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Electronic states in continuous random networks:
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We develop a simple effective-mass formalism for studying the effect of the Rivier lines (odd
lines) on the electronic states in a tight-binding model defined for continuous random networks.
Rivier lines act like infinitely thin fictitious solenoids carrying half-integer magnetic flux quanta for
states close to the antibonding end of the band. The electron feels the effect of these flux lines
through a "vector potential. " Half-integer flux quanta of the flux lines ensure time-reversal invari-
ance of the Hamiltonian. We briefly discuss some consequences of the peculiar properties of the
Rivier lines and applications of our effective-mass forma1ism.

I. INTRODUCTION

In this paper we study some aspects of the electronic
states in a tight-binding model defined on a continuous
random network (CRN). ' These types of networks have
been studied in detail to understand the electronic
structures of amorphous materials such as a-Ge, a-Si, and
glassy network materials. These studies have shown that
topological disorder can sustain well-defined band gaps,
sharp band edges, as well as bring in localized states.
The localization in these models is not merely due to sim-

ple potential fluctuation. It also arises due to interference
from the Rivier lines, which are the nontrivial topologi-
cal content of a seemingly random network. It is known
that the Rivier lines do not affect qualitatively one end of
the band corresponding to the long-wavelength (bonding)
electronic states. The other end of the band, which corre-
sponds to the antibonding states, is severely affected and
localized states are created. This has been demonstrated
in detail in the recent works. There is some experi-
mental evidence for the presence of Rivier lines in amor-
phous materials. How close the actual structures are to
CRN is still under debate.

Our aim in the present paper is to set up a simple for-
malism which can be used to study the effect of Rivier
lines quantitatively, at least close to the band edges. To
this end, we derive an-effective mass equation and show
that the effect of the Rivier lines appear in a nontrivial
way through some magnetic vector potential. This mag-
netic vector potential arises from the Rivier lines which
behave like infinitely thin fictitious solenoids carrying
half-integer magnetic flux quanta. The time-reversal in-
variance of the Hamiltonian is preserved because the flux
lines carry half-integer flux quanta. We discuss at the end
of the paper how our formalism paves the way for the
study of the effects of Rivier lines on impurity states and
exciton states in amorphous semiconductors. We also
point out a possibility recently studied by the present au-
thor and Y. Fu, namely, the topologically induced
charges along the Rivier lines. There is some connection
between our work and the earher works of Gutzwiller and

%'elis, and Kawamura and co-workers' ' regarding the
electronic states in the presence of dislocations in crystal-
line materials. However, there are important differences
and new aspects which we discuss at the end. The con-
nection of Rivier lines to Toulose lines' which appear in
the short-range Ising spin-glasses is also discussed toward
the end of this paper. The vector potential that appears in
the present problem has a connection to the gauge fields
introduced phenomenologically by Hertz' to take into ac-
count the effects of frustrations in a theory of spin-glass.

II. RIVIER LINES

Consider a continuous network. It has vertices (atoms)
connected by bonds. A regular network like a cubic lat-
tice or a diainond lattice contains elementary faces (or
rings) formed out of an even number of atoms. When we
consider a continuous random network (for example,
every atom containing the same coordination number),
there are in general odd numbered rings as well as even
numbered rings. Rivier showed that the odd numbered
rings cannot occur in isolation, due to simple topological
constraints. They occur in such a way that we can thread
a continuous line through the odd rings without passing
through any of the even rings. These lines should be
closed or end at the surface of the network. These are
called Rivier lines or odd lines.

The proof for the presence and the properties of Rivier
lines is as follows. Consider an elementary volume in the
network —called Euler cells. By definition, elementary
volumes are made up of elementary faces and do not con-
tain any atoms inside. If any faces of an elementary
volume contain odd numbered rings, they have to occur in
pairs. This follows from the fact that every edge of the
cell is shared by two faces (rings). Thus, if a Rivier line
enters an elementary volume it also has to leave it. In
other words, Rivier lines cannot have ends. The above is
analogous to a discrete version of Gauss's law.

A general continuous random network contains a finite
density of Rivier lines of varying shapes and lengths ran-
domly distributed in the network. If we consider a
periodic network like an fcc lattice, we notice that it also
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has Rivier lines. But these Rivier lines form a periodic
network. The analogue of the Rivier line in two dimen-
sions is the Rivier point. A simple example is a two-
dimensional triangular lattice. Every elementary pla-
quette is a Rivier point: it is an odd ring with three atoms.

The presence of Rivier lines indicates the presence of
"frustration" in the following sense. ~ ' Suppose we want
to build antibonding eigenstates on one end of the band in
a tight-binding model. This is possible in a bipartite lat-
tice like a cubic or a bcc lattice (or a random network
without any frustration). This is not possible in the pres-
ence of Rivier lines. The antibonding requirement cannot
be satisfied along closed rings enclosing an odd number of
Rivier lines. This means that along some surface bounded
by the Rivier lines the eigenfunction will have bonding
character. This is the origin of frustration in this context.

III. EFFECTIVE-MASS EQUATION

Consider a tight-binding model defined on a network.
Every vertex in the network carries an orbital with zero
energy. There is a hopping matrix element t;J between
any two vertices connected by a bond in the network. The
Hamiltonian of the system is

H =g t J(g;p~+H. c.), (3.1)

where t;; =0, t,j &0 and (1(;,g;) are the creation and an-
nihilation operators for electrons at the ith orbital. If the
network is regular and unfrustrated, the density of states
p(e) of energy eigenvalue e is symmetric:

p(&)=p( -e) .

This follows from that fact that any unfrustrated network
can be separated into two sublattices A and 8. The fol-
lowing transformation,

~ ~ ~ ~ ~ (3.2)

for all i belonging to one sublattice (say A), transforms
the Hamiltonian H~ Hand hence p—(e)=p( —e}.

A network containing Rivier lines cannot be separated
into two sublattices and hence the above transformation
does not work. So

p(e)&p( —e) .

Physically it amounts to the fact that since on the anti-
bonding side of the band the antibonding is not satisfied
everywhere, there is a decrease in the energy of the eigen-
states compared to the unfrustrated case. Antibonding re-
quirements are satisfied in isolated regions free of Rivier
lines, which gives rise to a Lifshitz tail of localized
states.

The effective-mass equation for the lower end of the
spectrum has been discussed by Cohen. The Rivier lines
do not give rise to any qualitative change. The long-
wavelength states are relatively unaffected. The
effective-mass equation is the Schrodinger equation of a
free particle. Now, we derive the effective-mass equation
for the high-energy side of the band. This is not straight-
forward due to the presence of the Rivier lines.

The high-energy side of the spectrum of H is the same
as the low-energy spectrum of —H Hence, we define

Htt =— H—= —g t,j(@;QJ+H.c ),. (3.3)

where t,j — t,j—. We will study the low-energy side of the
Hamiltonian Hz.

The Hamiltonian HR has the following local symmetry:
the transformations

and

i(8; —8 )
t j t je

(3.4)

(3.5)

leave the Hamiltonian invariant. Here, 8, is an arbjtrary
function of the site i This. continuous symmetry of the
Hamiltonian is analogous to the discrete symmetry of the
Ising spin-glass Hamiltonian discussed by Toulose. ' Let
us formally rewrite the negative sign associated with every
bond as

~ahgr j
t,j t;J.ex——p i A g] (3.6)

such that

J V8 dl=8; —8, .

Also the product of the sign of t;1 along a closed loop C,

g sgn(t; ) =exp i f A dl)) =+1,

(3.8)

(3.9)
ij &C

depending on whether C encloses an even number or odd
number of Rivier lines. This follows that fact that, by
definition, any closed ring that encloses an odd (even)
number of Rivier lines contains an odd (even) number of
bonds. The above product is also invariant under the lo-
cal transformation defined in Eq. (3.7).

Because of the transformation property [Eq. (3.7)] and
the invariance property of Eq. (3.9), the phase factor
exp(i A 11) attached to every bond behaves exactly

J

like the effect of a vector potential on a charged particle
in a tight-binding model. ' A vector potential satisfying
Eq. (3.10) is produced precisely by an infinitely thin
solenoid carrying half-integer flux quanta and running
along the Rivier lines. Once we realize the above, the con-
tinuum or the effective-mass approximation is straightfor-
ward.

First, we consider the case without the vector potential.
We imagine P(r) to be defined at every point. And
g;—:g(R;). We can expand P(RJ) around R; to get

QJ.-f(R; )+ (RJ —R; )„B„Q(R;)

+ —,(RJ —R;)~(RJ —R;)pqB„Q(R;)+ '

(3.10)

Substituting this in the Hamiltonian H~ we get

where the vector A(r) is a function of the spacial coordi-
nate r. Then the transformation of t;, [Eq. (3.5}] can be
thought of as arising from the following transformation:

(3.7)
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Hg- — r, ~r
~ „r r

2m„'„(r)

+ J dr V(r)ft(r)f(r),

V( r) =g t,
&
5(r—R; )

(3.1 1)

(3.12)

along the solenoid. Notice that since there is no physical
magnetic field in the problem the electronic charge and
velocity of light do not appear along with the vector po-
tential. The eigenfunctions of the effective-mass equation
(3.17) are the envelope functions of the antibonding wave
function in our tight-binding model.

We can use the similarity of Eq. {3.18) to a Maxwell

equation that relates magnetic field and current (Biot Sa-
vart law) to write the solution

A( )
1

y
RXdS

8m ~ g3 (3.19)

(3.13)

V(r) =g exp( —q/A) V(q), (3.14)

m '(r) =g exp( —q/A)m'(q),

where rn'(q) and V{q) are the Fourier coefficients of the
effective mass and the potential. Thus, the single-particle
effective-mass Hamiitonian is

(3.15)

(3.16)

The eigenfunctions of the above effective-mass Hamiltoni-
an are a good approximation to the actual eigenfunctions,
as long as the spatial variation of the solution is at a
length scale which is large compared to A

We see from Eqs. (3.12}and (3.13) that the spatial vari-
ation and the anisotropy arise from the fluctuation in the
matrix elements, as well as from the fiuctuation in the
coordination numbers. When we want to consider the ef-
fects arising from bond-angle, bond-length, and dihedral-

angle fluctuations, we have to keep the spatial depen-
dence. When there is no localization caused by these fiuc-
tuations, the anisotropy and spatial dependence of the ef-
fective mass are not very important.

The effect of the vector potential is easily included.
Now, we expand PJexp(i JJA dl} about R; and keep
terms only up to the second derivative in g's and the first
derivative in A. When me neglect the anisotropy and spa-
tial dependence of the effective mass, the path-dependent
phase factor just adds the vector potential to the momen-

tum in the usual fashion. Thus, the single-particle
effective-mass Hamiltonian for the antibonding side of
the band is

In the effective-mass approximation for the random
system we expand the potential [Eq. (3.12)] and the effec-
tive mass [Eq. (3.13}]in a Fourier series and kix:p essen-

tially the small momentum components below a momen-

tum cutoff A as follows:

V g+ V(r)=Et/i,
2m

(3.20)

with the boundary condition that the solution should
change sign if we take the coordinate around any closed
path which encloses an odd number of Rivier lines.

Now, we can make several comments about the effect
of Rivier lines. Firstly, Rivier lines produce nontrivial
momentum-dependent potentials through the vector po-
tential. The effect of the vector potential cannot be treat-
ed by simple perturbation theory. As an example we give
the effect of a simple Rivier line on the electronic states.

Assume that we have only one Rivier line running
along the z axis. Its vector potential has a simple form

A(p) =
2p

(3.21)

in cylindrical polar coordinates. The effective-mass equa-
tion has the form

where dS is the differential element of the Rivier lines 0
and R is the distance of the point r to the differential ele-
ment.

The Hamiltonian is time-reversal invariant. Under the
time-reversal transformation, V changes sign. The vector
potential remains unchanged in this transformation. The
change in sign of V can be compensated for by adding a
term 2iA(r) to the vector potential. This amounts to
adding a unit flux quantum to every flux line. According
to the Aharanov Bohm effect, this does not change the
physics of the problem, ' and hence the time-reversal in-
variance.

Since the vector potential due to the Rivier lines is curl
free everywhere except on the Rivier lines, we can even
eliminate the vector potential from the Schrodinger equa-
tion by a singular gauge transformation and include its ef-
fect through the boundary condition on the wave func-
tion. That is, after the elimination, the Schrodinger equa-
tion is

I,« — [%+iA(r)]'+ V(r),
2m

(3.17}
(3.22)

where A(r) satisfles Eq. (3.10}. Alternatively, A also sat-
isfies the differential equation

(3.18)

where h(r) is the "magnetic field" which is nonzero only

Consider the scattering of a plane wave with momentum
along the positive x axis. The analysis is straightforward
and we can use the known results from the scattering of
electrons by thin flux lines. ' The waves scattered by the
fiux lines interfere strongly, which results in the vanishing
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of the wave function in the complete z-x plane to the
right of the z axis. This vanishing happens precisely
when the flux is half the flux quanta. This has an in-

teresting consequence for our problem. If we have a large
Rivier line forming a closed loop, the eigenfunctions have
to vanish along a surface bounded by the loop. In our
tight-binding model this means that the eigenfunction will
have bonding character along a plane of atoms bounded

by the Rivier line.
The scattering of electrons by the above Rivier line can

also be easily calculated to get the expression for the
scattering matrix,

+i Hkk

t(k, k') = —i
trt

' sin(8kk /2)
' (3.23)

where k and k' are the incident and scattered wave vec-
tors and Hkk is the angle between them. Similar examples
can be obtained for scattering from a circular Rivier line
as well as some more complicated geometries using known
results of scattering electrons by magnetic flux lines. '7

These scattering matrix elements will be useful for calcu-
lating the relaxation time of carriers, as well as for
developing a scaling theory of localization on the anti-
bonding end of the band.

IV. RIVIER LINES IN REGULAR LATTICES

Tight-binding models with random transfer integrals
have been studied by some authors. ' We show that these
models have the same physics as the tight-binding model
in a CRN but with no randomness in the sign of the
transfer integrals. We show that a nontrivial content of
both are Rivier lines. However, there is one important
difference in this case, namely, both ends of the bands are
affected by the Rivier lines. This discussion also brings in
the close connection between the Rivier lines and Toulose
lines. "

Consider a simple-cubic lattice with nearest-neighbor
hopping t;J, which can take two values +1 with some

probability. When we consider a particular configuration
of hopping matrix elements, we can define the so-called
frustration function as the product of the sign of the t;J
around every elementary plaquette p:

4 =gsgn(t;, ) . (4.1)

The plaquette is frustrated if 4z is negative and not frus-
trated if it is positive. It has been shown by Toulose that
the frustrated plaquettes cannot occur in isolation. '2 A
continuous line can be thread through them without
crossing unfrustrated plaquettes. These are essentially the
Rivier lines of this topologically regular network. Even
though from the geometry we can form a perfect bonding
and antibonding state in this lattice, they are not eigen-
states of the Hamiltonian in general, due to the random
sign of t;~. Frustration arises when we try to build an
eigenstate, taking care of the sign of t;J as well. In this
case it is easily seen that both sides of the bands are af-
fected by the Rivier lines. In fact, the effective-mass
equation contains the same vector potential due to the
Rivier lines on both sides of the band.

V. APPLICATIONS

A. Real systems

In this section we briefly discuss various possible appli-
cations of the effective-mass theory F. irstly, how relevant
is the above discussion for real systems such as a-Ge and
a-Si'? The electronic structure of a-Ge and a-Si in a CRN
model has been studied by several authors. Recently,
Singh carried out this investigation in great detail, both
analytically and numerically. The basis of this model is
that each site carries four optirnally localized orbitals.
One of them is an s orbital and the others are the p orbi-
tals. There are several hopping matrix elements: on-site

hopping between different orbitals and nearest-neighbor
hopping. The bond-length, bond-angle, and dihedral-
angle fluctuations add randomness to the transfer in-
tegrals. It has been argued that the Rivier lines have an
important effect on some region in the band. As has
been discussed by Cohen and co-workers, the basic effect
of odd rings is similar to the one-orbital model that we
have discussed so far. The details differ because of the
presence of the many orbitals. However, when one con-
siders states close to the top of the valence band or bottom
of the conduction band, states are predominantly formed
by simple hybridized orbitals from neighboring sites. In
the case of Si the bottom of the conduction band corre-
sponds to antibonding states formed by hybridized SP5
orbitals. In these cases the effective-mass equation con-
tains the vector potential. The multivalley nature of the
bands can also be taken care of in principle through the
modification of the effective-mass equation, as in the
crystalline semiconductors.

B. Impurity states in semiconductors

In a semiconductor, shallow donor or acceptor impurity
states are formed predominantly using states close to the
bottom of the conduction band or the top of the valence
band. Thus, effective-mass approximation is very useful
for understanding the properties of the impurity states.
As discussed above, the effect of Rivier lines appears
through a vector potential, depending on whether the cor-
responding band edge is of the antibonding type or not.
Neglecting the local potential fluctuations and the mass
anisotropy, the effective-mass equation has the following
form:

fP 2.(V —iA) y+Vt(r)@=Eq,
2p7l

where Vl(r) is the screened impurity potential. If the
Rivier line passes in the vicinity of the impurity (within
the effective Bohr radius), it has a strong influence on the
impurity eigenstates. As we saw earlier, the wave func-
tion becomes zero along a plane emanating from the
Rivier line. Simple estimates' show that this changes the
energy levels appreciably. In a real semiconductor, since
impurities are distributed randomly, what one observes
experimentally will be an averaged effect.
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C. Excites

The effect on Wannier excitons is very similar to the ef-
fect on impurity states. In general, the hole states and
electron states are not affected by the Rivier lines in the
same way. As we mentioned earlier, in Si the electron
states near the bottom of the conduction band are affected
by the Rivier lines more than the hole states at the top of
the valence band. Thus, in the effective-mass equation,
the electron is affected by a vector potential, whereas the
hole is not affected by any vector potential. This makes
the study of excitons in the presence of Rivier lines in-
teresting and rich.

D. Induced charge along the Rivier lines

Recently, the present author and Y. Fu have shown
that under some conditions fractional charges can be in-
duced along the Rivier lines. This arises because the
Rivier lines are topologically nontrivial objects. Thus, if
we compare the Fermi sea of electrons with the Fermi lev-
el lying in a band gap or mobility gap in some specific
tight-binding models, the eigenstates are affected in an
essential way before and after the introduction of the
Rivier lines into the system. By the same physics that
produces charge depletion or excess charge in a domain
wall in poiyacetylene, we also get excess charge distri-
buted along the Rivier lines under some conditions. This
could be one of the origins of the strong internal electric
fields observed experimentally in glassy materials.

UI. DISCUSSION

In this paper we discussed how Rivier lines affect the
electronic states of simple tight-binding models in CRN.
We showed that a Rivier line plays the role of an infinite-
ly thin solenoid carrying a half magnetic flux quantum.
We argued that the resulting effective-mass equation will
be useful in discussing some important questions in amor-
phous semiconductors like the impurity states, exciton
states, etc. Since Rivier lines are of topological origin,
electron-phonon, as well as electron-electron interaction,
cannot qualitatively change its effect.

Topologically nontrivial defects like screw dislocations
in crystalline materials have been shown by some au-
thors' ' to affect the electronic states in a nontrivial
way. For example, it was shown that if one considers a
screw dislocation in a simple-cubic lattice along the z axis,
it acts like a magnetic flux line. But the magnitude of the

flux line is not a constant. It depends on the z-coinponent
momentum of the electron. In this sense these fluxes are
more comphcated than the flux lines discussed by us.
This is consistent with an important point raised by
Rivier that dislocations are fundamentally differential
from the dislocations in crystals. Moreover, the present
author has shown that if one considers the electronic
states on the high-energy end of the band for a dislocated
crystalline lattice the dislocation line also acts like an odd
line. ' lt contributes a half flux quantum in addition to
the usual flux discussed by the above authors.

Tight-binding networks in the presence of magnetic
fields have been studied recently in the context of granular
superconductors, Josephson-junction networks, and locali-
zation problems in strong magnetic fields. We have
shown in the present paper that frustration can provide a
restricted class of desired magnetic fields. To give an ex-

ample, recently Fisher and Fradkin ' studied the localiza-
tion problem in a square lattice in the presence of a strong
magnetic field, such that each plaquette encloses half a
flux quantum. As mentioned by these authors, this re-
quires astronomically large fields. A study of our paper
reveals that this situation can be studied without any
external field by a proper choice of layered compound in
two dimensions. Frustration provides us the required half
flux quanta. It is easily seen that the effect of the half
flux quanta of Fisher and Fradkin can be simulated by
changing the sign of every other hopping integral in the y
direction. Of course, such a system may be very difficult
to synthesize. However, the same physics can be studied
by considering a tight-binding system in a triangular lat-
tice in two dimensions and by studying the appropriate
end of the band.

Hertz' introduced gauge fields to take into account the
effect of the frustrations in spin-glasses in a Landau free
energy in a phenomenological way. Our work provides
the explicit form of the gauge field. This is because the
matrix of the exchange interaction between the spins is
analogous to the tight-binding matrix, and the gradient
term appearing in the Landau free-energy function is
analogous to the kinetic energy term appearing in the
effective-mass equation.
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