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Phonon decay in two-dimensional liquid 4He
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The threshold for the phonon decay in two-dimensional liquid He is calculated. The decay
threshold q* is slightly larger than the critical wave number q, and is given by q =1.15q, . The
decay rate has a q dependence. The decay rate and the threshold q* decrease as the pressure in-

creases.

I. INTRODUCTION,

e(q)=coq(1+yq —5q +. . . ) (2D),

e(q)=coq(1+5iq 52q'+5iq +.—. . ) (3D) . (1.2)

Note that the 3D disperson relation has a cubic term,
while the 2D case does not. The sound velocity co and
the coefficients y, 5, etc., have been evaluated explicitly as
functions of the potential parameters.

Since Landau's well-known work, there has been con-
tinuous interest in the elementary excitations of liquid He
in both bulk and film forms at low momenta and tempera-
tures. ' In the bulk case, the interest is in whether the ex-
citation spectrum is slightly concave up or convex down
in deviating from linearity at low momenta (0—0.6 A ).
This question is important because, if the spectrum is con-
cave up, three-phonon processes (3PP) represent the
lowest, while if it is convex down, four-phonon processes
are the lowest.

It has been revealed experimentally that there exists a
cutoff momentum q, and energy E, above which no pho-
non decay takes place. However, the cutoff momentum

q, derived by Jackie and Kehr is slightly smaller than
that of Dynes and Narayanamurti~ for the same excitation
spectrum.

It is the purpose of the present article to evaluate the
decay threshold, decay rate, and dependence of the decay
rate on pressure for two-dimensional (2D) liquid He. For
this purpose, we shall use the dispersion relation which we
derived earlier and extend the treatments for bulk
helium.

Our basic approach differs from those based on varia-
tional principles in the sense that the internal energy of
liquid helium is evaluated at low but finite temperatures,
in consideration of the collective couplings between heli-
um particles. In the ring and exchange-ring approxima-
tion, the energy can be expressed in terms of quasiparti-
cles in the Landau fashion. For small momenta, the
dispersion relations for two and three dimensions have
been evaluated exphcitly, adopting a soft potential as fol-
lows:

In Sec. II, we describe the phonon-phonon interactions
through second quantization in 2D liquid He. We evalu-
ate the decay rate for 3PP by using Eq. (1.1) in Sec. III.
Finally, the results and discussions are presented in Sec.
IV.

p(r, t) =po+p'(r, t),

u(r, t)= V'ttt(r, t),

(2.1)

(2.2)

where po and p'(r, t) are the constant and variable parts,
respectively, of the density operator, and u(r, t) is the velo-
city operator. We also define the field operators:

' 1/2

i(q r—cot), f —I'(q r—cot) i
(Qqe +aqettt(r, t)= g 2Spq

(2.3)
' i/2

par, t) =p, +t y„ 2Sco
i(q r —cot) i & —I'(q r —cot) i

~aqe +Q qe 7

(2.4)

where S is the area of the system, co is the sound velocity
in the liquid, p is the mass density of liquid and q is the
wave vector. We can confirm that p'(r, t) and P(r, t) are
canonically conjugate generalized coordinate and momen-
tum operators, respectively. Annihilation operator aq and
creation operator aq satisfy the Bose commutation rela-
tions:

[aq, aq ]=[aq,aq ]=0.
(2.5)

(2.6)

Using the fact that Bessel function Jo(r) is even, we can
easily show the following commutation relations between

II. PHONON-PHONON INTERACTIONS
IN THE 2D QUANTUM LIQUID

In this section, we consider the phonon-phonon interac-
tion in the 2D quantum liquid. We introduce the density
operator p(r, t) and the scalar velocity operator P(r, t)
given as

33 7550 Oc1986 The American Physical Society



33 PHONON DECAY IN TWO-DIMENSIONAL LIQUID ~He 7S51

P(r, t) andP '(r, t}:

[P(r, t),p '(r, t)]= —iA'5(r, r'),

[{((r,t),P(r', t)]= [P(r,t),P(r ', t)]=0 .

(2.7)

component is at rest, and po is the chemical potential at
zero temperature. Using Eqs. (2.9)—(2.11) and the ther-
modynamic relation of Bp/Op=co/p, we can easily derive
the following:

In a continuum model for the superfluid liquid He,
Hamiltonian H, internal energy density E(p), and chemi-
cal potential p are given by

H= —'v pv+E p I, (2.9)

E(p)= J ns(q)d q+E(po), (2.10)

P=Po+ n a q,
Be(q}

Bq
(2.1 1)

where n is the number density of excitations, e(q) is the
energy in the reference frame in which the superfiuid

H =Ho+H3+H4+

2

H, = —pP e+ — (P )
1 1o ~, 2

2 2 p
I

—0 p'U+ — (p')' d r,1, 1 8 co
2 3! c}p p

t

1 8 co2H4= J —
2 (p') d'r .

4 gp2

(2.12)

(2.13)

(2.14)

(2.15)

In terms of aq and a q, Ho, H3, and H& can be expressed by

Ho ——+co@(aqaq+ T } ~

q

(2.16)

' 3/2

H3 ———2n. i
2S

q q] q2 PW2

' 1/2 2
' 1/2

po coqq&q2 c) co
(q q2)+

Po c}p P

'2

X[aqaq aq 5(q+q&+qz)e

—l (N —N~ —N2)f+ qaq q @q ql 'q2}e + ], (2.17)

2
2 2

(2K) POR ij c0
X [aqaq aq aq @q+ql+q2+q3)

—I (N —N
~

—N2+N3)fXe + (2.18)

where the other six terms to be included in Eq. (2.17) are
given by combinations of aq, aq, aq and aq, aq, a„.q~ q&~ q2 q'
Fourteen additional terms with the combinations of
aq, aq, aq, ,aq, and aq, aq, aq, appear in Eq. (2.18), al-

though not listed. The nonzero matrix elements of aq and

aq are

&f IH'li&=&f I» I
t &+&I IH4 I

t &

J IH, I+
J J I

(2.21)

(tlq —1 laq

Iraq)=

—l(Bq} e

( nq I
aqt

I nq 1)=i( —n)'q~ e

(2.19)

(2.20}

The matrix element (nq I Ho
I nq) is g (nq+ —, )fico,

where co=eoq, so that Ho is the Hamiltonian of a simple
harmonic oscillator. H3 and H4 are then the anharmonic
perturbative Hamiltonians. Transitions between different
states occur due to 83, 84, and other higher-order per-
turbed Hamiltonians. The transition matrix element from
state li ) to state

I f) in the second-order perturbation is
given by

III. PHONON DECAY IN THE 2D LIQUID ~He

A finite lifetime of an elementary excitation in a quan-
tum liquid originates from two processes. One is the col-
lision between elementary excitations, and the other is the
spontaneous decay of a phonon into two, three, or more
phonons. Since the collision probability tends to zero at
very low temperatures, the collision process will become
less important and negligible. At very low temperatures
below 0.6 K, the main excitations in liquid He are pho-
nons. Therefore, we may consider the decay of the pho-
non into two phonons, only, i.e., the 3PP. When a single
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phonon with the energy s(q) is excited in liquid He at
zero temperature, a spontaneous 3PP may take place
under the following conditions:

q=qi+q2 s(q) e(ql)+e(q2)

q&+qz&q & Iqi —q2I ~

(3.1)

Let C, C&, and C2 be the velocities of phonons with wave
vectors q, qi, and q2, respectively. If C~ and Ci are both
larger than C, the phonon with q is stable against decay
into two phonons, while if C, and Cz are both smaller
than C, the phonon will decay into two phonons. ' The
decay angle 8 between q and q& as one of the decay prod-
ucts is given by

8~ =(9y /105)' (3.3)

where q, =v'3y/55 is called the critical wave vector.
Jackie and Kehr have pointed out that beyond q„ the
3PP are not allowed. If we solve Eq. (3.2) for q, we can
obtain the maximum value of q = q' and the range of q,
as follows:

8 =6y(q —qi) —105(q —qt) (q +qf —qqi) . (3.2)

If 5 is neglected, the maximum decay angle becomes
8 =~6yq for a given q when q& approaches zero. But
for large q, the third term in Eq. (1.1) contributes signifi-
cantly, and then for a given q at q &

——0, the maximum de-
cay angle 8~ can be obtained at q =v'3y/105=q, /~2 as

«qi &q, q&q, —,'(q —I3[(q')' —q']l'") &qi & ~(q+I3[(q')' —q'])'"» q. &q &q'. (3.4)

Here, the maximum value q' (=v'4y/55) is called the
decay threshold wave vector. For q & q*, the 3PP do not
occur and at q', a phonon decays into two identical col-
linear phonons with q*/2 with the energy conservation
e(q' ) =2s(q '/2).

In the 3PP, the decay angle for the low-momentum
phonon is small. Therefore, the transition matrix element

of 0& can be written approximately as

I &f I H~
I

i ) I
'5(s~ —ei )S'

(2ir)

Substituting Eq. (3.5) and the relations

5 (q —qi —qz) =
z 5(q —qi —q2),

S
(2ir)'

(3.6)

(3.7)

where u =(po/co)(Bco/Bpo) is the Griineisen constant.
The differential decay rate per unit time is given by

' 3/2

&f I
Hi

I
i & =g~'(u +1)' qqiqz2S pp

' 1/2

Ip —ql—=4 —q) 1+ sq'
2(p —q)'

(3.8)

X5(q —q~ —qi), (3.5)
into Eq. (3.6) and performing the qz and 8 integrals in Eq.
(3.6), we get

%cow= (u+1) I,
8mpp

1+ 3/+5 qq) q —qq) +q )
—5 q —q)

[37' —55(q' —qq i+q'»1'"[1+3) (q —q i
)' —55(q —q i

)']'"
1 55 3 55

6yfic
dqiqi(q —qi) 1+ r(q —q—I)—+ +3j qql

6y 2 6y

(3.9)

+ -', 5(q —
qi )'——,

' 5q'q i
——", 5qqi(q —q i

)' (3.10)

If we integrate I in the two regions given by Eqs. (3) and (4), we obtain the total decay rate:

(u+1)A' i 21 2 5 2 53w= ~ q 1+ 1 + q — 5q, 0&q(q~ (3.1 1)

u 1 fi
w = I3[(q')' —q']I' ' [2q' —(q')'] + —[16q +gq'(q*)' —9(q*) ]32ir 6ypo 24 y

+—y[44q —38q (q') +9(q') ]

——„5[47q +, q (q*) —,q (q') + „(q') ] q, (q &q' . (3.12)
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At very low momentum (0.6 A ') we can express the to-

tal decay rate approximately as

ic= q, 0(q &q,
(u+1) iii (3.13)

48m 6ypo

32m 6ypo

(3.14)

We notice that Eqs. (3.11) and (3.12) reduce to the identi-
cal form at q =q, .

To evaluate the decay threshold q', we can also make
use of the inethod developed by Sluckin and Bowley.
The lifetime I'z, obtained froin the imaginary part of the
self-energy by using renormalized bubble diagrams for the

I

(u +1)
64M 5c m piii3

where u is the Griineisen constant, p the density, c the
sound velocity, and S the surface area. Substituting Eq.
(1.1) and the relation

I p —q I
—= (p —q) 1+ (1—cose)

(p —q)'
(3.16)

and performing the angular integral and finally changing
the variables p and q into x =p/q, and y =q„we obtain,
for the lifetime I z,

(3.17)

forward scattering, is given by

(u+1)'c pq I p —q I(I,—,+I,)

4Spe', (Z, —Z, ,—E,)'+(r, ,+r, )' '

(3.15)

2 1/2

F(x)= dyy(x —y)(1 —x +xy —y ) 1+
x

2 2 —1/2 F(x)+F(x —y)
0 Axy(x —y)(1 —x +xy —y )

2 —2 '1/2

+ &+
F(x)+F(x —y)

Axy(x —y)(1 —x +xy —y2)
(3.18)

where

192irph (3y )'A=
(u +1)'

IV. RESULTS AND DISCUSSIONS

In the preceding sections, the excitation spectrum given
by Eq. (1.1) was used for the calculation of the decay
threshold, the decay angle, and the decay rate. The
derivation of Eq. (1.1) can be found in Ref. 5. As for the
parameters y and 5 in the equation, those which we have

obtained recently by analyzing third sound in thin helium
films can be used. " We shall use these parameters deter-
mined for several atomic layers to explain the dependence
of the decay rate on the pressure and for comparing our
results with those of Pitayevski and Levinson. '

In Fig. 1 we have shown two decay regions for 3PP.
Region A corresponds to the decay area pointed out by
Jackie and Kehr and region B to the extended area of
Dynes and Narayanamurti. Obviously the decay thresh-
old momentum q' is slightly larger than the critical wave
vector q, . One of the produced phonons may have the
same vector as that of the original phonon, and then the
other phonon is at rest. In the case of q &q, the decay
products are not at rest. The maximum wave vector that

FIG. 1. Decay region determined from Eq. 4,
'3.4). Region A

corresponds to the decay area pointed out by Jackie and Kehr,
and region 8 to the extended area of Dynes and Narayanamurti.

FIG. 2. The domain representing the decay process defined

by condition (3.1}. CI, C2, C3, and C4 are in the range of vari-
ous q, i.e., q & q„q, & q &q, q =q*, and q ~ q, respectively.
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FIG. 3. Decay rate of a thin helium film at the density of
1.77 atomic layers. q„q, and q are the critical, maximum,

and threshold wave vectors, respectively.

FIG. 4. Pressure dependence of the decay rate. The numeri-
cal parameters y and 5 are listed in Table I.

the decay products can have is Aq, .
In Fig. 2, we have illustrated the domain for the 3PP.

The second condition in Eq. (3.1) gives various curves C,
in the (q~, q2) plane, which are symmetric with respect to
the line q~ ——qz, and the third condition determines the
domain D& +D2. To obtain e~ and q' from Eq. (3.2), we
have assumed that the decay angle is small. In small-
angle decay processes for the small-momentum phonons,
the decay products cannot have momentum larger than
that of the original phonon. Therefore, the domain of the
small-angle decay is limited to the region D&. In this
sense, our domain is different from that of Pitayevski and
I.evinson.

In Fig. 3, the decay rate [Eqs. (3.11) and (3.12)] is illus-
trated as a function of the wave vector at the density of

1.77 atomic layers. In computer plotting, the parameter u

in Eqs. (3.11) and (3.12) for two dimensions is assumed to
be 1.8, which is the value used by previous workers"'
for the bulk case. The decay rate increases as the wave
vector increases. It passes the maximum value and then
decreases rapidly to zero. We find that the maximum de-

cay does not occur at q=q„but at q=q =1.06q, .
Sluckin and Bowley pointed out that the maximum in the
ultrasonic attenuation occurs at 1.1q, . However, we find
that the decay rate becomes zero at q' =1.15q„which is
the true decay threshold. When we evaluate the lifetime
I z of the phonon obtained from the imaginary part of the
self-energy by using renormalized bubble diagrams for the
forward scattering, we find that I'~ has a maximum value
at q =1.15q, . These two different methods give the same

TABLE I. Dependence of y, 5, q„q, and 8 on pressure (SVP denotes saturated vapor pressure
and APP denotes Aldrich, Pethick, and Pines, Ref. 1).

Density'
Pressure

(bars)

SVP
4.8

10
14

(A')

0.46
0.46
0.40
0.40

5
(A4)

1.51
4.79

16.3
34.9

(A ')

0.428
0.240
0.121
0.083

1.060

8 {deg)

20.35
11.42
5.39
3.68

Reference

10

0.0273
0.0279
0.0399
0.0419
1.77 atomic

layers

0.0279
0.0279
0.0279
0.0279
0.0279
0.0279

5

10
15

10

SVP
SVP
SVP
SVP

SVP

0
2

6
8

10

0.368
0.270
0.240

0.136

0.404
0.496
0.316
0.341

0.304

0.12
0.17
0.19
0.29
0.49
0.58

2.70
4.31

12.06

1.87

1.720
1.279
1.056
1.173

5.302

0.36
0.69
0.97
1.89
4.66
7.86

0.286
0.194
0.109

0.209

0.375
0.436
0.424
0.418

0.185

0.447
0.384
0.343
0.303
0.251
0.210

1.055
1.060
1.055
1.056

1.062

1.060
1.059
1.059
1.058
1.059
1.060

12.20
7.10
3.76

5.41

16.74
19.51
16.71
17.11

7.18

10.87
11.12
10.49
11.47
12.34
11.25

APP
APP

14

Present work

Present work

'All values in A ~ unless otherwise indicated.
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q . Since Eq. (1.1) is identical to the 3D spectrum, if we

change the sign of y in Eq. (1.3), the generalization of the
three-phonon processes into n-phonon processes will give
the same results. Therefore, the decay threshold q„* for
the decay into n collinear and identical phonons can be
given by

q„'=(1+n )
' q„'=v'5/3q, .

F(X)
04-

0.3-

0.2
= 0.86"

The pressure dependence of the decay rate is shown in
Fig. 4. To investigate the pressure dependence we have
taken 0.0279 A for the density and the 3D numerical
parameters y and 5 given by Dynes and Narayanamurti,
because there are no experimental data for 2D liquid He.
However, we have found that the 2D numerical parame-
ters do not deviate seriously from those of 3D. We have
also observed that the decay rate and threshold are re-
duced gradually as presure increases. This is due to the
fact that 5 increases more rapidly than y as the pressure
increases. However, Jackie and Kehr have shown that y
decreases while 5 increases with increasing pressure. Con-
cerning the angular spreading 8, Sherlock et al. ' used
phonon beams of energy s(q)/ktt &12 K in bulk liquid
He at several pressures up to 24 bars and found that 8

decreases roughly 1inearly as pressure increases. In the
present analysis, we have found that 8 is constant below
10 bars. Our theoretical values of y, 5, q„q /q„and 8
are listed in Table I. With these values of y and 5, which
were obtained from third-sound analyses, we observe that

Q. l

0 0.25 0.5 0.75 1 1.25 1.5

FIG. 5. F(x) versus x for A =0.865.

q, decreases slowly as the density increases, while q /q,
and 8~ stay roughly constant. As in Eq. (3.17), the life-
time I ~ is proportional to F(p/q, ) which is illustrated in
Fig. 5.
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