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The effects of transition-metal (TM) impurities on the transition temperature of an anisotropic su-
perconductor when the TM impurities give rise to local spin fluctuations (LSF's) are studied. The
effective electron-electron interaction between the Cooper-pair electrons is taken to be the sum of a
separable anisotropic electron-phonon potential and the repulsive Coulomb potential existing be-
tween the electrons. The multiplicative renormalization technique is used to treat the Coulomb
repulsion between the d electrons of opposite spins which localize about an impurity site. It is found
that the LSF's infiuence the anisotropic superconductors in two ways. They cause a decrease in the
anisotropy and an increase in the Coulomb pseudopotential, Numerical calculations of the decrease
in T, are carried out using parameters appropriate to the dilute AlMn superconductors.

I. INTRODUCTION

The enhancement of the superconducting transition
temperature T, due to an anisotropy in the effective
electron-electron interaction between the electrons belong-
ing to a Cooper pair has betm studied by many authors.
Markowitz and Kadanoff' (MK) showed that the in-
clusion of an anisotropy in the pairing interaction leads to
an increase in T, given by

Tgl
=exp[(a2)/N(0) V],

Tc0

where (a ) is the mean square of the anisotropy parame-
ter, V is the averaged pairing interaction, N(0) is the den-
sity of states at the Fermi surface, and T,o is the transi-
tion temperature of the corresponding isotropic supercon-
ductor. The criterion for superconductivity in the MK
model is the same as that in the Bardeen-Cooper-
Schrieffer (BCS) theory, i.e., the averaged pairing interac-
tion must be attractive. Recently, Whitmore and Car-
botte~ studied the ehancetnent of T, due to the anisotropy
when a repulsive Coulomb interaction was included in the
electron-electron interaction. They found that supercon-
ductivity could exist even if the averaged electron-electron
interaction was repulsive as long as the anisotropy existed.
These two studies lead to further studies on the influence
of impurities on the anisotropic superconductors. Mar-
kowitz and Kadanoff' showed that nonmagnetic impuri-
ties could reduce the enhancement of T, through a
valence effect and a mean-free-path effect (reduction of
the anisotropy by scattering by impurities). Zuckermann
and Singh showed that the resonant scattering by non-
magnetic transition-metal (TM) impurities gave rise to a
third mechanism (cross term) by which the enhancement
of T, could be affected. Zuckermann and Singh believed
that the cross term was responsible for the nonlinear
behavior of the T, versus n; (impurity concentration)
curves for the Al 3d and Zn 3d TM superconductors (the
linear behavior being a prediction of the MK model).
Wliitmore and Carbotte have also studied the effects of

nonmagnetic impurities on the properties of anisotropic
superconductors with repulsive average interactions.
They found that the decrease in T, due to the impurity
scattering depended on the relative strengths of the attrac-
tive electron-phonon interaction and the repulsive
Coulomb interaction present in their effective electron-
electron interaction.

The effects of paramagnetic iinpurities on the MK an-
isotropic superconductor have been studied by Fulde. '
Using the Abrikosov-Gorkov (AG) treatment of the spin-
flip scattering by magnetic impurities, he showed that T,
could be depressed by both non-spin-flip scattering and
spin-flip scattering and that the initial decrease of T, de-
pended on the ratio of the relaxation times due to the two
types of scattering. Warier and Nagi, 6 Okabe and Nagi, 7

and Reithofer and Schachinger have also studied the ef-
fects of the paramagnetic impurities for the case where
the interaction between the magnetic moments and the
conduction electrons is strong. Since the second-order
Born approximation used in the AG treatment is not valid
for strongly interacting systems, the T-matrix approach
of the Shiba-Rusinov treatment of paramagnetic impuri-
ties in superconductors was used in these three studies.
Okabe and Nagi found that the expression for the de-
crease of T, was identical to that of Fulde except for a
redefinition of the ratio between the relaxation times, but
that their expression for the specific-heat jump at T, was
different from that obtained by Fulde. Reithofer and
Schachinger found that the anisotropy increased with in-
creasing impurity concentration and that the increase de-
pends on the position of the impurity state within the en-
ergy gap. The enhancement of T, due to the anisotropy
and the effects of impurities on the ehancement has also
been studied using the Eliashberg formalism. An excel-
lent review of work done in this area was given recently
by Allen and Mitrovic.

The present paper is concerned with the effects of the
transition-metal impurities on the anisotropic supercon-
ductors when the TM impurities give rise to local spin
fluctuations (LSF's). In an earlier study' on the effects
of the L SF's on anisotropic superconductors, the
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Hartree-Pock approximation was used to treat the
Coulomb repulsion between the d electrons of opposite
spina which were localized at an impurity site. Instead of
using the Hartree-Fock treatment which is known to give
erroneous results in the LSF region in the normal phase,
we have used, in this paper, the multiplicative renormali-
zation method of Schlottmann" to treat the Coulomb
repulsion. The multiplicative-renormalization-method
treatment of the LSF's in the normal phase of Iche' (on
which Schlottmann's method is based) is exact in the limit
of small g (= U/nl'~, U being the strength of the
Coulomb repulsion and I ~ the half-width of the impurity
state formed by the TM impurity). The effective
electron-electron interaction introduced by Whitmore and
Carbotte ' will be used in our study.

II. RENORMALIZATION RELATIONS

Whitmore and Carbotte (WC) added a Coulomb repul-
sion term to the separable potential proposed by Mar-
kowitz and Kadanoff' for anisotropic superconductors, so
that the effective electron-electron interaction between
electrons of opposite momentum and spin became

Vkk'=[1+ak(Q)]~e-ph[1+ak'(Q )] ~c (2)

X~——[1+ak(Q)]@0+ei,
where

dQ
eo N(0) V, phd. kg T—— g I [1+ak(Q)]

~s = ~a

5„(Q)
X

[coi +5„(Q)]'~
(4)

5„(Q)
ei —— N(0)VcmkriT g— f 4~ [~„'+~„(Q)]'~' '

with co„=(2n+1)mkiiT and b„(Q}the renormalized an-
isotropic energy gap.

The effect of transition-metal impurities can be incor-
porated by adding the Anderson-like Hamiltonian

where V, ph and V, are the strengths of the attractive
electron-phonon coupling and the Coulomb repulsion be-
tween the electrons belonging to the Cooper pair, respec-
tively. The anisotropy of the superconductor is represent-
ed by the parameter ak(Q} which when averaged over the
Fermi surface is zero. The double Fermi-surface average
of Eq. (2) can lead to either an averaged attractive interac-
tion or an averaged repulsive interaction depending on the
relative strengths of V,.ph and V, . As we pointed out, su-
perconductivity is possible even if the averaged interaction
is repulsive as will be seen in the steps leading to Eq. (38).
The off-diagonal elements of the self-energy correction
due to Eq. (2) can be obtained by standard methods.
These corrections are

to the Hamiltonian used in the WC model of the anisotro-
pic superconductor. In the above equation, ck (ck ) is
the creation (destruction) operator for a host-metal elec-
tron of momentum k and spin cr; d,~ (d; } is the creation
(destruction) operator for a d electron of spin o localized
at an impurity site R;; V;k is the potential that mixes the
conduction electrons with d electrons; E& is the orbital
energy of the d electrons; and U is the strength of the
Coulomb repulsion between the d electrons of opposite
spin which are localized at the same impurity site. The
presence of the mixing potential leads to the formation of
an impurity state which can scatter the conduction elec-
trons. This scattering leads to a further self-energy
correction given by (for the diagonal part)

Xg n; V G——g(ice„),

and (for the off-diagonal part)

X~ n;V——F~(ice„), (8)

where n, is the concentration of the impurities in the host
system and where G~(iso„) and F~(iso„) are the normal
and anomalous propagators for the d electrons.

The magnetic nature of the impurity state is determined
by a complicated interplay of the mixing potential V;k
and the Coulomb repulsion energy U. When the ratio
U/ml'~~0, the impurity state is nonmagnetic, while for
U/irl'd~ao, the state is magnetic. The crossover from
nonmagnetic to magnetic behavior is thought to occur
somewhere around g = U/el ~ —1, the exact point being
in doubt. The local-spin-fluctuation (LSF) region occurs
just on the nonmagnetic side of the transition region. The
previous study of the LSF's in anisotropic superconduc-
tors' was based on a Hartree-Fock treatment of the
Coulomb term in Eq. (6). The Hartree-Fock treatment of
the Coulomb term in the normal phase is known to give
erroneous results close to the nonmagnetic-to-magnetic
transition region. We have, therefore, used the multiplica-
tive renormalization method (MRM) of Iche' to treat the
Coulomb term. The MRM, which gives exact results for
the LSF region in the normal phase, is based on the fact
that there are quantities in nature which are invariant
under a change in the energy scale. This invariance leads
to the requirement that the renormalization parameter
(constant) be a solution of a Lie differential equation. We
refer the reader to Iche's paper for the details of the
MRM.

To treat the LSF's in the superconducting phase,
Schlottmann" realized that the multiplicative renormali-
zation of the anomalous propagator for the d electrons
could only be achieved by separating the perturbative ex-
pansion of the propagator into two sets and then requiring
each subset to obey the multiplicative renormalization re-
quirement. The details of these calculations can be found
in Schlottmann's aper" or in two recent papers by the
present author. ' ' The presence of the anisotropy factor
1+ak(Q) in Eqs. (4) and (5) requires a slight modification

g V;kCJQ; +H.c.+Ed gd;tQ;
i, k, a

+Used;Q; a'; Q; (6)
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of Schlottmann's approach as we shall presently see.
Again using standard techniques, we find that the un-

renormalized energy gap for the d-electron propagators is
given by

Z,„(Q)
P~(ice„)=b~+N(0)V f [2 +g2 (Q)]1/z

where we have assumed that the mixing potential Vck is
isotropic. The Coulomb gap is defined as

b,q ——U(—2cr)(d d ~) = g—n I'q(2cr)(d~d ),

where the correlation function (2cr)(d d ) is related to
the anomalous d-electron propagator by the relation

(2cr}(d d )=mksTQFg(ice„)

p~(i co„)
2 2 2 2

zg co„+Eg +pg ( l co„)

where z~ ——&+I ~/~ co„~ for T-T, . Combimng Eqs. (9),
(10), and (11),we get

1
Olg) dQ

(2cr)(d~d ~)= rrksT g z 2 z f1+g „= (
I con

I
+ I ~)'+E~+4'(&'~. ) [con+~ n(Q}]'"

(12)

Assuming that I d & con, we can neglect the frequency term appearing in the denominator (
~
co„~ + I ~) +E~+P„. For

temperatures close to T„the energy-gap term can also be neglected. This allows us to pull out the factor

I'elm�(I

q+Eq)
from the summation. Doing this, we find that the terms remaining inside the summation when multiplied by N(0) Vc
comprise the gap function ei defined by Eq. (5}. Putting everything together, we get

~d j.

1+g (f,+E, ) N 0 V,

For the isotropic superconductor, the correlation function is proportional to the order parameter and to the recipocal of
the electron-phonon coupling constant. Substituting Eq. (13) into Eq. (10) and then the resulting expression into Eq. (9),
we find that the anomalous propagator which obeys the multiplicative renormalization is given by

U 1
Fg(ico„)= X(0)

1+g N(0)Vc (
I
ai~

I
+I d) +Ea+~d(ic0~}

Ig b,„(Q)
n[(

~
co„~ +I g) +Eg+Pg(ico„)] 4~ [a)„+Z„(Q)]'~

Schlottmann showed that the following expression,

I ~. I
+I ~

Gd(ico„)=
(

~
co„~ +I g) +Eg+Pg(ico„)

is the form for the normal propagator which obeys multiplicative renormalization.

(14)

III. TRANSITION TEMPERATURE

The unrenormalized energy gap of the anisotropic superconductor is obtained by inspection of the off-diagonal parts
of the self-energy corrections, Eqs. (3}and (S), i.e.,

r

{{}„(Q)=[1+a(Q)]@0+ 1+n; V U~fX(0) e,
1

c z~
I
~'.

I
+E~+4'(i~. }

Ig 5„(Q')
+n;V

[ 'I ' I+E~+4'( .)l 4" [ '. +~.'«')]'" (16)

where Udr= U/(1+g), Z„(Q) is the renormalized energy gap, and zz is the ratio between the renormalized frequency
for the d electrons and c0„. Close to T„Eq. (16) yields the following equation for the renormalized energy gap:

Nd(0) 2 U,ffX(0)
1+n, zz 6„(Q)=[1+a(Q}]@0+ 1+n; V

2 2 zN 0 Vc z~2
~
co„( 2+Ed'

I g dQ' 5„(Q')
+n;V

m(zd ( co„~ +Eg) 4n' [a)z+b, z(Q')]'~
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where zq ——1+I"q/
( r0„~ and Nq(0) is the density of states for the d electrons. Following MK, WC, and Zuckermarm

and Singh, we shall assume'

b,„(Q)=b,,ia(G)b,
which leads to

Nd(0)

N(0)
Ng(0)

N(0) N(0) V,
(19)

(20)
Ng(0)

1+% hi =eo

where 6p and e'i are the parameters defined by Eqs. (4) and (5), respectively. Substituting Eqs. (19) and (20) into Eq. (18)
and then substituting the resulting renormalized energy gap into Eqs. (4) and (5), we obtain the following set of coupled
equations:

' 1 —N(0)V, &h[A (T)+ (az)B(T)]
Ng(0}

N(0)

Ng(0)—N(0)V, ,h 1+; U„X(0) A(T)
Ng(0)

N(Q)
e) ——0 (21)

N(0) VgA (T)

where

Ng(0)

N(0}

N&(0} U~X(0)
+ 1+N(0)V, I+n, A(T)

Nd(0)

N(0)
ei ——0, (22)

A(T)=rrksT 1
(23)

Ng)
18 (T)=eke T , I

. I +a;[N~(0)/N(0)](r, /I 1+n;[N, (0)/N(0)]) )
' (24}

Nonzero solutions for eo and ei are possible only if the determinant of their coefficients is zero. Imposing this condition,
we Net

0=1—N(0) V„„[A(T)i&a'}a(T)]
Ng(0)

N(0)

(25)

J

Ng(0) U,riX(0) Ng(0)
iN(0) VgA (T) 1 in; ling

Ng(0) U,ffX(0) Ng(0)—N (0)V, phd(a )A(T)8(T) lini ling

Before we consider the general case of (a )+0 and n;&0, let us first look at some limiting cases. The first case to be
considered is when n; =0 (no impurities) and (a ) =0 (no anisotropy). Equation (25) yields the BCS-like result

1
ka Tco 1.1Mconexp——

NQV, ph
—p

I

where p =N(0)VC When imp. urities are added to the superconductor (but with (a ) still zero), Eq. (25) yields

(26)

1.13ficog)
A (T)=ln

B C

1 ini[Ng(D)/N(0)]
N(0)V, p), pni[Ng(0)/N—(0,)—]U~rX(0)

(27)
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Combining Eqs. (26) and (27), we get

1+[1/N (0)g~]U,re(0)
(28)

where the effective electron-phonon coupling N(0)g, fr=N(0)V, ~~
—p. Equation (28) is just the result obtained by

Schlottmann. " We have drawn the concentration dependence of T, as predicted by Eq. (28) for several different values
of the LSF parameter U,rfX(0). To obtain the curves appearing on Fig. 1 we have taken N(0}g,fr=0. 1702, N~(0) =2.13
states/eV atom, and N(0) =0.286 states/eV atom. These values are those for aluminum superconductors and for Mn im-

purities in the Al superconductor. Along with the curves predicted by Eq. (28), we also show the observed decrease in
the dilute AMn superconductors as measured by Huber and Maple. '

The next case to be considered is that of the pure anisotropic superconductor. By setting n; =0 in Eq. (25) we will ob-
tain the results of Whitmore and Carbotte. This is easily seen by noting that for n&

——0, A (T)=8(T) and that Eq. (25)
now has as its solution

A(T)=
N(0)V, „(1+( ))—p+I[N(0)V, ('+( ))—p] +4N(o)V, ~( )]' '

—2N(0)V, .~~(a )

which is the same as Eq. (15) of Ref. 2. By setting N(0) Vc to zero, we obtain the results as in Ref. l.
Our discussion of the general case begins with the observation that for very low concentration of impurities, the func-

tions A (T) and B(T) are related through

Ng(0} Ig 1, 1 D
N(0) 2n'T[1+n([Ng(0) N(0)]] 2 2 2mT

(30}

where P'(x) is the trigamma function. Equation (30) can be rewritten as B( T)=A ( T)—5$, where

Ng(0) r, 1, 1 a
N(0) 2mTI1+ni[Ng(0)/N(0)]) 2 2 2n T

(31)

is a positive quantity. Substituting this into Eq. (25), we get

1+N(0)V, ~q(a~)b,g+, [p,,ff—N(0)V, .~q(1+(a ),~)]
1+n;[Ng 0 N 0

A (T) 2 =1+;[N„(0)/N (0)]

where

Ng(0)
p~= p. +n( U,re(0) (33a)

(a )~=(a }(1—p,rrhf), (33b)

b /=5'/[1+ n;Ng(0)/N (0)] .

Equations (33a) and (33b) show that the impurities infiuence the anisotropic superconductors in two ways, i.e., they in-
crease the strength of the Coulomb pseudopotential and they decrease the anisotropy. Solving for A ( T), we get

A (T) 2

+I[N(0)V, (1+( ), )—p, ]

+4N (0)V, p~,rf( a }[1+N (0)V, @gal P] J
' ~ [—2N (0)V, @gal,rf( a ) ] (34)

The above expression is very similar to Eq. (30) of Ref. 4.
Rather simple expressions for the change in the transition temperature due to the LSF's can be obtained if we assume
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N(0)V, »Is~(a )[1+N(0)V, »(a )dt/i]

[N(0) V, (1+( ') }—peff]'

N(0)V, »(1+(a )~)&)M,~,
Eq. (34) along with Eq. (35) gives

T, /T, e——exp
n&

Ng(0)

N(0) 1+, [1+N(0)V, »(a')5] +N(0)V, »(a')5U,AX(0)

N(0}gh

Ng(0) U~X(0)
1 n; — [1+N(0)V, h(a )5]

N(0)g~

(36}

where

N(0)g, tr=N(0)V, .»(1+(a ) }—p

N~(0) I'
1 1 co

N(0} 2rrT, 2 2 2n T,

Equation (36) reduces to Eq. (28) when (u ) goes to zero. Like Eq. (28), Eq. (36) also predicts that there is a finite con-
centration at which the LSF's can suppress the superconductivity in the host system. The predicted critical concentra-
tion for the anisotropic superconductor would be much less than that of the isotropic superconductor due to the extra
1+N(0)V, »(a )5 factor appearing in the denominator of Eq. (36). For the case where

V~»(0) V.-»(1+&u'&~),

T, N~(0) p, —N(0)V, »(1+(a )) U,trX(0)[(a )(1+5)+I]
T,o N(0) N(0)V, ~(c ) p' (38)

0.8
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09
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&000 2000
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Equation (38} predicts an exponential drop in the transi-
tion temperature without a critical concentration. It also
shows that superconductivity can exist even if the aver-
aged electron-electron interaction is repulsive as long as
the anisotropy remains.

It should be emphasized that Eqs. (36} and (38) are
valid only for very low concentrations. For higher con-
centrations the functions A (T) and B(T) are not related
in the simple manner indicated by Eq. (30}. To find the
concentration dependence of T, for the higher concentra-
tions, Eq. (25) would have to be solved numerically. As
we will see in the next section, Eq. (36) predicts a too ra-
pid drop in T, at the higher concentrations.

IV. NUMERICAL CALCULATIONS AND DISCUSSION

FIG. 1. Decrease of the transition temperature of an isotro-
pic superconductor containing LSF's. The curves represent the
decrease of T, due to the presence of local spin fluctuations as
predicted by Eq. {28). The curves are labeled with the numerical
values of the LSF parameter U~g(0). The numerical values of
the other parameters are those for the AIMn superconductors
and are given in the text. %'e have also plotted the observed de-
crease in T, of the AlMn superconductors.

To see the effects of the local spin fluctuations on the
transition temperature of the anisotropic superconductors,
we have performed some numerical calculations of the de-
crease in T, as predicted by Eq. (36}. As we pointed out
in the preceding section, the values of the effective pairing
interaction, the density of states of the host system, and
the density of states of the d electrons were chosen to give
the transition temperature of a pure aluminum supercon-
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FIG. 2. Decrease of T; of an anisotropic superconductor
containing LSF's. The curves represent the decreases of T, as
predicted by Eq. (36) for several different values of the anisotro-

py. The curves are labeled by the values of (ai). The T«& in

this figure is the transition temperature of the pure anisotropic
superconductor. The values of the parameters other than those
given on the curves are the same as those used in Fig. 1.

ductor and to describe the impurity states formed by dis-
solving Mn impurities in Al. Figure I shows the decrease
in T, of an isotropic superconductor due to LSF's far
several different values of U~X(0). Looking at the fig-
ure, we find that the curve for U,trX(0) = l.8 nearly dupli-
cates the decrease in T, of the AMn superconductors as
measured by Huber and Maple. ' The significance of this
fit is not very important since Eq. (36), of which the
curves an the figure are representative, is obtained on the
basis of an isotronic picture of the host superconductor.
Most evidences' 's point to Al being an anisotropic su-
perconductor with (a ) =0.011. To see how the presence
of an anisotropy in the host superconductor affects the in-
fluence of the LSF's, we have plotted in Fig. 2, the de-
crease in Tz predicted by Eq. (36) for several values of
(ai). The attractive electron-phonon potential V, zh and
repulsive Coulomb potential Vc were adjusted so that

N(0)V, ph(1+(a })—N(0}Vc

was always equal to 0.17022 so as to produce a T,c of
1.18 K, the transition temperature of pure aluminum
aluminum superconductors. The value of U,fry(0) was
arbitrary picked to be 0.2. As we see, the presence of the
anisotropy in the superconductor leads to a greater influ-
ence of the LSF's on the superconductor, i.e., the decrease
in T, becomes greater as the mean square of the anisotro-

py increases.
To obtain the curves on Fig. 2, we have assumed that

the half-width of the Mn impurity state I'q is 0.01 eV.
This value of I z is the one used by Machida and Nakan-
ishi' to obtain a fit of their expression for the nuclear
spin-lattice relaxation rate to the observed Al relaxation
rate in the dilute AMn superconductors. The value is of
the same magnitude as the half-width detei~iined by Aoki
and Ohtsuka, ' from their analysis of the initial decrease
in T', of the A/Mn superconductors and is close to the
value of 80 meV obtained from the normal-state magnetic

susceptibility measurements. 's Parvin and MacLanghlin'o
and Zuckermann argue that the value of 0.01 eV is un-
reasonably small in light of the fact that the half-widths
of the impurity states formed when other 3d TM impuri-
ties are dissolved in Al are of order 1—2 eV. Zucker-
mann argued that a praper analysis of the initial de-
crease in T, of the AMn superconductors gives a I'~ of
1.5 eV. To see what would happen if the half-widths were
changed, we have plotted the dcerease in T, for different
values of I q on Figs. 3 and 4. The anisotropy of the pure
aluminum superconductor was taken to be (a ) =0.011.
Figure 3 shows the decrease in T, for different values of
UeffX(0) and I'~. Figure 4 shows the decrease as the
half-width increases. Reasonable decreases of T, in the
presence of LSF's appears to be achieved with I'd of order
0.01 eV. For Eq. (36) with I ~ ——1.5 eV, to predict
behaviors similar ta the decrease in T, observed, the LSF
parameter U,rid(0) would have to be very small.

500 pp~

000 pp~

ue(fx(O) =02

&Q ) =OQ11

0005 00$
HALF-WI DTH (ev )

ppm

FIG. 4. Decrease of T, as a function of the half-width of the
impurity states. The curves show the decrease in T, as the
half-width lq increases for several impurity concentrations.
The rapid decrease of T, as I ~ increases clearly indicates that
in the presence of strong local spin fluctuations [high values of
U~g(0)], values of yq of order I—2 eV would not produce the
types of decreases seen in AMn superconductors. Equation (36}
would only predict decreases similar to those observed in AMn
if I q is of order 0.01 eV.

0+X(0) 02----
Uw~X {o& =G3-
UgX{0& -O~---

4

SO0 500 1000

CONCENTRATION (ppm)

FIG. 3. Decrease of T, of an anisotropic superconductor
containing LSF's. The curves show the decrease of T, for other
values of I'q and U~p(0). The value of the anisotropy was tak-
en to be (a2) =0.011, which is the value for pure aluminum su-
perconductors.
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