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The band structures of the zinc chalcogenides ZnO, ZnS, ZnSe, and Zn Te having the sphalerite

crystal structure are calculated. The first-principles linear muffin-tin-orbital —atomic sphere ap-

proximation method is employed, in which all solid-state and scalar relativistic effects are taken into

account, including the self-consistency of the crystal potential and the charge density. The corre-

sponding electronic configurations are discussed, and the electron contact densities at the zinc nu-

cleus are obtained and compared to experimental isomer-shift data with good agreement. The es-

timated static charge transfers of the zinc chalcogenides are demonstrated to correlate neatly with

the isomer shift. For the first time an accurate value of the calibration constant for the "Zn isomer
transition is derived: AR /R =(7.0+1.0) &(10

I. INTRODUCTION

The Mossbauer isomer shift provides a unique experi-
mental technique for studying the electronic structure of
solids on an atomic scale. With this technique the solid-

state physicist may investigate the local chemical bond in

pure crystalline materials as well as more complicated sys-

tems like impurities in solids and amorphous and implant-
ed materials. For basic research on elemental semicon-
ductors and semiconducting compounds the " Sn
Mossbauer isotope has proven valuable as a probe to mon-

itor the local electronic configuration. Thus, when substi-

tutionally implanted in the group-IV semiconductors, 2

and III-V compounds, the measured isomer shift pro-
vides information on the electronic and vibronic proper-
ties of the host crystal. Similar investigations have

been performed with the ' 5Te and '2 I isotopes, 9 and

more recently with the ' 'Sb isotope, ' but many other
Mossbauer isotopes are likely to become useful in this
respect.

The Zn isotope is one such candidate holding the
promise of becoming a prominent spectroscopic tool in
the study of semiconductor physics. This is primarily due
to the extreme narrow width of the isomeric transition of

Zn, with a natural linewidth I 0-50 peV, so that a
probe of very high resolution is at hand. Furthermore,
Zn, as a divalent atom, in a chemical sense is complemen-
tary to the more conventional Mossbauer isotopes of Sn,
Sb, Te, and I. The experimental conditions for perform-
ing Zn Mossbauer spectroscopy are, however, more com-
plicated than for the other isotopes mentioned. This is
due to the low resonance effect and to the requirement of
a very sensitive velocity spectrometer to resolve the reso-
nance line. Also, experiments must be performed at
liquid-He temperature to minimize the effects of the
second-order Doppler shift. For a general review of the
history and achievements of Zn Mossbauer spectros-
copy, see Ref. 11. The proper use of the Zn isotope as a
spectroscopic tool necessitates, however, a reliable calibra-
tion of the transition, which is the aim of the present
work.

The isomer shift is related to the change in transition
energy between two nuclear levels, which is caused by the
electrostatic interaction of the nuclear charge distributions
with the surrounding electron gas. Specifically, '

~is =a(p, (0)—p, (0)),
where his is the resonant isomer shift velocity, p, (0) and

p, (0) are the electron densities at the nuclei (the contact
densities) in the absorber and source materials, respective-
ly, and a is the so-called calibration constant'

a=ph(r') .

Here P is a numerical constant, ' (r ) is the mean-square
radius of the nuclear charge distribution, and b (r ) is the
difference of this quantity between the two states. The
nuclear charge distribution is usually assumed to be spher-
ical and homogeneous, in which case b, (r ) can be writ-
ten to the first order in the relative difference in radius,
hR/R, as follows:

~( 2) 6 2bR
8

This is, of course, a much too crude model for the compli-
cated nuclear states, and Eq. (3) should not be taken as
more than a parametrization of the more correct expres-
sion (2) in terms of the physically appealing quantity
hR /R.

The calibration constant a, Eq. (2), is important in con-
nection with the extraction of useful information from
isomer-shift measurements, as it enables the conversion to
density units. Basically, it ought to be determinable from
purely nuclear-physics models, but these have not yet
reached a level of accuracy that suffices for the present
purpose, though attempts have been made. ' The most
common calibration procedure of isomer resonances there-
fore relies on calculated electron contact densities, which
are compared to experimental isomer shifts. Generally,
the use of atomic calculation has been widespread, though
recently molecular and cluster calculations have also been
reported for some isotopes. To use atomic calculations
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for the calibration of isomer shifts one needs as extra in-

put the assumption or estimate of some atomic configura-
tion, which can be taken as equivalent to the actual con-
figuration of the solid. The crudeness of this and similar
approximations has been well recognized, ' but until re-
cently very little has been attempted to improve the cali-
brations. In this work we take the point of view that the
calibration of Mossbauer isomer shifts, being by definition
a solid-state effect, should be performed using a rigorous
solid-state scheme for calculating the electronic structure.

Several attempts have already been tried to account for
the influence of the solid state on the electronic structure
of the Mossbauer atom. Thus, the Wigner-Seitz model'
confines the atom to a finite sphere, which represents the
amount of space allotted to the atom in the solid. This
widely used approximation introduces as an extra parame-
ter the radius of the sphere, and the proper value of this is
not always easy to assess. ' Perhaps, the best attempts to
calibrate Mossbauer isotopes along these lines are those
calculations which derive the equivalent atomic
configuration —in terms of the effective (fractional) occu-
pancy numbers Z, and Zz—from parametrized tight-
binding calculations. ' ' Subsequently, the electron can-
tact density of the (spatially confined) atom in the config-

z. z
uration ns 'np ~ is calculated from a Dirac-Fock-Slater
procedure. In this approach no presumptions on the elec-
tronic configuration of the Mossbauer atom is needed, but
rather, this information is derived from a solid-state
scheme. However, a number of adjustable parameters are
still present in such calculations, and they should only be
regarded as a first step towards the proper incorporation
of solid-state effects into the calibration procedure.

The chemical shifts of the zinc chalcogenides ZnO,
ZnS, ZnSe, and Zn Te have been measured by two
groups, ' ' and the calibration of the Zn isotope of the
present work is performed by calculating the electron con-
tact densities of these materials, which are then compared
to experiments. The crystal structure of ZnS, ZnSe, and
ZnTe is sphalerite (zinc blende), whereas ZnO is found in
a (slightly distorted) wurtzite structure. For simplicity we
have assumed that ZnO also possesses a sphalerite struc-
ture, at the same density as natural ZnO. This approxi-
mation should not be too serious for the purpose of calcu-
lating the electron contact density, as the sphalerite and
wurtzite structures are quite similar, differing only in the
number of third-nearest neighbors. In all cases the atomic
cores were treated as frozen, thus only contributing a con-
stant to the electron contact density. This approximation
turns out to be reasonable for the zinc chalcogenides, as
will be demonstrated in Sec. IV.

The linear muffin-tin-orbital (LMTO) method ' ' is
adopted for this project, as this method has proven fast
and reliable for determining the electronic structure of a
variety of solid-state systems such as metals, semiconduc-
tors, and surfaces. In contrast to the tight-binding
method mentioned above, this scheme allows the crystal
potential and charge distribution to be iterated to self-
consistency. The LMTO method usually employs the
atomic sphere approximation (ASA), according to which
the crystal unit cell is approximated by spheres around the
atomic sites. ASA is not a necessity in the LMTO for-

malism but represents a major simplification of the calcu-
lations with only minor drawbacks. In the ASA the crys-
tal wave function is therefore naturally decomposed ac-
cording to its angular momentum character, and the num-
bers of electrons having the s, p, and d character within
each sphere are very convenient parameters describing the
electronic structure of the solid under study. These occu-
pancy numbers are the reminiscence of the atomic effec-
tive occupancies, Z, and Z& mentioned above, but in the
LMTO method they are always intimately connected to a
sphere of given radius.

In Sec. II we present and discuss the basic features of
the LMTO-ASA method. The calculations of the zinc
chalcogenides are presented in Sec. III, where the energy-
band structures are exposed and compared to experiments,
and the trends in the electronic structure are discussed in
terms of the occupancy numbers. In Sec. IV the calibra-
tion of the Zn resonance is performed, and the frozen-
core approximation is investigated. Finally, Sec. V sum-
marizes and concludes the achievements of the present
work.

II. THE LMTO METHOD

Although the LMTO method is by now well established
in solid-state physics, so far little attention has been paid
to it by Mossbauer spectroscopists; therefore, a very con-
cise review of the method will be reproduced here to facil-
itate the discussion of the results obtained in the following
section. The method is thoroughly discussed in Refs. 20
and 21.

The Hamiltonian for a system of interacting electrons
in a solid can be greatly simplified by the theorems of
density-functional theory, according to which all
ground-state properties can be derived from the solutions
of the one-particle Hamiltonian:

H(r) = —()' + V,„,(r)+ VH(r)+ V„,(r) .

Here the potential is decomposed into the external, V,„„
the Hartree, VH, and the exchange-correlation, V„„parts;
throughout this work we use the local-density approxima-
tion with the parametrization of V„, as provided by
Vosko, %ilk, and Nusair.

In the LMTO method the wave functions for a given k
point in the Brillouin zone are sought as a linear combina-
tion of Bloch sums of muffin-tin orbitals,

P(r) = g aL, g e'"'"XL (r —R) .
L R

Here R denotes the lattice points and I. is a combined in-
dex, I. =(q, l, m), where q labels the atoms within the
basis and 1,m are the usual angular momentum quantum
numbers.

To determine the muffin-tin orbitals XL, true crystal-
line potential is replaced by a potential which is spherical-
ly symmetric inside touching spheres centered on the
atomic positions and constant in the remaining parts of
space. Inside the muffin-tin sphere the basic function is
expanded in spherical harmonics times a radial function

PL and its energy derivative &Pi.
.

gi(r, E)=pi(r, E„()+(E E„i)gi(r,E„i) . —
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The radial function Pi is obtained by solving the Dirac
equation in the limit of zero spin-orbit coupling at an ap-

propriately chosen energy E„i. ' Expansion (6} has

proved accurate over ranges of order 1 Ry corresponding
to typical valence bandwidths in solids. The radial func-
tion has to be matched to the solutions outside the atomic
spheres so that the resulting muffin-tin orbital XL is
everywhere continuous and differentiable.

The muffin-tin approximation appears to be rather poor
for open structures like the diamond and sphalerite struc-
tures, as ——', of the crystal volume is exterior to the
muffin-tin spheres in the region where the potential is as-
signed a constant value. It was therefore suggested by
Keller to introduce additional "empty" spheres on high
symmetry interstitial sites and allow for a radial degree of
freedom of the potential within these. Accordingly, in the
sphalerite structure R's form the fcc lattice and the basis
consists of four points, which we take to be the cation site
at qi ——(0,0,0), the anion site at qi ———,'a(1, 1, 1), and the
two sites of the centers of the empty spheres, Ei at

q3 —ya(1, 1, 1) and E2 at q&
———,'a(1, 1,1).

The energy eigenvalues E" and the coefficients aL are
obtained by numerical diagonalization of the secular equa-
tion

g (HL I EOL, L )a—L ——0 .k k k k

L
(7)

Both the matrix elements of the Hamiltonian HL L and
the overlap matrix OL I are rather lengthy and can be
found in Ref. 21. The knowledge of aL makes it possible
to calculate the wave functions (5} and, consequently, the
crystal charge distribution. This may be used to construct
a new potential in the Hamiltonian (4), or if self-
consistency has been achieved, the contact density may be
determined. It is important to stress, however, that the
density-functional theory from the onset is incapable of
revealing anything about excited states, and also that the
mere interpretation of the eigenvalues E" of (7) as one-

particle energies is not formally justified. This is often
disregarded, and indeed, in Sec. III we will compare our
calculated eigenvalues for the zinc chalcogenides with ex-

perimentally derived electron energies. Gn the other
hand, the total ground-state energy may be calculat&,
e.g., for the study of equilibrium parameters, pressure-
dependent structural phase transformations, or pho-
non spectra.

Usually, in applications of the LMTO method to solids,
the muffin-tin approximation is furthermore replaced by
the atomic sphere approximation (ASA), in which the
touching muffin-tin spheres are expanded a little to in-
clude all of space. The ASA improves on the muffin-tin
approximation by allowing for a spatial variation of the
potential in the whole unit cell, but the price to be paid is
a violation of geometry. The conceptual and computa-
tional simplifications of the ASA are, however, signifi-
cant. With these two improvements on the muffin-tin ap-
proximation the band structure, equilibrium lattice con-
stants, and bulk moduli of the group-IV elements C, Si,
and Ge (Ref. 30) and the III-V compound GaAs (Refs. 31
and 32) have been calculated with good accuracy.

In the present work the first-order correction term for

III. CALCULATiONS

A. The band structures

Zinc combines with the elements of the VIth column of
the Periodic Table, the chalcogenides: 0, S, Se, and Te, to
form compounds having both the sphalerite and the wurt-

zite structure, with the single exception of ZnO, which is

only found in the latter arrangement. Actually, the ZnO
crystal displays a slight distortion of the ideal tetrahedral
coordination of the wurtzite structure, with c/a =1.60
and u =0.383 as compared to the ideal values c/a = 1.63,
u =0.37S. To study the trends in the electronic proper-
ties of the zinc chalcogenides —especially as elucidated by
recent Mossbauer experiments with the Zn isotope —we
have performed LMTO calculations along the lines
sketched in Sec. II of the sequence of compounds ZnO,
ZnS, ZnSe, and Zn Te, all in the sphalerite structure and at
the experimental equilibrium densities, corresponding to
cubic lattice constants a =4.57, 5.41, 5.67, and 6.07 A,
respectively.

The band structures of ZnS, ZnSe, and ZnTe are shown
in Figs. 1—3, while the valence-band densities of states are
depicted in Figs. 4—6 including the partial densities of
states within each zinc and chalcogen sphere. All calcula-
tions used equal radii for all constituent spheres, and the
Zn 3d electrons were treated as a part of the frozen core,
which may be a questionable approximation. In Ref. 37,
where the band structure of GaAs was investigated, the
relaxation of the 3d electrons of Ga was concluded to
have some effects on the calculated band energies. Exper-

1 .00

2nS Energy bands
WS= 2.S174 (a.u )

0.Go

-0.50
X

FKJ. 1. Band structure of ZnS.

the overlap of spheres derived by Andersen was also in-

cluded, as was the leading nonspherical component of the
potential. ' The basis of muffin-tin orbitals included s,
p, and d orbitals, whereby the size of the secular matrix
(7) becomes 36X36. The summation over k points in the
Brillouin zone was performed by the tetrahedron
method, ' using a grid of 89 k points within the irre-
ducible wedge ( —,'„ th) of the Brillouin zone.
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imentally, the Zn 3d electrons of the zinc chalcogenides
are known to be located in the gap between the first (anion
s-like} and the upper three valence bands. A proper
LMTO calculation of the zinc chalcogenides should there-
fore allow the d electrons to relax and use two panels of
energy [i.e., two sets of E„'s, cf. Eq. (6)], one for the
lowest part of the valence bands, the anion s band and the
Zn 3d bands, and one for the upper three valence bands.
Also, spin-orbit coupling ought to be taken into account,
as spin-orbit splitting is quite significant, of the order of
0.45 eV in ZnSe and 1 eV in ZnTe. In the present
work we are mainly interested in the self-consistent charge
density, and this we do not expect to be very much depen-
dent neither on spin-orbit coupling nor on the relaxation
of 3d electrons. Rather, we prefer to keep our calcula-
tional scheme at a tractable size.

From Figs. 1—6 the band structures and densities of
states of the zinc chalcogenides are seen to be very similar.
The lowest band is rather narrow, the width being of the
order 1.5 eV, and almost entirely of anion s character. It
is separated from the upper three valence bands by a gap
of the order of 5 eV. The second band is mixed Zn s-like
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FIG. 4. {a) Total density of states of ZnS. {1)Partial densi-
ties of states within the Zn sphere in ZnS. {c)Partial densities
of states within the S sphere in ZnS,
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and anion p-like in roughly equal proportion, and the two
highest valence bands are entirely anion p-like. The
lowest conduction state is the I j antibonding state, where-

by all the calculated zinc chalcogenides become direct-gap
semiconductors, in accordance with experiments.

The calculated electron energies at the key symmetry
points of the Brillouin zone are listed in Table I, where
they are compared to experimental results, which predom-
inantly are from the x-ray photoemission measurements
of Ref. 38. The accordance with experimental data is fair
but not excellent. Thus, the depth of the anion s band is
underestimated by 0.8 eV in ZnS, 2.2 eV in ZnSe, and 1.3
eV in ZnTe. For Ge and GaAs (Ref. 48) discrepancies of
-0 eV and -0.5 eV for the valence bandwidths are
found. Further, the experimental position of the oxygen
2s band in (wurtzite) ZnO is 19.5 eV below the valence-
band top, to be compared with our calculated (sphaler-
ite) position of —16.0 eV below the valence-band top.
These discrepancies refiect the deficiency of the energy
eigenvalues of the local-density approximation to describe
properly the removal energies of spatially localized states,
a fact which again is traceable to the incomplete elimina-
tion of self-interactions within the local-density approxi-
mation. From atomic calculations this effect has been
estimated to be of the order of 0.8 eV for the As s-like
valence band of GaAs, ' and as large as 8.5 eV for the Ga
3d levels of GaAs. However, these numbers probably
overestimate the errors of the local-density approxima-
tion, as solid-state effects are not taken into account, but

they clearly demonstrate the shortcoming of the local-
density approximation in this respect.

The widths of the upper three valence bands are also
somewhat underestimated by the calculations, by —1 eV
in ZnS and ZnSe and -0.6 eV in ZnTe. In Ge and GaAs
this quantity was found in excellent agreement with exper-
iments. This may be ascribable to the frozen Zn 3d
electrons and/or —for ZnSe and ZnTe —the neglect of
spin-orbit coupling. Thus, the conclusion of Ref. 37 on
the relaxation of the Ga 3d electrons in GaAs (and in-
clusion of spin-orbit coupling) was exactly an enlargement
of the width of the upper three valence bands. It should,
however, also be remembered that the increasing dissimi-
larity of the constituent atoms in going from the group-IV
semiconductors to the III-V to the II-VI semiconducting
compounds results in a larger mismatch between the sym-
metry of the actual electron clouds and the geometry
adopted in the calculations through the ASA with spheres
of equal size. We are not able to assess the effects hereof,
if any.

Focusing next on the conduction bands the zinc chal-
cogenides are, as mentioned, both experimentally and in
the calculations, found to be direct-gap semiconductors,
but as is generally found in calculations of semiconduc-
tors (see, e.g. , Refs. 48 and 42, Table I) within the local-
density approximation, the calculated gaps are too small.
For ZnS, ZnSe, and ZnTe the calculated gaps are 2.57,
1.60, and 1.45 eV, respectively, as compared to the experi-
mental (0 K) gaps of 3.78, 2.82, and 2.39 eV. For ZnO we

TABLE I. Energy eigenvalues at the I, X, and L points, compared to experimental data stemming from Ref. 38, except where
noted. Numbers in parentheses denote the experimental uncertainty on the last digit.

Il
I 15

I)

ZnO
Present

—16.67
0.00
2.26

15.44

Present

—12.68
0.00
2.57
7.09

ZnS
Expt.

—13.5(4)

3.78'

Present

—13.04
0.00
1.60
6.43

ZnSe
Expt.

—15.2(6)

2.82'
7.6'

Present

—11.71
0.00
1.45
4.89

ZnTe
Expt.

—13.0(4)

2.39'
5.1

X)
X3
X5
X,
X3

—15.24
—3.69
—1.66

5.48
10.52

—11.08
—4.55
—2.03

3.97
4.62

—12.0(3)
—S.S{2)
—2.5(2)
4.0(3)

—11.72
—4.69
—2.09

3.52
3.94

—12.5(4)
—5.6{3), —5.3(3)

—2.1(3)
4.8{3)

—10.31
—4.89
—2.17

2.64
2.89

—11.6(3)
—5.5(2)
—2.4(2)

3.7(2)

LI
LI
L3
L)
L3

—15.56
—4.45
—0.58

7.14
9.25

—11.49
—4.88
—0.78

3.86
7.50

—12.4(3 }
—5.5(2)
—1.4(4)

—12.05
—4.93
—0.83

2.97
6.95

—13.1(3)
—5.6(3)

—1.3(3), —0.7(2)"

—10.69
—4.99
—0.90

2.10
5.53

—12.0(3)
—5.5(2)
—1.1(3)

Xl —X5
X3 —XI
LI —L3
L3 —L3

'Reference 43.
"Reference 44.
'Reference 45.
Reference 46.

'Reference 47.

6.00
0.65
4.64
8.28

6.6,a 6.8
0.5

5.81,' S.9
98a 95b

5.61
0.42
3.80
7.78

6.42'
0.8
4.9'
8.45'

4.81
0.25
3.00
6.43

53

3.8
6.6b
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further calculate Ex=2.26 eV to be compared to the
(wurtzite) experimental Es ——3.44 eV. Also the secondary

gaps at X and I. are generally underestimated by the cal-
culations. It has been pointed out that the one-particle
potential appropri'ate for describing the conduction states
of semiconductors may deviate from that pertinent to
valence states by a constant contribution. The value of
this constant is, however, not known. Considerable im-

provements on the calculated conduction-band edges may
be accomplished by a rigid upwards shift, but the fact
that the conduction bands cannot be brought in reasonable
accordance with experiments by such a procedure demon-
strates that other errors of the local-density approxima-
tion are significant. Similar results have been found for
Si, Ge, and GaAs.

The band structure of (hexagonal) ZnO has been calcu-
lated in Ref. 53 using the nonlocal pseudopotential
method. Cubic ZnS has been considered theoretically in a
number of publications and the electronic band structure
has been calculated using the orthogonalized plane-wave
(OPW) method, the empirical pseudopotential
method, tight-binding, ss APW, Korringa-Kohn-
Rostoker (KKR), ' ' and the linear combination of
Gaussian orbitals (LCGO) method. ' ZnSe has been treat-
ed using the pseudoptential method, ' ' OPW,
the LCGO method, ' and the fully relativistic LMTO
method. ' Finally, Zn Te has been considered using
empirical pseudopotentials, OPW, s5 ~ and LMTO. 42

S. The charge distributions

One of the great advantages of the ASA is that it pro-
vides a simple and unambiguous angular momentum
decomposition of the electron density within the spheres.
The integrated number of electrons of s, p„and d charac-

ter within each sphere thus become convenient numbers
characterizing the solids under study. In Table II are list-
ed the occupancy numbers as obtained in the present cal-
culations. Also given are the electron contact densities of
the zinc and chalcogen nuclei and the density at the center
of each empty sphere. The occupancy numbers are direct-
ly related to the way in which the crystal volume is divid-
ed into spheres. In comparing the zinc occupancies for
the zinc chalcogenides of unequal lattice constants, one
may take two different points of view: either to compare
occupancy numbers of spheres constituting a fixed frac-
tion of the crystal unit cell or to compare occupancy num-
bers of spheres of equal absolute volume. The latter ap-
proach sums more appealing because of its physical inter-
pretation in terms of atomic sizes within the solid, but as
will be demonstrated shortly, the appropriate "size" of the
zinc atom actually varies with the ligand in the sequence
of zinc compounds studied.

The first approach is facilitated by choosing all spheres
of equal size, whereby the zinc spheres cover 25% of
space, as was the case for the calculations discussed in
Sec. III A. The columns II—IV in Table II refer to these
calculations. To be able to take the second approach as
well, two additional calculations have been performed for
ZnS and ZnTe (columns V and VI of Table II) keeping the
Zn sphere volume equal to the one adopted for Zn in
ZnSe. To minimize overlap effects, the size of the chal-
cogen sphere was chosen so as to render the volume
covered by the two atomic spheres unchanged. Hereby
the ratio of sphere radii approximately equals the ratio of
tetrahedral radii introduced by Phillips to describe the
bond lengths of tetrahedrally coordinated semiconductors.
The radii of the two empty spheres were chosen in the
same ratio. For ZnO this approach is not possible, as the
oxygen sphere shrinks to almost nothing. In all the calcu-

TABLE II. Calculated data on the electronic structure of the zinc chalcogenides in the sphalerite
structure. S is the atomic sphere radius in a.u. , p(0) the electron contact density in a.u. , p;„, the electron
density at the center of the empty spheres in 10 i a.u. Q denotes the total charge content of the empty
spheres E~ (surrounding the anions) and E2 (surrounding the zinc sphere).

Szn= SE
1

S~~~) =S
2

I
ZnO

2.125

2.125

II
ZnS

2.517

2.517

III
ZnSe

2.638

2.638

IV
ZnTe

2.834

2.834

V
ZnS

2.638

2.384

VI
ZnTC

2.638

3.006

p(0) Zn
chal

p.t

E2

7.56
14.88
3.98
3.96

8.92
18.66
2.52
2.00

9.28
53.57
2.28
1.71

9.79
107.93

2.00
1.31

8.74
18.66
2.55
1.96

10.00
108.33

1.96
1.36

Zn &s

Pfp

ng
chal n,

lip

Ply

Q

0.33
0.32
0.11
1.82
4.53
0.01
0.50
0.37

0.61
0.64
0.17
1.68
3.69
0.05
0.69
0.48

0.69
0.71
0.18
1.70
3.44
0.04
0.73
0.51

0.83
0.89
0.20
1.62
3.04
0.05
0.82
0.55

0.67
0.76
0.23
1.60
3.44
0.04
0.88
0.37

0.72
0.69
0.13
1.71
3.66
0.07
0.57
0.75
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lations quoted in Table II, the atomic cores were kept
frozen.

From Table II the valence electron contact density is
seen to increase in the sequence of increasing Z of the
ligand from ZnO through ZnS and ZnSe to ZnTe, which
is also the order of decreasing ionicity according to the
Pauling scale of electronegativity. The total relative
variation in p(0) is -25%, but —, of this variation is due

to the incorporation of ZnO in the calculations. The
trend of increasing Zn contact density is accompanied by
an increase in the s-electron content of the Zn sphere,
both when looking at the fixed-fraction and the fixed-
absolute voluine series of calculations. This trend must
therefore be attributed to the increasing electronegativity
of the ligand from Te to 0 causing electrons of s charac-
ter to be dragged away from the zinc atom.

The zinc s- and p-occupancy numbers are approximate-
ly equal, n, n~-, for all the calculations presented in
Table II. The configuration of the zinc atom is therefore
far from the atomic ground state 4s configuration. For
the chalcogens one notes an s occupancy close to 2 in ac-
cordance with the large binding energy of the free-atom s
level, which causes this level to be corelike.

Looking at the occupancy numbers of the calculations
I—IV, which dedicate —,

' of the unit cell volume to each

sphere, a distinct trend is seen when going from ZnO
through ZnS and ZnSe to ZnTe, as the total electron con-
tent of the zinc sphere increases from 0.76 to 1.92, i.e., for
ZnTe the zinc sphere is almost neutral. The chalcogenide
sphere charge correspondingly decreases from 6.36 to
4.71, so that the oxygen sphere in ZnO displays an excess
of negative charge, while the other compounds all have
less than six electrons within the chalcogen sphere. The
electron contents of the empty spheres increase in the
same sequence. These variations are predominantly due
to the different absolute volumes. Thus, one may note
that the mean electron density within the zinc sphere is
much more nearly constant and in fact decreases from
ZnS to ZnSe to ZnTe. (The mean density is lowest in
ZnO, even though the Zn sphere is smallest in this case.
This must therefore refiect that a significant charge
transfer to the oxygen atom has taken place. ) Likewise,
the mean density and central density of the empty spheres
actually decreases from ZnO to ZnTe.

The contents of d electrons in the chalcogen spheres are
very small. This means that the electron densities within
the spheres are almost spherically symmetric, as wave
functions of only s and p character lead to spherically
symmetric charge densities in cubic symmetry. Thus, we
may fear that the electron clouds around the anions actu-
ally are larger than the size of the sphere adopted in the
calculations. This is also supported by the fact that the
electron content of the empty spheres surrounding the
anion (the Ei sphere) is larger than the content of the
empty spheres surrounding the Zn sphere (the Ei sphere),
indicating that a tail of the charge density "belonging" to
the anion penetrates into the empty sphere. Further, the
zinc spheres contain considerably larger amounts of d
electrons with correspondingly larger nonspherical charge
densities. This may be taken as an indication that the Zn
spheres likewise have to account for some of the chal-

cogen charge.
Considering next the calculations of ZnS, ZnSe, and

ZnTe, where the zinc sphere size is kept constant, i.e.,
columns V, III, and VI of Table II, we note a much srnall-
er variation in the occupancy numbers both for the zinc
and the ligand sphere. The zinc occupancies show, as
mentioned, an increase of s electrons in going from ZnS
to ZnTe, from 0.67 to 0.72, which reflect the decrease of
the chalcogen electronegativity in the same sequence. But
at the same time the contents of zinc p and d electrons de-
crease. This implies a larger nonspherical component of
the charge distribution around the zinc atom in ZnS than
in ZnTe, which seems unreasonable in conjunction with
smaller s components. We therefore interpret the num-
bers as refiecting the spherical charge distribution around
the chalcogen penetrating into the zinc sphere, where they
show up as nonspherical pockets in the bonding direction,
and this being more pronounced in ZnS than in ZnTe.
Therefore, at least part of the p and d occupancies of zinc
in this series really should be ascribed to the ligand. The
effective size of the zinc atom, as deferred from the sym-
metry of the charge distribution, therefore decreases when
combining with lighter (and more electronegative) chal-
cogen, going from Te to Se to S. This is, in fact, quite
sensible, as the increased depletion of charge from the
zinc atom allows the charge clouds of the neighbors to
come closer to the zinc nucleus.

The chalcogenide occupancies in the same sequence of
calculations V, III, VI are remarkably invariant, with
about 1.7 s electrons and 3.4 p electrons. The similarity
of these numbers is the more surprising, as they both refer
to orbitals of different principal quantum number and to
different volumes (these have, however, been constructed
to more or less mimic the appropriate size of the chal-
cogen atoms —thus coinpensating the first point).

We have not undertaken further studies of the conse-
quences of varying the sphere sizes in the zinc chal-
cogenides, though the above analysis seems to suggest that
for each component the best zinc radius could be traced
by looking at the variation of the occupancy numbers.
However, this comprehensive task is of limited validity
for our present purposes. From the electron contact den-
sities in calculations II and V, as well as IV and VI, we
get an impression of the variations of this quantity, which
the LMTO method renders.

It is tempting at this point to try to estimate the effec-
tive charges which should be attributed to the atoms in
the zinc chalcogenides. There is, of course, no stringent
way of dividing the actual electronic charge distribution
in a solid between the constituent atoms, except in the
ideal ionic case, where the electron clouds around each
nucleus separate, leaving a ball-like picture of the ions in
the sohd. The net electron transfer in binary compounds
therefore remains a qualitative concept depending on the
way it is defined but, nevertheless, useful in discussing
many properties of solids. Many experiments measure
quantities which can be related to an effective charge
transfer, though this often depends on the perturbation of
the crystal, which the measurement introduces. %That is
measured is then rather a dynamic charge transfer, which
need not be the same as the static charge transfer nor the
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same as is measured by other experiments.
One reasonable way to arrive at some estimates of the

static charge transfer of the zinc chalcogenides is as fol-
lows: Assuming that the calculations I, II, III, and VI
describe the charge distributions most realistically, we
should start from the occupancy numbers for these, and
the problem remains how to share the interstitial charges,
the contents of E& and E2. For ZnO, ZnS, and ZnSe,
where the two empty spheres are equal in size, the charge
difference Qi —Q2 indicates that the tail of the anion

charge distribution sticks out into the E, sphere. Assum-

ing that this difference and a similar amount from the
cation sphere rightly should be attributed to the anion,
while the rest of the interstitial charge may be distributed
equally between the two atoms, the following formulas for
the effective charges are arrived at:

Q;=Q. +2Q2 —Qi

Q,'=Q, +2Qi —Q2 .

Here subscripts c and a refer to cation and anion. For
ZnTe, where the sphere sizes are unequal, we propose to
split the interstitial charge in the proportion of the anion
and cation sphere surface areas.

By this prescription we obtain the effective charge con-
figurations listed in Table III. ZnO is thus attributed a
large ionic character, while the other zinc chalcogenides
are predicted to be built from predominantly neutral enti-
ties, but with the order of decreasing charge transfer to
the chalcogen equal to the order of increasing electron
contact density, i.e., ZnO, ZnS, ZnSe, ZnTe. The fact that
the charge transfer in ZnTe actually goes from Te to Zn
according to the above scheme indicates that the prescrip-
tion suggested is not too reliable. On general grounds we
will always expect a group-VI element to be more elec-
tronegative than a group-II element. The definition of ef-
fective charge given should therefore not be taken too
rigorously but just as a way of sorting out the trends in
electron transfer.

In Table III are also quoted the effective charges as
described from lattice vibrational properties of the zinc
chalcogenides. These values vary less amongst each oth-
er than the estimates of the present work, but the trend is
the same, following the ionicity order. Other calculated
properties correlating with this order are likewise given in
the table, notably the zinc electron contact density, the
fundamental gap, the average gap (defined as the mean of
the direct gaps at I, X, and L), the bandwidth I » —I ", ,
the width of the upper three valence bands I » —L;, the X
valence band gap Xi —X&, and the fractional ionicity as
given by the Phillips scale and the Pauling scale. Some
anomaly is seen in the band-structure data of ZnS and
ZnSe, which we cannot explain, but all other trends are
clear. The Phillips spectroscopic scale of ionicity attri-
butes largely the same fraction of ionicity to the bonds of
the four compounds considered, thus failing to describe
the distinct ionicity of ZnO, which appears in the present
work and is, in fact, also predicted by the Pauling ionicity
scale.

TABLE III. Various quantities reflecting the ionic character
of the zinc chalcogenides.

pz.(0)'
e stat

e

Eg(direct) .
E~{average}
Band widthd

I is —L I

gt) ~t) d

+chal +Zn
f;(Pauling)"
f;(Phillips)"

ZnO

7.5
1.00
0.53
2.26
6.04

16.7

11.6
1.9
0.80
0.616

ZnS

8.9
0.31
0.41
2.57
4 40

12.7
4.9
6.5
0.9
0.59
0.623

9.3
0.13
0.34
1.60
3.67

13.0
49
7.0
0.8
0.57
0.676

ZnTe

9.8
—0.11

0.27
1.45
3.09

11.7
5.0
5.4
0.5
0.53
0.546

'Electron contact density of the zinc nucleus in atomic units.
Estimated static charge transfer as obtained in the present

work, in units of e and rendered positive when charge is moved
away from Zn.
'Effective charge as obtained from lattice vibration spectra, Ref.
65. (The sign of e* is not given by this method but is chosen
positive for all compounds. )

Various characteristics of the band structure, in eV. The aver-
age band gap is defined as the mean of the direct gaps at I, X,
and L.
'Difference in Pauling electronegativity.
Fractional ionicity according to the Pauling 1939 and Phillips

scales, as quoted by Ref. 69.

IV. CALIBRATION OF THE Zn MOSSBAUER
ISOTOPE

The 93.3-keV Mossbauer resonance of Zn was first
successfully observed by Nagle, Craig, and Keller. This
isomer transition is peculiar among all Mossbauer transi-
tions in having the highest relative energy resolution. The
natural linewidth of the excited level is I 0/E = 5 X 10
In terms of velocities this corresponds to a broadening of
an absorption line of -0.31 pm/sec. Chemical shifts
range over some 200 p, m/sec, so considerable sensitivity is
obtainable with this isotope, but refined experimental
techniques have had to be invented to challenge the ex-
treme theoretical linewidth. The velocity drive generally
consists of a piezoelectric element supplied by a sinusoidal
voltage. ' ' For a recent review on Zn Mossbauer spec-
troscopy, see Ref. 11.

The Mossbauer isomer shifts of the zinc chalcogenides
ZnO, ZnS, ZnSe, and ZnTe have been measured by two
groups. ' ' Griesinger, Pound, and Vetterling' used
sources consisting of zinc chalcogenide powders diffused
with Ga mother nuclei and an enriched ZnO absorber.
Forster, Potzel, and Kalvius, ' on the other hand, used a
special Ga:Cu source, which emits a single resonance
line, together with enriched absorbers of ZnO, ZnS,
67 67ZnSe, and ZnTe. Using the samples under study as ab-
sorber materials, these authors avoid possible aftereffects
of the radioactive decay process of Ga. The experimen-
tal data of the two groups are in excellent agreement
within experimental resolution. However, due to the
small velocity shifts of Zn, it is important to correct the
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measured center shifts for the second-order Doppler shift
stemming from the zero-point motion of the Zn nuclei. '

Assuming Debye solids, one may show " that

b, VsoD ——0.23(pm/sec)(Ss —Sg ),

0.00

-40.0

isomer Shifts in Zinc Compounds

~R&R - & &.o'
~ . o&x &0-'

ZnTe ~

where Ss and Sq are, respectively, the source and ab-
sorber Debye temperatures, in degrees K. After this
correction has been applied, the isomer shifts related to
the electronic environment are found. The data of Ref. 19
were corrected in this way, and the isomer shifts obtained
are listed in Table IV together with the calculated electron
contact densities of the present work, discussed in Sec.
III B. The experimental uncertainty stems entirely from
the determination of the Debye temperatures to insert in
the correction formula (9).

All the contact densities have been calculated for the
sphalerite structure at the experimental equilibrium
volume, and only the valence electron contribution is
quoted, as the frozen core only contributes a constant. As
mentioned, ZnO is only found in a slightly distorted wurt-
zite structure. However, it may be hoped that the differ-
ence in electron contact density is not too large between
the natural ZnO crystal structure and the hypothetical
sphalerite ZnO. Supporting evidence is rendered from
ZnS, which exists in both structures, and where no differ-
ence in isomer shift is experimentally resolvable. ' ' Yet,
due to the larger ionic character of the ZnO bond, the
difference between the contact densities of the two struc-
tures may be more profound in ZnO.

Table IV lists the electron contact densities as obtained
in the sequence of calculations using equally large spheres
for all constituents as well as those obtained for ZnS and
ZnTe using different sphere sizes. From these values we
obtain an average contact density p,„(0), as given in the
last column of Table IV, together with a calculational un-
certainty of -0.1 a.u. For ZnO we (due to the different
crystal structure, but somewhat arbitrarily) set the uncer-
tainty on the calculated p(0) higher. The experimental
isomer shifts are plotted against the electron contact den-
sity in Fig. 7. The linearity is quite good, confirming Eq.
(1). From the best straight line, using (2) and (3) and Ref.
13, we obtain

-60.0 '

E

-80.0LA

Ci

2nSe

-100.

- l 20.
Zn0

-140
7.00 8.00

0 &0) (s.u. )
9.00 10.0

FIG. 7. Experimental isomer shifts versus calculated electron
contact densities in the Zn chalcogenides.

hR
R

=(7.0+1.0)y 10 (10)

for the nuclear calibration constant.
The only value of this parameter which has been report-

ed is in Ref. 19, which used the concept of isoelectronic
pairs of compounds to obtain b, (ri) =11)&10 i fm2.
Converting by (3) and Ref. 13, this corresponds to
bR/R =3.8X10 . The authors stress, however, that
this can only be regarded as an order of magnitude esti-
mate, due to the crude character of the argument. The ac-
cordance with the value (10) of the present work may
therefore be taken to be satisfactory.

Finally, to address the question of the validity of the
frozen-core approximation in calculations of the electron
contact density, we report in Table V the results of self-
consistent fully relativistic atomic calculations (LDA, in
the parametrization of von Barth and Hedin ) of Zn in
various valence configurations. The contact density is
split up into the core contribution (i.e., from [Ar]3d' )
and the valence contribution. Looking at p„,&(0) of this
table, we conclude that the situation in the tetrahedral
zinc chalcogenides corresponds to an atomic number of s
electrons around or somewhat less than one. Leaving the

his (pm/sec) pp(0)

TABLE IV. Experimental isomer shifts, Ref. 19, and calcu-
lated electron contact densities. The experimental values are all
relative to the Ga:Cu source. The electron contact density is
in a.u. , p~ corresponds to the fixed fraction series of calculations,
I-IV of Table II, p2 to the fixed-absolute-volume series V-III-VI.
Numbers in parentheses denote the uncertainty on the last digit.

Valence
configuration pcore(0) p„.,(o)

TABLE V. Electron contact densities as calculated in several
atomic configurations of Zn. p „(0) is the contribution from
the [Ar]3d' core, p„~(0) the contribution from the fourth shelL
(All values are in a.u. )

ZnTe
ZnSe
ZnS(wu)
ZnS(sph)
ZnO(mu)
ZnO(sph)

—22(8)
—44(7)
—55(7)
—55{7)

—116{6)

9.79
9.28

10.00
9.28

9.9(1)
9.3(1)

8.8(1)
7.5(2)

4s 4p
4s'4p'
4s14 0

4s 4p
4s'4p'
4so4qo

24 607.82
24607.75
24607.97
24607.75
24607.87
24608.55

16.69
9.81

10.12
0.06
0.05
0.00
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Zn + ion out, the core contribution varies by only 0.22
a.u. The variation of the self-consistently relaxed Zn core
in the sequence ZnO, ZnS, ZnSe„ZnTe is expected to be
some fraction of this (but presumably systematic) —that
is, of negligible importance in comparison with the gen-
eral accuracy of the LMTO method discussed above. As
a matter of fact, we only find reasons for worrying about
the frozen-core approximation when the Zn atom ap-
proaches full ionization, i.e., 4su4P, but even in the case
of highest ionicity treated here, ZnO, is the effective elec-
tronic configuration of Zn far froin this extreme.

Further information to gain from Table V is the size of
the contribution from the relativistic pi&2 electrons to the
valence electron contact density, which is neglected
throughout our solid-state calculations. It is of the order
of 0.05 a.u. , again barely of.significance at the present lev-

el of accuracy. Similar conclusions have been drawn for
Sn in various atomic configurations, " ' as well as for
other atoms.

V. CONCLUSIONS

The electronic structure of the zinc chalcogenides was
calculated from first principles and compared to recent
Mossbauer experiments using the extremely narrow reso-
nance of the 6 Zn isotope. A good accordance was found
providing for the first time a quantitatively reliable cali-
bration constant for this isotope. This should facilitate a
more extensive use of Zn spectroscopy for the study of
solid-state systems in the future.

The electronic band structures of the zinc chalcogenides

were as good as those obtained from any other first-

principles method, but the agreement with experiments is

only qualitatively correct, while quantitative band-edge

positions and transition energies are not correct. This is

presumed to be a deficiency of the LDA.
The LMTO method is ideal for the purpose of calibrat-

ing Mossbauer isotopes for several reasons. Firstly, this

scheme uses the real (as opposed to pseudo) potential of
the core, so that the derived ground-state charge density is

correct, even in the nuclear region. The electron contact
density is then simply read off as the charge density in the

center of the atomic sphere (or inore appropriate, by

averaging the charge density over the nuclear volume).
Secondly, for the interpretation of isomer shifts, the
decomposition of the LMTO wave function into orbital
angular momentum channels provides the occupancy
numbers, which conveniently are used to characterize the
solids under study, as demonstrated in the present work
for the zinc chalcogenides. Thirdly, the LMTO scheme is
easy to handle and fast, and, if necessary, one can relative-

ly easily switch to another crystal structure, as long as this
is not too complicated. Thus, the calculation of several
different crystal structures for the calibration of the same
isotope is possible, as has been utilized by the present au-
thors in the cases of" Sn, ' 'Sb, ' Te, and Ge.
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