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G. Senger
Institut f'ur Theoretische Physik, Uniuersitiit zu Koln, D 500-0 Koln 41, West Germany

M. L. Ristig'
School of Physics, The University of New South Wales Kensington, ¹w South Wales, Australia 2033

K. E. Kiirten'
Courant Institute of Mathematical Sciences, ¹w York University, 251 Mercer Street, ¹w York, New York 10012

C. E. Campbell
School ofPhysics and Astronomy, University ofMinnesota, 116Church Street S.E., MinneaPolis, Minnesota 55455

4,'Received 12 August 1985)

A variational statistical mechanics of boson quantum fluids such as 4He is developed as a natural

generalization of the Jastrow Euler-Lagrange method which has been successfully applied to the

ground-state problem. The results include a quantitative description of the liquid-gas portion of the

phase diagram, including the corresponding critical point and spinodal line. Also calculated is the

temperature dependence of the liquid structure function and phonon-roton spectrum within the class

of trial density matrices explored in this work.

I. INTRODUCTION

Recent substantial advances in the microscopic descrip-
tion of dense quantum fiuids at zero temperature' are vi-

gorously calling for suitable generalizations of the now
available ab initio approaches to deal with excited states
of quantum systems and their thermal properties. 2

Such a quantitative microscopic theory of quantum fiuids
at finite temperatures may be developed by an appropriate
generalization of the Feenberg-Jastrow variational ap-
proach. ' This formalism has led to a thorough explana-
tion of the ground-state structure of strongly correlated
many-body systems described by a Hamiltonian of the
forin

N g N

H=T+ V= —g V;+ g u(rj),
f —1 f,j=1

where the potential u(r) represents the bare interparticle
interaction. For bosons this theory rests on the choice of
an appropriate set of trial wave functions for the many-
body ground state, which in the simplest case take the Jas-
trow form

%(R)=~ exp —,
' g u(rJ)

where R =(ri, r2, . . . , rN ). The unit-normalized wave
function (2) represents a first plausible ansatz but may be
systematically improved by adopting more complex Feen-
berg functions which include triple-correlation terms
u3(r;, rj, rk ), etc., in the exponential.

To work within a dynamically consistent approach the
ground-state wave function (2) or the more sophisticated

Feenberg function is then determined by invoking the
minimum principle for the ground-state energy, ' '

E, &E=(mimic&.

The statistical mechanics of quantum fluids at nonzero
temperatures may be worked out in an analogous manner.
Instead of employing a set of trial wave functions (2), one
begins with an appropriate set of trial density matrices
which may take account of incoherence effects in the
finite-temperature systems. Next, one proceeds by optim-
izing the Helmholtz free energy employing the Gibbs-
Delbriick-Moliere minimum principle.

The first few steps along these lines have been described
in Refs. 14—17. Here, we shall report on our present for-
mal reahzation of this program by introducing the varia-
tional principle as the method for determining the choice
of density matrix in a specified function space. We
describe calculations of the various phase diagrams, struc-
ture function, and excitation energies for liquid helium
within this formal frame. It should be considered as a
first stage in this development since the minimal applica-
tion is based at the moment on a rather crude approxima-
tion for the entropy; this approximation holds at suffi-
ciently low temperatures when the number of elementary
excitations is small compared with the total number of
bosons so that the excitations are well represented as
temperature-dependent elementary excitations at the level
of Bij}-Feynman excitations. We stress, however, that the
variational formalism put forward is not limited to this
restricted region in phase space since we may systemati-
cally remove the restrictions set by the approximation. '

In Sec. II we describe the ansatz for the density matrix
and develop its consequences by evaluating the associated
internal energy, entropy, and Helmholtz free energy. The
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latter functional is optimized in Sec. III to determine the

best trial density matrix within the function space tested.
The procedure leads to a coupled set of Euler-Lagrange
equations which generate the structure function and exci-
tation energies of the boson system at given density and

temperature. Sections IV and V collect our main numeri-

cal results on these functions and on the phase diagram
for liquid He. In Sec. VI we present a heuristic
phenomenological extension of the present model which

permits a qualitative discussion of the phase equilibrium
between liquid and vapor. Section VII contains a discus-
sion of our principal results and approximations, and
methods for improving the approximations and extending
this approach.

II. DENSITY MATRIX AND THE HELMHOLTZ
FREE ENERGY

y(k) of the function y(r) to be non-negative. This is easi-

ly seen since all matrix elements of the operator W with

respect to arbitrary states in the Hilbert space are non-

negative in this case. ' We observe further that the
coordinate-space matrix elements W(R, R') are all posi-
tive or zero. ' The Jastrow ansatz for functions 4(R ) and

Q(R,R') has been explored earlier by Reatto and Ches-

ter, ' by Feenberg and in some more recent studies by
DeMichelis, Masserini, and Reatto. ' The particular
ansatz chosen for the statistical operator should permit an
adequate description of the superfluid phases of a many-
boson system. However, since it leads necessarily to a
nonvanishing condensate fraction, the Jastrow ansatz is
not sufficiently flexible to also provide an appropriate rep-
resentation of the normal phases.

To proceed further it is slightly more convenient to
write the trial density matrix in coordinate space as

Our formal analysis of the equilibrium properties of a
boson fiuid at nonzero temperatures is based on the
Gibbs-Delbriick-Moliere minimum principle for the trial
Helmholtz free energy F. It is bound from below by the
true free energy Fo of the system,

W(R, R') =P(R )P(R,R')P(R'),

where the unit-normalized function %(R} is represented
by expression (2). Then,

Fo &F=Tr(HW)+P ' Tr( Win W) (4)

with the inverse temperature P= 1/kzT and an equilibri-
um density operator W on the Hilbert space of the Hamil-
tonian (1) with appropriate statistics. ' The operator W
must be non-negative, satisfy boson statistics, and be nor-
malized to unity: Tr 8'=1.

To most conveniently take account of the strong spatial
correlations between the particles induced by the strong,
short-range interaction, we employ the coordinate space
representation and cast the matrix elements of the statisti-
cal operator W into the completely general form

W(R, R') =4(R )Q (R,R')4(R') .

The incoherence factor Q contains no factors which de-
pend only on primed or unprimed coordinates alone and it
reduces to unity at vanishing temperature. In this case
the function 4(R ) represents the ground-state wave func-
tion of the system.

For bosons the simplest class of trial functions 4 is of
the Jastrow form (2). On the same level of sophistication
the incoherence factor Q (R,R') is chosen to be represent-
ed by

N

g y(r") —-' g y(r )

—=+Ju (r)g(r)d r+ J eu(k)y(k)d k .
(2m )3p

(10)

has unit-normalize9 diagonal elements, P(R,R ) =1, and,
consequently, the diagonal part of the density operator is
given by W(R, R)=% (R) with TrW=1.

Our next task will be to evaluate the internal energy
U =TrHW and the entropy TS = —P ' Tr( W ln W} and
therewith the trial Helmholtz free energy (4) as explicit
functionals of the quantities y(r) and u (r) characterizing
our trial density matrix. The internal energy may be
evaluated by following the standard Jackson-Feenberg
procedure yielding an energy per particle

Q(R,R'}=exp g y(
~
r; —rj ~

) The effective potential u*(r) is defined by

Employing the density fluctuation operators

pi, ——g,. , exp(ik r; ) w.e may write, equivalently,

Q(R, R') =exp —g' y(k)pi, (R )p i,(R')
k

where terms with k=0 are omitted in the sum. Expres-
sion (7) shows that the trial density operator W thus con-
structed is non-negative if we require the Fourier inverse

u'(r)=u(r) — V u(r),
4m

eo(k) =A /2m is the single-particle energy of indepen-
dent bosons and the radial distribution function g (r) is as-
sociated with the diagonal part, W(R, R ) =%~(R ), of the
density matrix adopted here.

To evaluate the entropy we need the trace of WlnW.
Instead of taking the trace directly, we first evaluate the
traces of powers of the density operator. These traces are
represented by the integrals
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TrW +'= fdR, f fdR, %"(R )
. 4'(8 +1) g expG

[k„&0)

' expG' (12)

where the functions G(™are quadratic expressions in the
density fluctuations pk,

TS 1 8
[expND (a)] 1 ~

N N a a=0
(17)

6' '(k, R ) = ——y(k)[ i pq(g ()—p(,(R 2) i +1

+ i p„(g +, ) —p(,(g, ) ['] (13)

(14)

The integrals (12) can be viewed as standard normaliza-
tion integrals associated with a boson mixture of m + 1

differing components which are correlated in a cyclic
matmer. Standard methods of statistical mechanics are
available to study and to evaluate {at least in principle)
such integrals. z 'z The results are of the general form,

Tr W +'=exp[ED(m)], (15)

where quantity D is of order No in the thermodynamic
limit and is a discrete function of the integer m. It is
plausible to assume that this function, known at discrete
points m, may be continued analytically along the entire
positive real axis a. If that is the case then the function
D(a), a real and positive, may be used to derive the
desired expression for the entropy by invoking the identity

TrR' +' =Tr(WlnW) .

and m may be any non-negative integer. The product has
to be taken over the positive half-space ( k„&0)which is
indicated by a prime on the product in the second line of
Eq. (12). The expression (13) may be written in a more
compact form upon introducing an ( m +1)&& (m + 1) ma-
trix M' ' having the elements M p

——25 p
—5 p+(—5~ +|with the cyclic condition m + 2= 1,

where D=BD(a)/Ba
i 0 and D(0) =0.

Thus, the central task to perform is the evaluation of
function D(rn) and to achieve its analytic continuation.
At present we do this by adopting a simple approximation
which disregards the effects of correlations between entro-

py fluctuations. The approximation is based on the separ-
ability assumption which is known to be accurate only at
low temperatures. 2 It has been used with success in the
iterative step of the paired phonon analysis of the ground
state of a boson system. "'2 The assumption reads'

(
g'expG( ' =g'&expG( ')

k k

which leads, via Eqs. (12) and (15), to the approximate ex-
pression

D(m)-Do(m)= —g'1n(expg( ') .1

Do(m)= ——g'lndet[1+y(k)S(k)M( '],1

N q
(20)

where S(k) is the static liquid structure function associat-
ed with the radial distribution function g(r) introduced
above.

The determinant of the ( rn + 1)X (m + 1) matrix
1 + y(k)S(k)M( ' may be evaluated by taking the prod-
uct of the corresponding m + 1 eigenvalues. ' The eigen-
values of the matrix M' ' are

MI(™=4 sinz[ln /(m + 1)] (21)

(1=1,2, . . . , m+1). Introducing a non-negative func-
tion n (k) in Fourier space,

The average value on the right-hand side of Eq. (19) has
been calculated in Ref. 25 and yields

a=0

Consequently, the entropy per particle then follows as

n (k)[1+n (k)]=y(k)S(k),
we may cast Eq. (20) into

(22)

T

Do(m) = ——g'ln g 1+4n (k)[1+n (k)] sin
1N

lm

rn +1

The product appearing in the logarithm in Eq. (23) may
be shown to represent a 2m-fold polynomial of the form
[(1+n)'+ —n '+ ] . Thus, inserting this expression into
result (23) we may analytically continue and arrive at the
function

t

According to prescription (17) the entropy per particle in
the separability approximation follows as

TS T~O g t[1+ (kn)) ln[1+n (k)]

D (a)= ——glnI[1+n(k)]'+ —[n(k)]'+ ) .
1

N {24) n(k) inn (k)J . —(25)
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The trial Helmholtz free energy may therefore be decom-

posed into the parts

U T~o 1 ~

+—D),
N p

(26)

c '(k)= —,'eo(k)S (k)[1—[1+2n(k)] I

which vanishes as T~O.

(28)

III. OPTIMIZATION

For the next major step we minimize the trial
Helmholtz free energy (26) by choosing the optimal real
functions y(r) and u(r) which determine the adopted
form of the trial density matrix. These optimal functions
are solutions of two coupled Euler-Lagrange equations

5F 5F
(29)

5y(r)
'

5u (r)

At present we ignore the contribution Di in Eq. (26}vary-

ing only the explicitly available expressions (25) and (27).
Straightforward variation of the energy I' with respect to
the incoherence term y(r) leads us to the relation

where the internal energy and the first entropy portion are
explicitly given by Eqs. (10) and (25). The dotted quantity

D, vanishes at sufficiently low temperatures but inust be
included if we approach the lambda transition line from
the low-temperature side in order to give a realistic micro-
scopic description in this region of phase space. We hope
to present an explicit evaluation of this contribution to the
free energy in the near future.

To conclude this section we write the internal energy
(10} in terms of the derived quantities g(r) and n(k) by
employing the relation (22},

—=+fv'(r)g(r)d r —
& fu'(k. )S(k)d k,

2(2~)' p
(27)

where we have introduced a quantity

mation for the entropy. The significance of result (31}is
most clearly reflected in the observation that the dynamic
structure function g" consistent with Eq. (31) is generated
by a single resonance positive frequency mode at given
density and temperature,

S(k, co) = X"(k,co},
1 —exp —co

where the response function X" is of the form

X"(k,a)) =co(k) 5(co —s (k))

(33)

(34)

and the radial distribution function g(r;a} associated
with Eq. (35). The diagonal part W(R,R;a) of the gen-
eralized density operator W(a) appearing in Eq. (35) is
defined by the square of the following unit-normalized
wave function,

1

&M(a }

&( g exp( —,
'

[u(rg, )+a[v*(r;, )+~'(r,, )] j }

involving the spectrum e(k). We note that functions
S(k,co) and X"(k,co) obey the familiar co" sum rules, n=0
and l. Expression (33) demonstrates that the present ap-
proximation for the entropy suppresses backflow and
multiexcitation interaction effects at any finite tempera-
ture, although it does incorporate temperature-dependent
correlation effects due to the presence of thermally excited
states.

Within the separability approximation the Helmholtz
free energy may be varied with respect to the function
u(r) by following closely the paired phonon procedure
familiar from studies of the ground state. "' The varia-
tional result may be most efficiently expressed by employ-
ing a generalized structure function

S(k;a)= —fdR psp qW(R, R;a)1

pro( 1+2n)S '=In(1+ n) —inn, (30)

where the quantities depend on the wave number k.
Equation (30}may be converted into the more useful form

eo(k) =S(k)e(k) tanh[ —,pe(k }]

by introducing the energies e(k) via the relation

n(k)= 1

exp[Pe(k)] —1

(31}

(32)

In the limit T~O we recover from result (31) the familiar
Bijl-Feynman relation between the static structure func-
tion and the elementary excitation energies in the absence
of backflow. This suggests that we may interpret the
solution e(k) as the simplest temperature-dependent gen-
eralization of the Bijl-Feynman excitation spectrutn. We
should note in this context that, since S(k) and y(k) & 0,
these energies are non-negative as are the occupation
probabilities. The particularly simple result (30) or (31) is
of course a direct consequence of our separability approxi-

(36)

Ming driven by the effective interactions (11}and (28).
With the help of quantity (35) the Euler-Lagrange equa-
tion resulting from varying the free energy with respect to
u (r) now takes the form familiar from the paired phonon
treatment at vanishing temperature,

eo(k)[1 —S(k)]=2S(k),

or, equivalently,

V g(r)=g(r) .
4m

(37)

(38)

Functions S(k) and g(r} represent the derivatives of
S(k,a) and g(r, a), respectively, with respect to the pa-
rameter a taken at a =0.

To study the stability properties as we11 as to design a
practical iteration scheme for solving the Euler-Lagrange
Eqs. (31) and (37), we combine Eqs. (31) and (28) by tak-

ing the square
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e (k}=e()(k)S (k)[1+2n (k)]

=so(k)[S (k)eu(k) —2c '(k)] (39)

Schrodinger-like equation for V'g(r), which acts as a
two-body amplitude within the medium:

and then inserting condition (37), i.e., eu=2S/(1 —S), into
Eq. (39). This manipulation generates the relation

e(k) = [eo(k)[eo(k)+2~(k)]) '

where we have introduced a potential

(40)

2o(k)=[co(k)S(k)+2S(k)]S (k) —eu(k) —2c '(k) .

(41)

Equation (40) is of the standard Bogoliubov form2 with

function r7(k) being identified with the effective particle-
hole potential as T~O. Evidently, the boson system
cannot be stable unless

ep(k)+2~(k) )0 .

In particular, condition (42) reduces to

F(0)=mc pO

(42)

~(r)=ug+ (VMg) +(g —1)(iu+~') (44)

which involves an induced potential iu(r) described by the
Fourier inverse

iu(k)= ——,'eu(k)[2S(k)+1][S(k)—1] S (k) . (45)

This induced potential is of the same form as the one
which appears in the Lantto-Siemens equations for the
optimal Jastrow ground-state trial function. ' Indeed, in-
serting Eq. (44) into Eq. (40) and employing Eq. (31}we
find, after more dementary algebraic manipulation, a

at small values of wave number k where c is the iso-
thermal velocity of ordinary second defined by the limit
e(k) =iiikc as k~O. If Eq. (43) is violated the system be-
comes unstable against long-wavelength density oscilla-
tions.

Equation (40} together with Eq. (31) is well suited for
calculating the optimal excitation energies e(k) and the
optimal structure function S(k) by iteration. What is
needed to realize such an iteration scheme is an explicit
relation between the generalized structure function
S(k;a) or the radial distribution function g(r;a), the
corresponding bare correlation functions (a=O), and the
variational functions u (r) and y(r). At T=O this relation
is usually established within the hypernetted-chain
analysis where the contributions of elementary diagrams
are usua11y disregarded. %'e adopt the same approxima-
tion procedure at nonzero temperatures following the es-
tablished lines familiar from the ground-state treatment.
Employing the hypernetted-chain equations available for
S(k) and S(k) (Refs. 11 and 12) we may express the po-
tential u(r) or its dimensionless Fourier inverse c (k) ap-
pearing in the central equation (40) and defined by Eq.
(41) in terms of the radial distribution function g(r) [or
the structure function S(k)) and the effective interaction
c.', Eq. (28). A few algebraic manipulations lead to the
expression

V vg +(u+iu+u')v g =0 . (46)

This constitutes the temperature-dependent generalization
of the Lantto-Siemens equations of Ref. 31.

Once the optimal functions S(k), g (r), n (k), e(k), etc.,
are known as the calculation of the thermodynamic quan-
tities such as internal energy [Eq. (27)], entropy [Eq. (25)],
and Helmholtz free energy [Eq. (26)] is straightforward.
We stress that for the optimal choice, Eq. (25) yields an
entropy which exactly agrees with the result derived from
taking the thermal derivative, i.e., (dF/dT) r ~, of the free
energy since quantity F is stationary. For the same reason
the optimal chemical potential may be expressed as an in-
tegral containing only the functions S(E) and n(k) but
not their derivatives with respect to density,

IV. OPTIMAL STRUCTURE FUNCTION
AND EXCITATION ENERGIES

A phenomenological study of the generalized Bijl-
Feynman relation (31) has been given in Ref. 14. Here, we
report on a detailed numerical study of the set of Euler-
Lagrange equations (31) and (40) and of the variation of
their solutions with temperature and density for bulk heli-
um matter. The interparticle interaction is described by a
Lennard-Jones potential with the standard set of parame-
ters. To explore the thermodynamic behavior as a func-
tion of the helium mass we study the phase diagrams for
~He, 6He, and for helium atoms with the hypothetical
mass —,

' that of He.
Since at the present stage we omit the effects of correla-

tions between the entropy fluctuations (due to the separa-
bility assumption} and backflow effects in the ground
state as well as at elevated temperatures, a comparison
with experimental data on liquid and gaseous helium can
be at best semiquantitative. But despite the limited appli-
cability of the present microscopic model to a description
of real helium it is important to study its behavior in the
entire phase space, at any temperature and density in or-
der to be able to improve upon the present approximations
at a later stage.

The Euler-Lagrange equations are solved numerically
by iterating Eq. (40) in conjunction with relations (31) and
(41). At each iterative step the input functions S(k) and

S(k) are calculated in the hypernetted-chain approxima-
tion by solving the standard hypernetted-chain equations
which correspond to both quantities. The T-p diagram,
Fig. 1, shows that for the three differing masses con-
sidered, stable solutions exist only outside of certain re-
gions of the phase diagram. The curves separating the re-

p=p f~'(r)g(r}d r+ f u "(r)[g(r)—1]d3r
2

e, k g ' k g k —l 'd'k . 47
4(2m) p

The same may be said for the pressure which follows
from the thermodynamic relation P =pp F/V. —
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FIG. 1. Calculated isothermal spinodal line for 4He fluid,
6He fluid, and the fictitious boson isotope of helium with mass

that of He. The nearly vertical dashed line is the phase

equilibrium line between liquid He and the vacuum as described

by the optimum trial density matrix studied in this work.

gions where physically admissible solutions are found
from those where the condition (42) is violated represent
the spinodal lines of the three different systems. On these
lines the (isothermal) velocity of sound approaches zero
thus indicating that the systems become unstable against
density fluctuations at large wavelength. The spinodal
point for He at zero temperature appears at a density
0.016 A which is in agreement with earlier findings. '
The maximum points of the various spinodal lines are
identified as the model critical points for the first-order
liquid-gas phase transition. For He we find the critical
data, T,=4 3K and .p, =0.009 A, which are fairly
close to the experimental data for He of T,=5.2 K and

p, =0.010 A . Since the kinetic energy becomes more
important than the interaction energy if the particle mass
decreases we expect and, indeed, find numerically that the
instability region for mass —', the mass of He is signifi-

cantly smaller than for He and 6He and disappears even-

tually for still lighter masses slightly smaller than 0.1m4,
consistent with the conclusions of the quantum theory of
corresponding states prediction for the disappearance of
the critical point.

On the liquid side of the spinodal curves, i.e., at densi-
ties exceeding the critical density, we find that the phonon
velocity increases rapidly with density, thus becoming rel-
atively independent of temperature at sufficiently high
densities. This behavior is shown for He matter in Fig.
2. On the gas side the velocity of the long-wavelength ex-
citations increases with decreasing density and approaches
the ideal gas data for sufficiently small densities. Figure
3 depicts the optimal excitation energies e(k) for 4He at
temperature T=6 K and at various densities. At experi-
mental equihbrium density (p=0.02185 A ) we obtain
the typical phonon-roton form of the Bijl-Feynman spec-
trum with roton energies lying 2 to 3 times higher than
experimentally observed, reflecting the fact that backflow
effects are neglected in the present microscopic model.
~ith decreasing density the roton minimum shifts to

FIG. 2. Calculated isotherms of the isothermal sound veloci-

ty for 4He fluid.

lower wave numbers, gradually weakening and disappear-
ing at a density of about p=0.016 A . At still lower
densities the excitation curves increase monotonically with
momentum Rk and approach the free particle spectrum
R k~/2m at wave numbers k & 2 A ' (crosses in Fig. 3).
However, the linear phonon behavior of the excitations is
correctly recovered at sufficiently small k values at all
densities considered. The dependence of the excitation en-

50

40

20

IO

I.O k ($ ') 2.0 3.0

FIG. 3. Calculated excitation energies as a function of wave
number k for He at T=6 K for several densities (in A ); A,
0.02185; B, 0.020; C, 0.018; D, 0.016; continuing to smaller den-
sities in increments of 0.002 until density E of 0.002 A . The
x's lie on the free particle spectrum. The inset shows the same
quantity at the experimental equilibrium density for several tem-
peratures.
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l.2-
(a)

IO ———

tion energies on temperature at fixed density p=0.021 85
A is shown in the inset of Fig. 3. In contrast to the
available experimental results' the theoretical roton ener-
gies increase with increasing temperature. This disagree-
ment is expected since the observed lowering of the roton
gap is attributed to roton-roton interactions which are not
incorporated in the present model.

This property of the optimal excitation energies
suppresses therefore any strong variation of the theoreti-
cal static structure function with temperature in the roton
region. In qualitative accord with experimental results
below the lambda temperature ' we observe a monoton-
ic increase of the peak value of our theoretical structure
function with increasing temperature. However, we do
not find a sharpening of this peak [see, in particular, Fig.
4(b)]. The numerical results do not indicate a reversal of
this behavior in contrast to the experimental findings
above the lambda transition. The structure function
shows increasingly less structure with decreasing density.
As can be seen in Fig. 5, at r=5 K and p=0.002 A the
maximum which is present at liquid densities has almost
disappeared and S(k) comes very close to unity at all
wave numbers except at k values in the phonon region
k ~0.5 A ' where the structure function approaches
S(k) =kii TInc as k ~0. The strong temperature
dependence of S(k) at small k values at fixed density well
away from the critical density (Fig. 4) is due largely to the
factor of T which appears in the numerator of the zero k
limit. On the other hand, if one fixes the temperature
near the critical temperature as in Fig. 5 and varies the

p =0.008
i

p =0.010

p =0.09

p =0.002

p =0.018

p =0.02185 ~
2.0

k(i- )

3.0

FIG. 5. Calculated He structure function as a function of k
at several different densities but for a fixed temperature of 5 K.

density, the k=0 intercept has a maximum at a density
near the critica1 density. Indeed this density diverges at
the calculated critical point, thus manifesting critical
opalescence. ,

At constant density the calculated optimal radial distri-
bution function g(r) exhibits a more pronounced struc-
ture, i.e., higher maxima and lower minima, if the tem-
perature is increased. The increase in structure is accom-
panied by a slight shift of the extrema to smaller relative
distances. Both features are in qualitative agreement with
experimental results (at temperatures below the lambda
point).

. 0.0i-

V)
l 0

-O.ol—
U)

T=5
T 2T-I

(b)

FIG. 4. (a) Calculated He structure functions as functions of
wave number k at experimental equilibrium density for several
temperatures. (b) The difference between S(k, T) and its T=O
value as a function of k at several different temperatures, plot-
ted with an expanded vertical scale to illustrate this temperature
dependence.

V. OPTIMAL THERMODYNAMIC QUANTITIES

Having the optimal structure function, radial distribu-
tion function and the corresponding excitation energies
for helium matter at our disposal we may calculate the as-
sociated optimal entropy (25), Helmholtz free energy (26},
chemical potential (47}, and the corresponding thermo-
dynamic equation of state, P =P(p, T). Some of our nu-
merical results on these thermodynamic quantities for He
are depicted in Figs. 6, 7, and 8.

In the region of mechanical stability (where the velocity
of sound c is well defined) the isotherms (isochors) of the
calculated entropy density decrease (increase) monotoni-
cally with increasing density (temperature). The most re-
markable feature of the entropy density is that it ap-
proaches a finite nonzero value as the particle density p
vanishes. Thus, in this calculation, the vacuum possesses
physical properties such as a nonvanishing entropy densi-
ty, a finite energy density (Fig. 7), and a positive pressure
(Fig. 8). These features are reminiscent of the ideal Bose
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FIG. 6. Calculated He entropy density isotherms as func-

tions of density. The dashed line is the spinodal line. The
dashed-dotted curve is the 4.3 K isotherm for the extended

model of Sec. VI.
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FIG. 7. Helmholtz free energy density as in Fig. 6.

gas, except that in that case as one lowers the density at
fixed temperature the phase boundary into the normal gas
phase is crossed before one reaches the vacuum. Indeed,
upon analyzing the temperature dependence of the results
on the entropy density, free energy density, and pressure
in the limit of vanishing particle density we find that
these thermodynamic quantities represent very well the
properties of a gas of noninteracting bosons with an effec-
tive mass m' arrested in the superfluid phase. Thus the
Helmholtz free energy density at p=O is described by

' 3/2
F Fg m

(48)I'
~ () & 2rfP

- 0.02

I 2 16

)Osp(A ~)

FIG, 8. Pressure as in Fig. 5.

20 24

Here, the function g~(z)= g„",z"in and Eq. (48)
represents the standard formula for noninteracting bosons
of mass m' at temperatures below the corresponding
Bose transition temperature

' 2/3

Tgl (49)
kn(1)

The numerical results on the entropy density, internal
energy density, and pressure as p~O are then well repro-
duced by taking the appropriate derivatives of Eq. (48)
with respect to temperature or density, respectively. A
similar low-density behavior is found by analyzing our
numerical results on the optimal entropy, free energy, and
pressure for He matter and extended systems of helium
atoms with hypothetical mass m of two-thirds and one-
half the He mass. The numerical results on the corre-
sponding effective masses m' are collected in Table I.
They fit the optimal data at p=0 very well at all tempera-
tures considered. Thus, we may conclude that a system of
bosons described by the Helmholtz free energy (26), with

Di set to zero and the optimal expressions (25) and (27)
can coexist with a particular vacuum having physical
properties described by Eq. (48). A double tangent
method then permits the construction of a two-phase
coexistence region in a standard fashion. The resulting
phase boundary for He is indicated by the nearly vertical
dashed line in Fig. 1. The equilibrium state to the left of
this line is, in this model, the liquid at the density of the
dashed line in equilibrium with the vacuum which is
characterized by Eq. (48). Consequently, if this construc-
tion yields a gas-liquid critical point at all it must be at
very high temperature. This behavior is in clear disagree-
ment with the results expected based upon the observed
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TABLE I. Numerical results on the corresponding effective
masses m

PlksT =A. g bizI,
l=i

(50)

m /m4

m /m

3
2

0.586 0.787

2
3

1

2
p=A, 3 g lbiz',

1=1
(51)

physical situation or upon our earlier construction of a
spinodal line and the associated critical point based on the
stability criterion (42) and (43). However, this discrepan-
cy is not unexpected and is caused by the limitations of
ansatz (5) or (7) in conjunction with (2) and (9) for the
trial density matrix. It is known that such an ansatz leads
necessarily to a nonvanishing condensate fraction and is
therefore unable to permit an adequate description of any
normal (i.e., nonsuperfluid) phase which the helium sys-
tems considered here will certainly attain at sufficiently
low densities. Moreover, the application of the present
approximate model in the low density region at rather
elevated temperatures is bound to violate the separability
assumption. This approximation is valid essentially if the
total number of elementary excitations, i.e., gi, n(k), is
sufficiently small compared with the total number N of
bosons contained in the system studied. It is obvious that
this condition cannot be fulfilled at finite temperatures if
the density p and therefore the total number of particles
N =pV vanishes while the number of excitations in our
model approaches a positive value in this region of phase
space. It is due to this inconsistency that our numerical
results on the model free energy densities do not approach
zero as p~0 but remain negative. The result tells us that
the approximate energy density lies below the true one
thus demonstrating that the upper bound property of Eq.
(4) has been lost by assuming separability in this particu-
lar region of the p, T phase space.

To overcome these shortcomings of the present model
we have (i) to explore more complex choices for functions
4 and g in Eq. (5) which permit an adequate treatment of
normal liquid or gaseous phases, and (ii) to improve upon
the separability assumption (18) allowing for a systematic
approximation scheme for evaluating the function Di in
Eq. (26).

Before turning to this more advanced stage of develop-
ment we can do two things at present to help out and to
guide future improvements. To learn something about the
normal gas phase boundary we may employ the quantum
virial expansion from which we can deduce the pressure
and chemical potential of the low density phase at low
temperatures. Alternatively, we may use the observations
above about similarities of the results to an ideal Bose gas
arrested in the Bose condensed state to make a heuristic
modification of the present model which incorporates a
transition to the normal phase and, consequently, a more
realistic description of the two-phase region. This latter
approach is developed in the next section.

The low temperature part of the phase boundary be-
tween the superfluid liquid and the normal gas may be es-
timated by using the quantum virial expansion for the gas
phase equation of state. The procedure we adopt is to use
this expansion in the form

VI. NORMAL PHASE AT ELEVATED
TEMPERATURES

In this section we make use of the low density results
obtained in the variational calculation to make a heuristic
extension of the model to include the normal phase in the
part of the phase diagram which cannot be represented us-
ing the second-order virial expansion. In order to do this
we are abandoning any reference to the variational princi-
ple or any direct relationship to a microscopic description
of the system. Instead, we make use of the numerical data
obtained above to decompose our results on thermo-

T(K)
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FIG. 9. The calculated liquid-gas phase diagram for He.
The dashed line is the He isothermal spinodal line calculated
with the model density matrix (8) the approximations of Sec. II.
The solid line is the liquid-gas coexistence line calculated below
T=2.5 K using the quantum virial expansion at low densities
and the equation of state for our model density matrix at high
densities; for T~ 3 K the liquid-gas coexistence line (solid line)
is obtained using the heuristic extension described in Sec. VI.
The dotted line is the corresponding isothermal spinodal line.

where A, =(2nA /mk&T)' and the fugacity z =exp(Pp).
The first quantum virial coefficient b, =1, while we ob-
tain the second quantum virial coefficient bz for ~He with
the Lennard-Jones potential and the de Boer-Michels pa-
rameters from Ref. 37. Making use of the higher density
data from above for P and p at specific values of T as a
function of p, the above expressions truncated at the
second virial term are used to find the liquid and gas
values of p which define the phase boundary.

The results are shown as the solid lines in the lower half
of Fig. 9. Of course the inaccuracy of the calculated
ground-state binding energy of more than 2 K already
makes the vapor pressure calculation error substantial be-
cause this same error appears in p, . Ground-state im-
provements are readily available" but are beyond the
scope of the present calculation. Our long-range objective
includes a variational ansatz which has the proper low
density normal gas limit.
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dynamic quantities such as S/V, I'/V, or P into a kinetic
piece resembling the (vacuum) contributions of a Bose gas
of free particles with an effective mass m ' and a potential
part which vanishes in the low density limit but survives
at zero temperature. For example, we write the
Helmholtz free energy in the form

(52)

where the first term is defined by Eq. (48) or the equation
of state,

0.04

0.02

5.2 K

5.0 K

4.9K= Tc

4.8 K

4.7 K

4.6 K

4.5 K

I' =I'g+I'g

with the partial pressure
' 3/2

Pa= ksn(1)P '"
2

(53)

(54)

Extracting the piece Pii from our numerical results on
the optimal pressure we find that this portion is almost
independent of temperature (at least up to T=6 K) but is

strongly dependent on density. Components Eq/V and
Sii/V exhibit a similar behavior at temperatures which
are not too low and where phonon effects are no longer
important ( T & 3—4 K in this model). Decompositions
(52) and (53) suggest a plausible phenomenological gen-
eralization to extend the present model to deal with the
normal phase at low densities in a heuristic fashion. Fol-
lowing qualitatively the treatment and discussion of Ref.
38 we expect that the superfluid component with entropy
Sii/V, energy density I'Ii/V, and pressure P~ undergoes,
in reality, a transition to the normal phase at temperatures
above the effective ideal Bose gas line, T =T', where the
critical temperature should be roughly of the order given
by expression (49). Adopting this plausible patchwork to
extend the present microscopic model we then have to re-
place F~, Sii, and Ps by the familiar results describing
the normal behavior of independent bosons with an effec-
tive mass m' if the temperature T & T', T' defined by
Eq. (49). This extension guarantees that the thermo-
dynamic quantities considered, i.e., entropy density, free
energy density, and pressure, behave normally and vanish
as p~O. As an example, we have plotted in Fig. 6 the en-

tropy at T=4.3 K as a function of density if the extended
procedure described above is applied. The P,p phase dia-
gram of this extended model for He matter is presented
in Fig. 10. In contrast to the optimal results on the equa-
tion of state (Fig. 8) which are based on the microscopic
model (5)—(9) and Eq. (2) discussed above, the
phenomenologically extended model generates isotherms
which show the familiar form known from classical van
der %aals theory. ' Applying the standard Maxwell
construction to these results yields a coexistence curve
which is represented in Fig. 10 by the dashed curve. Its
maximum gives the gas-liquid critical data for the extend-
ed model. Table II collects these results for He and the
experimental data in reduced units. Comparing these
data we find that the crude phenomenological extension
of the model reproduces the experimental data fairly well.

The location of the coexistence line for the extended
model in the T,p phase diagram is depicted in the upper

0
0 8 l2

io'p « ')
l6 20

FIG. 10. Pressure isotherms for the extended model of Sec.
VI. The dashed-dotted curve is the corresponding liquid-gas
coexistence curve.

half of Fig. 9. The corresponding instability curve in
which the isothermal compressibility becomes infinite in
this model is indicated by a dotted line. This curve
should be compared with the spinodal line (dashed curve)
which is based on the stability condition (43) representing
the points in the T,p space where the velocity c of the ele-
mentary excitations vanishes. If the models considered
were exact both spinodal curves would coincide. Howev-
er, they differ in general if an approximate density matrix
is employed. This feature is well known from variational
studies of the ground state of liquid He.

VII. DISCUSSION

We have presented here a first-principles derivation of
the liquid-gas portion of the phase diagram of liquid He,
as well as similar information for two other boson iso-
topes of helium. The most important part of this work is
the demonstration that one can begin from a plausible
model of the coordinate space representation of the densi-
ty matrix and, using the variational principle for the
Helmholtz free energy, arrive at a semiquantitative ac-
count of some of the properties of the fluid. To our

'He 0.48
4He 0.51
(experiment)

0.15
0.17

pk

0.024
0.027

p, T, /P,

3.0
3.21

TABLE II. Results for He and the experimental data in re-

duced units.
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knowledge, this is the only first-principles theoretical
determination of the critical point of He.

The theoretical treatment presented here is only a be-
ginning. Approximations are used which should be im-
proved. The model density matrix is also less than ade-
quate for a quantitative treatment of the liquid-gas prop-
erties, and for even a qualitative treatment of the lambda
transition.

It may be worthwhile mentioning some of the improve-
ments which can be applied.

The two-body potential energy used in these calcula-
tions was the Lennard-Jones 6-12 potential. While this
has some formal advantages, it is now generally believed
that the (Hartree-Fock-dispersion) HFDHE2 two-body
potential of Aziz et al. ' is superior. Future calculations
which improve on the above results should incorporate
that potential, although the present level of approximation
does not merit that care.

The hypernetted-chain (HNC) approximation is a cal-
culational convenience which, however, leads to a
ground-state binding energy error of approximately 1 K.
Since this error also appears in the chemical potential, it
seriously affects the vapor-pressure calculation in the viri-
al expansion. This situation can be improved by including
elementary diagrams in the HNC equation, or by replac-
ing the HNC approach by a Monte Carlo simulation. '

It was nix:essary to introduce the separability approxi-
mation in order to calculate the entropy as a function of
u(r) and y(r). Besides making the entropy calculation
feasible, this approximation produces a physically plausi-
ble and intuitively appealing set of equations which makes
the interpretation of the results straightforward. Howev-
er, this approximation is the most difficult to justify (ex-
cept at long wavelengths) and improve. This should be a
fertile ground for further improvements.

The advantage of the particular structure chosen for the
variational density matrix in the present work is not only
its siinplicity. It also contains the correct low-
temperature hmit of the incoherence factor Q. This
structure of Q, along with the temperature dependence of
u (r) and y(r), was derived originally by Reatto and Ches-
ter'9 from considerations of the cluster expansion of the
exact density inatrix. They also showed how the long-
range structure of u (r) and y(r) is determined by the pho-
non dispersion relation. It is reassuring that our varia-
tional calculations clearly reproduce this analytic struc-
ture, i.e., the solutions to the variational equations have
the proper long-range structure. It is also reassuring to
note that the approximations used —HNC and separa-
bility —do not damage this result; this feature was already
known, however, in the ground-state calculations. '

The particular structure of our trial density matrix is a
major limitation in itself. Some quantitative improvement
may be obtained by adopting procedures already well es-
tablished in the ground-state problem. In particular, the
inclusion of three-body factors in 4 will give the same im-
provement at low temperatures as it did in the ground-
state calculation. " However, the temperature dependence
should be more dramatically affected by introducing the
same physical processes into the elementary excitation
spectrum, "which in this density matrix approach is ac-

complished by including appropriate factors in Q(R,R').
In the sense that y(r) is really a correlation between a
primed and an unprimed "particle, " it thus more general-
ly should be written as

y(r —r') =y i. i(r, r') . (55)

The three-body factors in 4 should have their analogues
in Q in the form of y, .2(r„r'&,rz) terms in the exponential;
in Ref. 5 it is shown how this arises naturally out of the
backfiow terms in the elementary excitations. Similarly,
elementary excitation interactions would require y2. 2

terms. In summary, the general structure of Q has the
form

Q (R,R') =exp
m, pg =] g(m) g (n)

(R (m}.R ~(n})

(56)

where R'"' refers to the coordinate subset r;, . . . , r;, and

the second summation sign represents the sum over all
distinct choices of these subsets from the primed and
from the unprimed sets. A similar expression for 4 is just
the familiar Feenberg function studied in the ground-state
problem. On present computers this approach should be
practical through terms satisfying n +m =4.

An alternative method which contains the same general
information would be to generalize Pandharipande's
momentum-dependent Jastrow function to the density ma-
trix.~ Including the momentum operator in 4 would
have the effect of generating higher index factors in Q,
similar to the ones discussed above and in Ref. 5.

While these improvements of the density matrix will
lead to quantitative improvement in the liquid-gas region,
they will almost certainly not correct the chief deficiency
of the present theory, namely, the absence of evidence for
the off-diagonal long-range-order transition corresponding
to the lambda transition. Specifically, we conjecture that,
in three dimensions, a finite truncation of n +m will al-
ways produce a density matrix which has a finite Bose-
Einstein condensate fraction. The proof is the same as for
the corresponding theorem for Jastrow functions. 5 It de-
pends in an essential way on the large r behavior of u (r)
and y(r), and in fact could be reinterpreted as a proof that
the disappearance of the condensate would correspond to
the onset of an asymptotic divergence in these functions.
A particular example of this was given by Reatto and
Chester in Ref. 19, where they showed that the thermally
populated phonons deplete the condensate at any nonzero
temperature in two dimensions, and that this is accom-
plished analytically by the density matrix of the form of
Eqs. (2), (5), and (6) by virtue of the fact that u(r) and
y(r) diverge as inr at large r. Our variational method
produces the same results in two dimensions.

While one cannot a priori rule out a similar occurrence
at some finite teinperature in three dimensions for some
y„.~ and/or u„,there is no evidence in the analytic struc-
ture of the equations we have derived that this will take
place, nor is it plausible that this would be the analytic
manifestation of the physical situation.

Additional insight into the general structure may be ob-
tained by taking the high-temperature limit of the exact
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density matrix. Following the arguments of Kirkwood, 7

one can easily show that

@(R)
—Pv(R)/2 (57)

where V(R) is the potential energy of configuration R,
and thus has the Jastrow structure with u (r, T)
= —PU(r)/2. On the other hand, the incoherence factor
does not have the structure which we have used in the
present work, but has instead the structure of a per-
manent:

nonzero limit at large r, while the high-temperature limit
should be Eq. (59). The lambda transition would then
correspond to the transition between these behaviors.
Indeed one can see from this discussion that I (r) should
behave very much like the reduced one-body density ma-
trix. Carrying out a program to evaluate the free energy
as a functional of I (r) is well beyond the scope of the
work reported here, since it entails developing an ap-
propriate mathematical scheme to include the effects of
the permanent.

lim Q(R,R') =PermI'(rt r~—),
T +00

(58)
ACKNO%LEDGMENTS

where, in this limit,

I (r) e sriliP— (59)

where lambda is the thermal de Broglie wavelength. It is
the fact that I'(r) is a finite ranged function which des-
troys the condensate fraction.

Clearly the two-body product form we have used in this
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although this permanent is positive when the above form
for I is employed, there appears to be no finite truncation
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These observations suggest that an appropriate generali-
zation of the trial density matrix which may represent the
lambda transition would be to include the permanent fac-
tor in Q, with I (r) being a variational function. At low
temperatures one would expect I'(R) to approach a
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