta. A
comparison between the two- and three-dimensional cases
will follow.

It will be pointed out that the paramagnon contribution
arising from the sum of diagrams with, on one hand, 3-
phDP and one paramagnon, 573 phDP i~, and, on the other
hand, 4-phDP and two paramagnons of equal frequencies
514.phDP 2~„ identically vanishes in 2D. Therefore, the
unique contribution to the logarithmic singularity ln T in
X(T) in 2D is due to the first-order (I ) Hartree-Fock (HF}
terra. In contrast, in 30 both contributions happen to be
equally important, the paramagnon one not being
enhanced by the approach to the magnetic instability.
The minor differences between Refs. 1 and 4 will thus be
clarified. Indeed Ref. 1 contained only the paramagnon
contribution in analogy with the pure case, where the first
I HF diagrams are reducible and thus can be discarded;
but in the presence of disorder, these last diagrams be-
come irreducible and must be retained. Taking them into
account allows one to recover the result of Ref. 4.

It will also be shown that in 2D, as weB as in 3D, ' the
paramagnon contribution in diagrams with 2-phDP plus
one paramagnon and in diagrams with 3-phDP plus two
paramagnons of equal frequencies, are strongly enhanced
by the approach to the magnetic instability and thus dom-
inates, by far, over the first-order (I) Hartree-Fock contri-
bution. Such terms, usually neglected in the literature,
are important for computing the renormahzed value of
the interaction which will show whether the system moves
closer to magnetism than in the absence of disordered (as
was suggested in Refs. 1 and 9), or farther away from it.
Actually, even diagrams with 1-phDP plus one paramag-
non and those with 2-phDP plus two paramagnons parti-
cipate in such a renormalization. It thus appears more
promising and less ambiguous in the diagrammatic count-
ing, even within perturbation theory, to recast the problem
and compute X directly from the magnetic field depen-
dence of the free-energy closed diagrams with a redefined
interaction function of magnetic field and disorder.

II. PARAMAGNONS VERSUS LO%EST
7 HARTREE-FOCK CONTRIBUTIONS

The demonstration concerning the absence of ln T from
the paramagnon contribution will be done, in the follow-

ing, in the specific case of diagrammatic combinations of
interest in the present problem. But we first wish to note
that such a demonstration involves more generally specif-

ic behaviors occurring in 2D for integrals over momenta
of the form

J=2 qd-iE q2 q

where q is a dimensionless variable related to the momen-
turn q by

1 (kPq~)2
q = =— =Q. (2)

Here D is the diffusion constant D=kgr/d in a.u. and

i
co„ i

the corresponding Matsubara frequency whose sum-
mation will be responsible for the T dependence. Switch-
ing to Q =q 2, (1}becomes

g(d -2)/2p(g}dg

The upper limit of Q in (3) is of order (2n.Tr) [i.e., the
maximum of ( i ro„i r) '], which is approximated as usu-
al3~'s by oo. We will come back to that point later.
Under the condition that the integrand is well behaved
and that F(Q) may be written as

F(g) dG (Q) (4)
dg

the integration by parts of (3) gives

1=1(s —[(d —2)/2]L,

g [Q(d —2)/2G(g)]BS (5)

(d -4)/2
0

where, again, the integrand in L must be well behaved. If
that condition is achieved, and supposing that the condi-
tion

is fulfilled, then J in (5} will reduce to its second term
[(d —2)/2]L; this last term will contribute only for 1+2,
whereas it will vanish at 2D and so will J. It is the same
kind of peculiarity arising only when (d —2) =0, which,
in pure nearly magnetic fermion systems' yielded a q-
independent spin-correlation function between 0 and 2k',
the q dependence in ()( dimensions entering into an hyper-
geometric function whose coefficient is just (d —2).

A. 3-phDP plus one paramagnon
diagrams and 4-phDP plus two para~agnons

{ofequal frequencies) diagrams

Back to the problem of interest here, the paramagnon
contribution to X from diagrams containing each of them
3-phop plus one paramagnon, and those containing 4-
phDP plus two paramagnons, was given in formula (28)
of Ref. 1 as"

5+3-phDP, (par+5+4-phDP, 2par= 2 ~ ~ (d/2}I Tg I
~

I
2J (Dq + i~„i ) [(1 I)Dq + ice„i ]—

Dq + u„ 1 —I aq +
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where I is the gamma function. ' We have in (7}generahzed the result of Ref. 1 to d dimensions. Using (2) and (3), one
o tains

f)X3-phDP. 1par +{)X4phDP, 2par

1 — 2

X o»„ (g 4)g2 1 (g 2)g2 , 1 1 ( 1 —I )

2I I (Q+1)' I[(1—I)Q+1]' 3
. (8)

(Q+1)'

dG(3+4)(Q)

=1G(3+4)(Q}==I
1 —I

0+1 (1—I}Q+1 (Q+1)'
(10a)

(10b)
(Q+ 1)'[(1—I)Q+ 1]

Now (6) will be verified in 2D, as well as in 3D. On the
other hand, the second term of J in {5), L, will also be
well behaved for d =2 and 3. Therefore, going back to
(8), with (5), (6), and (10), ane finds

f»X3-phDP, Ipar+ f»X4-phDP, 2par
(P) (P)

3~3- &oI (1—v'2rrTr)[C(I))z 3, d=3 (lla)2n(eF g}2'

The integrand here is well behaved for 2D and 3D. Com-

paring with (3) and (4), we have here the explicit for F(Q),
E(3+4» from the above 3- and 4-phDP processes:

1 1 (1—I) 2

I (Q+1) [(1—I)Q+1]2 (Q+1)

be rigorous, one can avoid the approximatian max Q = ao

and retain as the upper cutoff for Q, (
~
rr)„~ r} ' [follow-

ing from (2) when Dq reaches its upper limit r ']; then
the algebra follows straightforwardly from (8) and one
finds again that in 2D the paramagnon contribution does
not contain any lnT term when Tv~0 (more precisely
when 2mT~&&1 I). T—he function of I in (lla} starts
with I 2 when I~0 by analogy with the pure case.s'3 In
ather words, in Fig. 6 of Ref. 1, where the pure case was
recalled, diagrams (a) and (b) contain at least two datted
lines, i.e., twice the interaction I (their lowest order is I );
analogously diagram (e) contains at least three datted lines
(its lowest order in I is I }. However, there is a difference
with the pure case: only one dotted line (I) is excluded in
the pure cases'3 since such diagrams would be reducible,
while all those of Fig. 6 of Ref. 1 are irreducible. Howev-
er in presence of disorder these extra diagrams [starting
with one dotted line in diagrams (a), (b), and (e) of Fig. 16
in Ref. 1] become irreducibles and must be retained: they
correspond to the Iowest order in I Hartree-Fock contri-
bution (first I HF). Note hawever that all the other dia-
grams of that same figure contain necessarily, both in the
pure and in the disordered cases, at least twa dotted lines,
due to spin constraints. The above remarks amount, in
order to account for first I HF, ta change in Ref. 1, the
last bracket of formula (22): I3XJ(1 I—Xo) int—o
—Il(1 I X o), i.e., —

IN()
ln [C(I}]g 2, d =2,

11 E'F7 21TTT
(1 lb) I Xo

2-2+I
1 —I Xp

1 ———+1 I, d=3-
d 2L(I)= 2I . 2

2
[C(I)]g———

(12a)

(12b)0, d=2,

where No is the density of states at eF. The results (1 la)
and (12a) were already found in Ref. 1. In 2D, although
the function L(I) can be shown to be perfectly well de-
fined, the coefficient (d —2), in front, makes the entire
contribution to vanish and, thus, the logarithmic singular-
ity to disappear from this prrramagnon contribution. To

I

and in formula (24} to change I2X(pr{ 1 IXp} into—
[I Xrp((1 IXp)]+I; so—in formula (25) of Ref. 1,
I Xg(1—IXp) should instead read as

P

I Xp +I
1 IXp —1 IX()—

Then straightforward algebra using all the integrals corn-
puted in Ref. (1) yields, for the combined contributions
due to paramagnons and first I HF [respectively (P) and
(I) as the upper indices of the 5X's],

(p)+(T) (P)+(I)
f)X3-phDP, 1par+ ~X4-phDP, 2par

1-—'-&1-I
2

I
HF,

2 &0
1a

m (eFr) 2rrTr I[1—(1—I)—I]~+(I)HPI, d =2.

33 &o
2

(1 V'2m Tr)—

(@FAN}2

(13a}

(13b)

l

ln the large square brackets of (13a) and in the curly brackets of (13b), we have separated the paramagnon contribution
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from the lowest I Hartree-Fock one, to compare with Ref. l. One thus recovers (up to a factor of 2 in 2D) the results
briefly quoted in Ref. 4 for the Hubbard model (where Fl2 must be replaced by I/(1 I—) in absence of T „„„).

It is interesting to note, on formulas (13), that near the magnetic instability I—1, the paramagnon contribution in 3D
(1 I—/2 +—1 I—)-—,

'
is equal to the first I HF, I/2- ,' (th—e result of Ref. 1 is thus only off by a factor of 2). In con-

trast, in 2D the paramagnon contribution [1—(1 I)—I]—is identical to 0, while the first I HF is proportional to I-1
and is the unique contribution to the logarithmic singularity ln (1/2m T~) in X(T). Renormaiizatiori-group arguments
indeed indicate that in 2D Fermi liquid effects do not play a role. ' However, the very different relative weights of
paramagnon versus first I HF in 3D and 2D is not clear; one ought to remember though that only the diffusive regime is
considered here which may not be sufficient.

B. 2-phDP plus one paramagnon diagrams and 3-phDP plus two paramagnons (of equal frequencies) diagrams

We now return first to diagrams with 2-phDP plus one paramagnon. From formula (21} in Ref. 1, we get for the
paramagnon contribution

d —ld D 2

SX,'",„„„„=2''~ d/2r -)(d/-2)I'~Tg
I ~„I f (Dq'+

I ~„ I

)' [(1 I)De'—+
I ~„l ]

Using (2) and (3}again, we obtain

5X' ' =2 "rr I '(dl2)D I rT2-phDP, 1par

(14)

I

(d —2)/2 f g(d —2)/2dg
I I

1 1 —I 1

Q+1 (1—I)g+1 (Q+1)
(15)

1 1
F(2)(Q)= —=I I

1 1 I—
Q+1 (1—I)g+1+

1

(Q+1)
(16a)

(Q+1)'[(1—I )Q+1]
(16b)

In addition, note that

F(2)(g)=—I 'G(3+4)(g (17)

—dF(2) (Q)
F(3+4)(g)= —I

dg

so that here the function F involved in (3) is F(2)(Q):

1 1 Q+1
G(2)(0) = — — lilI I (1—I)Q+1

1
(19)+

However, the integration by part of the form (5) does not
hold because the functions E and I. that one would get
from it, in (5), would diverge, although the overall J in (3)
[with F(2)(g} given by (16)] is perfectly finite in 2D as
well as in 3D. For 2D, (3) yields

J(2)(Q}=f, F(2)(Q}dg=[G(2)(Q}]0
r

1 —ln
1 +1

1 —I (20b)

On the other hand, in 3D the calculation was done in Ref.
1 and one finally gets

The integrand in (15) is well behaved in 2D and 3D. Here
also, F(2)(g) is indeed the derivative with respect to Q of
a function G(2)(Q):

I—I ——,d=3
2

J)Ipv 3 1[1—(2n.T~) ]
(@Fr) 't/1 I— (21a)

~~ 2-phDP, 1par
2WO

[1—(2m Tr}] ln
m(eFr)

—I, d=2. (21b)

Compare to (21a), which has been obtained in Ref. 1,
(21b) is the new result that is found here for 2D. It gives
a linear temperature contribution to X(T) strongly
enhanced by ln[(1 —I ) '], although the perturbative
treatment of the present paper as well as of Ref. 1 imposes
that

[(cps) 'ln(1 I) '] & 1 . —

However, here too, for the same reasons that explained in
Sec. II A, one has to take into account the first I HF con-
tribution although, as we will see, it wi11 tun out to be a
minor one, both in 2D and 3D, compared to the paramag-
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non contribution. Therefore going back to the first line of
formula (21) in Ref. 1, one should again read I/(1 I—Xp)
instead of I Xg(1 I—Xp}. On the other hand one shauld
also take into account all other 2-phDP plus one
paramagnon diagrams obtained in suppressing one 1-
phDP in all possible allowed ways from 3-phDP plus one
paramagnon diagrams studied above in Sec. II A. No new
algebra is involved and one checks easily that this just
amounts ta change the numerical factor of 4 in the first
line of formula (21) in Ref. 1, into a factor of 8. More-
over, one should also add diagrams obtained by suppress-
ing 1-phDP in all possible allowed ways in the 4-phDP
plus two paramagnons diagrams considered in Sec. IIA.

(An easy dimensional analysis shows that they give simi-
lar cantributions; we will come back to that point later. )

Collecting all terms together we obtain, for the total
(paramagnon plus first I Hartree-Fock} contribution,

(P)+(T) g (P)+(I )
~+2-phDP, 1par+ ~+3-phDP, 2par

=8Npr Tg ~
co„~ J ~ A

(2m)~

4Np—r Taco„f d A
dd I2

(2~)'

IXp

( Xp)

(22)
w't» as before~ A=r (&g +

~
p3„~ ). Thus one obtains

(P)+(7) g, (P)+(I )
+X2-phDP, i par+ 5X3-phDP, 2par =

3No
[1 (2rrT—r)3~ )(FFr)'

2+I —2 —2I +(2I)HP, d =3
+1 I—par

+(2I}Hp, d =2
par

2/p 1[1—2m Tr] ln I—
rr(eFr) 1 —I

(23a)

where in the large square brackets we have separated the
paramagnon contribution and the first I Hartree-Fock
one.

It is clear that for the diagrams involved here and
neglected in Ref. 4, the paramagnon contributions, being
respectively enhanced by the factors -(1 I) '~2 in 3D—
and ln(l I) ' in 2—D, dominate by far the first I
Hartree-Fock ones, equal at most to 2 in 3D and in 2D
when I~1. Note that here the factor (1 I) '~ is mu—l-
tiplied by (2+I)-3 instead of 1 as in Ref. 1, due to all
the other 2-phDP plus one paramagnon and 3-phDP plus
two paramagnons diagrams not present in Ref. 1 and
which have been collected here. However, the main point
is unchanged: the sum of all these diagrams does not van
ish but is, on the contrary, strongly enhanced when I is
clase to 1. In particular in 3D, as already emphasized in
Ref. 1, the processes involved in Sec. IIA or those in-
volved in Sec. IIB will dominate the T dependence of
X(T) depending whether T is smaller or larger than
V 1 —I.'3 But at T=0 the processes involved in Sec. II B
will predominate by far when I-1,with consequences ex-
amined in Sec. III. Actually, at T =0 and following the
siune lines, one must also consider other diagrams, for in-
stance the contributions from diagrams containing 1-
phop plus one paramagnon and those with 2-phDP plus
two paramagnons of equal frequencies; we will include
them in Sec. III since they play a crucial role at T =0,
where they contribute to the renormalization of the in-
teraction.

III. THE INTERACTION RENORMALIZED BY
DISORDER AND THE CLOSENESS TO THE
MAGNETIC INSTABILITY AT T =0 IN 3D

In this section we confine ourself to the calculation of
X(T=0) in three dimensions. The various diagrams in-

X'x=
1 —IX

with

(24)

X =X +5X. (25)

The uniform static limit of X is Np, the density af states
at the Fermi level proportional to the Pauli susceptibility
at T=0 K. 5X includes mode-mode coupling corrections,
i.e., here, one and two paramagnons insertions (including
the disorder) in the bare bubble. ' Therefore in the
denominator of (24), one obtains the new value for I re-
normalized by the disorder and by disordered paramagnon
contributions:

I,tt=I(Xp+5X}r p=I 1+ (26)
&o

If 5X is positive Iatt &I and the disorder brings the system
closer to the magnetic instability as was suggested in Ref.
9 and found in Ref. 1. Obviously as announced at the end
of Sec. II B in the contribution to (5X)T p from (13a) and
(23a), the main term arises fmm (23a) through the factor
(2+I )!+1 I -3/Yl I, whic—h was essent—ially the re-
sult (36) of Ref. 1. Two remarks must take place at this
stage.

I

volved here and in Ref. 1 represent perturbative correc-
tions 5X, due to weak localization and disordered
paramagnons, to the bare electron-hole spin-correlation
function (the bare bubble X ); they contribute in the ran-
dom phase approximation (RPA) to the total enhanced
spin susceptibility through the Bethe-Salpeter equation

X(T,r,I)=X (T,r,I)+X (T,r,I)IX(T,r,I)
yielding
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(i) As stated in the abstract, at low temperature when

2$rT$. &')/1 I—, the main temperature correction to X(T}
comes from the ss/T2 of (13a), while the one in {23a) is
minor; in contrast when T=0, the main correction to X{0)
comes from the (1—I) '~ of (23a), while the I depen-
dence in (13a) is negligible in comparison (at variance
with what was recently proposed' ). In other words

{'5~(23a)+ (13a))r ~0

~3NO

(&AT)

2V 3N()

(epT)

—1+—,
' (1—+1—I)+

V'1 I
1 +~1—I

(27)

(ii} However, one can check that one will have, added to
(27}, other powers of 1/(1 —I)", n =—', and —', . Actually
one obtains the contributions (we will come back to the
details later} listed in Table L The contribution of the
second column in Table I can be obtained from a simple
dimensional analysis. If one defines in the various dia-
grams the quantities ng eqIIssis the number of independent
fr~ion frequencies, aild itphDp eq)Sais the number of
phDP then the power laws of T involved are

(d/2+1+a(t-H hDp)

and the power laws of (1—I) ' are

(1 I—)——(d/2+nff n hDP~1

the factor d /2 {=—', in 3D, here}, comes from the integral
over the momentum q; the extra factor of 1 in the power
of T involves the sum over the Matsubara frequency (u '

the number of paramagnons, if it is linked to the number
of independent fermion frequencies, does not enter in the
above dimensional analysis since

to=NO~'/(Dq'+
~
c2„

I
)

is dimensionless in
~
(0„~ through the change of variable

(2). At the order in perturbation that we examine, the
number of paramagnon frequencies is only 1 since the
cases containing two par(unagnons means two paramag-
nons with the same frequency. Such a dimensional
analysis is often used. 's It proved useful in the dimen-
sional analysis of the singularities exhibited in the local
pat2tinagnon problem, '9 which may be the one where the
present case would eventually switch for stronger disor-
der, as conjectured elsewhere. 20

Going back to Table I, the first column adds extra
terms due to the necessity of using in some integrals over
Q, the acts2ss& upper cutoff, equal to (

~
e2„~ $ )

' for sake of

TASI.E I. The various contributions to 5+(23a+{~3a) ~

Diagrams

1-phDP

plus

2par

Extra
contribution

1 —{2$)T$ )'
{1-&)'

Main
contribution

1 —(2~T~)'~
g)$/2

Other
contributions

nondivergent

terms in (1—I)

1-phDP

plus

1par

2-phDP

plus

2par

1 —(2m Tr)
1—

1 —{Z~T~)$/2

( 1 g)3/2
nondivergent

terms in (1—I)

2-phDP

plus

1par

3-phDP

plus

2par

1 —(2mTv )3~

{1 g)l/2
nondivergent

terms in (1—I) '

3-phDP
plus

1par

4-phDP

plus

2par

—
( {1—I )'~[1—2$) T$ )'~] I 1 —(2&T'r)
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convergence. These terms however do not play any role in
the renormalization of I at T=0 since the constant term
in the second column predominates over the one of the
first column.

Finally the nondivergent term in (1 I)—' in the third
column is shown explicitly for the last line, since it be-
comes the dominant one in that line (the one in the second
column being vanishingly small when I-1). In contrast
in the preceding lines, the third column terms play no role
since the contributions in the first two columns contain
powers of (1—I)

From the table it is clear that the last line predominates
as far as the temperature dependence is concerned, at least
when Tr&(1 I}&+—1 I; in—contrast, as far as the
T =0 is concerned, the first line predominates. In that
case ( T =0) one should obviously replace (27) by

W ~l.~ & ~ ~

jg& II 1

as'�

!i'
infinite
[adder

infinite
ladder

&o a
2 5/2(eFT) (1 I)— I )3/2

FIG. 1. {a) Free-energy closed diagrams reconsidered, with
refined interactions {the hatched pi~} described diagrammati-
cally on {b) where the dashed line is the bare interaction I, the
dotted lines are scatterings on impurities {the crosses). The con-
tinuous lines in the free-energy diagrams are fermion Green's
functions including the mean free path as self-energy correc-
tions.

where a, 5, c and e are positive numbers of order 1.
Therefore, putting (28) back in (26) it appears that I,rr & I
and the three-dimensional system seems closer to the mag-
netic instability than in the absence of disorder as was al-
ready found from previous partial studies ' Ref. 17,
using Ref. 4, accounts only for d and e, and Ref. 1 ac-
counted for c, 1, and e. From (28) the main correction
actually comes from the first term. However, since the
signs of the various (1 I) " contributio—ns to (5X)T 0 al-
ternate it looks curcial to reexamine more carefully which
one wins, since, depending on its sign, the system will be
closer to or farther away from the magnetic instability
when disorder is present.

Actually, in diagrams containing two paramagnons, as
exhibited in Fig. 8 of Ref. 1, an important question arises:
Should or should not one introduce at least 1-phDP in
~eh of the two triangles? En other words is it or is it not
allowed to keep one of the two triangles free of phDP (the
fez-xraon lines still being renormalized by the mean free
path)'? The answer is not trivial. Indeed if one may keep
one of the two triangles free of phDP, then the first line
of the preceding table exists with the important conse-
quence that, its contribution being the most important one
in (28) (the first term}, the system is brought closer to the
magnetic instability under the infiuence of disorder. ' In
contrast, if each one of the two triangles should contain at
least 1-phDP, then the first line of the table is absent and
so is the first term in (29); in that case one is left with the
second term in (29} as being the main correction to 5X,
with its minus sign. The system then becomes farther
from being magnetic under the infiuence of disorder.
Such a tendency has been observed in Pd films, where
diminishing the film thickness (i.e., increasing the disor-
der) yields the effective Stoner factor to decrease; however
these film are two-dimensional systems rather than

three-dimensional and, as indicated earlier, the problem of
disordered two-dimensional nearly magnetic systems is far
from being understood yet. ' ' On the other hand, an in-
crease of I, which would bring the system closer to
magnetism, would agree better with the conclusions of
Ref. 5 and with the perturbative tendency for the
paramagnon peak to become sharper and stronger than in
absence of disorder.

At that stage the only unambiguous way to compute X,
in particular X(0) even within RPA, would be through a
direct differentiation with respect to the applied magnetic
field H of the free-energy closed diagrams. One should,
to start with, redefine a renormalized interaction as indi-
cated on Fig. l. One would thus compute a new interac-
tion I ' which would be momentum and frequency depen-
dent and function of the magnetic field H and the lifetime

Then one could calculate X(T) as in the pure case of
Ref. 13 with differentiating twice with respect to H to get
5X (i.e., by cutting two fermion lines in all possible ways).
Note that if the (nontrivial) computation of I' is feasible,
the remainder of the calculation would be easier since the
surviving fermion bubbles will only contain the disorder
in the fermion Green's function self energies. Such a cal-
culation is beyond the scope of the present paper. Howev-
er, unless one does this, it appears difficult at that stage to
claim for sure whether disorder increases or decreases the
tendency towards magnetism. It might also be that con-
trary to what was thought so far, perturbation theory is a
bad tool to handle disorder in 3D as it is for 2D, although
for different reasons.

IV. CONCLUSION

In the present paper we have shown that the respective
roles of the paramagnons versus the lowest order (in the
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interaction} Hartree-Pock contributions are very different
in 3D and 2D as far as the singular temperature depen-
dences of the spin susceptibility are concerned. On the
other hand, we have also shown that diagrams usually

neglected in the literature [they indeed do not contribute a
singular T dependence of X(T), neither in 2D or in 3D]
become important in 3D at least, as far as the interaction
value renormalized by disorder effects is concerned. Such
a value is indeed crucial to know whether the system be-
comes closer to, or farther away from, the magnetic insta-
bility in presence of disorder, compared to the pure sys-
tem.

As far as this last point is concerned we have collected,
in 3D, at the lowest order in disorder [in (@FAN) and at
the lowest order in the (disordered) paramagnon insertion
(i.e., insertions of one paramagnon or two paramagnons of
equal frequencies which contribute equally), the correction
in perturbation to the bare interaction I. We pointed out
that this correction contains various powers of (1—I)
[times (e~r} ] with alternate signs. Either a reinforce-
ment of I through a term to proportional to

1 1

(e r)' (1—I)'"

or a decrease of I, through a term proportional to

l l

(eF~) (1 I—)

is found, depending on the way the disorder is taken care
of. Since this is a crucial point we emphasize that the best
way to compute X, even in RPA, would be to recast the
calculation and calculate directly the free-energy closed
diagrams after redefining new basic interactions renormal-
ized by disorder.¹teadded in proof. According to a recent discussion
with P. Nozieres, which is gratefully acknowledged here,
diagrams with lphDP plus two paramagnons (and those
with OphDP plus one paramagnon) should exist, so that
the positive first term in (28) prevails to render I,tt greater
than I.
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