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Time dependence of hyperfine interactions, such as that due to electronic spin relaxation, can be
observed in Mossbauer transmission spectra and is generally investigated to obtain important infor-
mation about structure and function of materials. However, relaxation effects in transmission spec-
tra are often masked by inhomogeneous broadening. Also, completely different kinetic paths may
lead to similar transmission spectra, making it difficult to interpret the underlying physics. These
difficulties can be overcome by using selective-excitation double-Mossbauer (SEDM} techniques.
Earlier work indicated that SEDM could be used to (1) determine unambiguously the existence of re-

laxation, (2} determine directly the kinetic paths of the relaxing system, and (3) measure the relaxa-
tion rates between the various relaxing electronic levels. In this paper, these predicted advantages of
SEDM are examined theoretically and experimentally. SEDM line-shape theory in the presence of
relaxation is developed and calculations using superoperator techniques are used to determine the ef-
fects of various physical parameters and experimental conditions on the SEDM spectra and their

physical interpretation. As a test and application of the SEDM theory, experiments were performed
on tris-(pyrrolidine)dithiocarbamate [Fe(III)], TPDC[Fe(III)], a classic paramagnetic system, already
extensively studied by other investigators and thus constituting in our study a well-known "calibra-
tion" sample. The calculated spectra were compared to the experimental results at 5.4, 8, and 78 K
in zero external field. We obtained a base relaxation rate of 0=5.24' 10 sec ' over the tempera-
ture range studied and determined kinetic paths not observed in this compound in previous
transmission studies. Thus, SEDM provided new information about a well-known system. On the
basis of our SEDM results we were able to determine the actual relaxation kinetics operating in the
system at low temperatures and select between three completely different models which give similar
theoretical transmission spectra and, therefore, cannot be distinguished by transmission studies
alone. A comparison is made between the relaxation in TPDC [Fe(III)], a relatively strong coupling
system, and ferrichrome A{FA), another Kramers-doublet paramagnetic system but with weaker

coupling, which has been studied earlier by Mossbauer techniques.

I. INTRODUCTION

The dynamics of the interaction between nuclei and
electrons has long been the subject of intensive investiga-
tion by nuclear and electronic resonance techniques. In
particular, Mossbauer-effect (ME) spectroscopy is unique-
ly suited to such investigations because of the sensitivity
of the spectra to the details of hyperfine interactions.
Consequently, ME spectroscopy has been used to study
many diverse dynamic phenomena. ' t6 (Some examples
of dynamic phenomena studied with Mossbauer spectros-
copy are the following: paramagnetic relaxation, '

molecular diffusion and reorientation, ' ferrofiuid
dynamics, Jahn- Teller distortions, electron hopping, '

lattice fiuctuations, ' spin-lattice relaxations, "' spin
waves, ' spin relaxation, ' and critical fluctuations and
magnetic ordering. ' '

) Most of the experiments have
been performed in the popular transmission geometry
which, although relatively simple experimentally, pro-
duces spectra which are often difficult to interpret.

Thus, although time-dependent hyperfine interactions
in solids have been studied by a number of investigators

using Mossbauer transmission techniques, there are still
major problems encountered in the analysis of transmis-
sion spectra which could lead to misinterpretation of the
underlying physics. Some of these problems arise because
of the difficulty of separating relaxation effects from the
other causes of line broadening' and because com-
pletely different kinetic paths may lead to similar
transmission spectra, ' making it difficult to determine
the true kinetics, even in relatively simple systems. For
example, the classical paramagnet ferrichrome A (FA) has
been studied with Mossbauer transmission spectroscopy
and also with ESR for some time, but not until recently
have the true dynamics been determined in enough de-
tail ' to obtain a close fit between experimental and cal-
culated results.

Clearly, more sensitive and selective experimental tech-
niques are desirable to sort out the various dynamic pro-
cesses occurring in solid and molecular systems. Here we
investigate the applicability and advantages of selective-
excitation double-Mossbauer (SEDM) spectroscopy
to the study of time-dependent hyperfine interactions
in general and apply the results to the investigation
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of spin relaxation in the classic paramagnet
tris-(pyrrolidine}dithiocarbamate[Fe(III)], TPDC[Fe(III)].
The work was motivated by the observation that SEDM
allows a direct measurement of energy transfer in the
solid, obviating the major problems with the transmission
techniques, and thus reveals more details of the process
under investigation.

The SEDM technique has already been used to obtain
information about time-dependent effects in some materi-
als ' and the theory of the SEDM line shape under
restrictive and ideal3' conditions has been developed.
However, there has been no systematic investigation of the
SEDM line shape under dynamic conditions and no com-
parison of theoretical and experimental results for a sys-
tem whose dynamics (spin relaxation, etc.) have been well

established. Thus, a theoretical study of the SEDM line
shape and its comparison with the experimental spectra of
a well-known system was considered a necessary step in
the further development of the technique and its utiliza-
tion for general investigations of time-dependent hyper-
fine interactions.

In the theoretical development we have used the super-
operator theory of the differential scattering cross section,
assuming a general interaction Hamiltonian and arbitrary
electronic relaxation rates. In preparation for the analysis
of experimental SEDM spectra, we have developed a
dynamic theory of the SEDM line-shape applicable to
thick scatterers. As a special case, a closed-form solution
of the differential scattering cross section for the
effective-field reversal or spin-fiip model of paramagne-
tism was obtained. We have also extended previous calcu-
lations to scatterers of arbitrary thickness and with aniso-
tropic relaxation rates, and have applied our new results
to the analysis of the SEDM spectra of TPDC[Fe(III}],a
high spin ferric Kramers-doublet paramagnetic system.

TPDC[Fe(III)] has been extensively studied by
Mossbauer transmission techniques. Using SEDM, we
have determined the relaxation dynamics to be completely
different from those deduced from transmission studies.
The new results are due to the higher selectivity and
discrimination available with SEDM and serve as an ex-
ample of the advantages available with this technique for
dynamic studies.

II. SEDM TECHNIQUE

The procedure for obtaining an SEDM spectrum has
been discussed else~here. The physical arrangement
shown in Fig. 1(a) reveals the characteristic features of
SEDM. Here the differential scattering cross section of
the Mossbauer isotope is measured, instead of the absorp-
tion cross section, as in transmission experiments.

To accomplish this, two Doppler modulators are used
to record the four recoilless events: (i) emission of photon
y&, by the Co source, (ii) absorption of the photon y&, by
the Fe nucleus in the material under investigation, (iii)
subsequent reemission of another photon yz, and (iv) its
absorption by the Fe nucleus in the single-line analyzer.
SEDM spectra for two different excitation energies are
shown in Fig. 1(b) and the processes responsible for the
spectral lines are depicted in the energy-level diagram in
Fig. 1(c).
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FIG. 1. Selective-excitation double-Mossbauer (SEDM) ex-

periment and typical results: (a) experimental arrangement, (b)

SEDM spectra obtained as a result of excitation of the fifth and
sixth lines of a split "Fe scatterer, and (c) energy diagram of a
magnetically split ' Fe nucleus, showing the nuclear transitions
participating in the scattering process observed in (b).

For comparison, the usual transmission spectroscopy
would provide a spectrum of the same sample showing the
six resonances as indicated by the stick diagram at the
bottom of Fig. 1. Clearly, the transmission spectrum is
more complex, exhibiting all the resonances of the system,
while the SEDM spectrum shows only lines coupled to the
specific resonance excited by the radiation from the
source.

In transmission (and single drive scattering) experi-
ments, the measured quantity is the absorption cross sec-
tion, and the energy spectrum of the outgoing radiation is
not determined. Consequently, information on the energy
transformations in the scatterer during the lifetime of the
nuclear state, which is contained in the energy of the scat-
tered radiation, is not used. With the SEDM technique,
the measured quantity is the differential scattering cross
section, which is a function of the incoming and outgoing
photon energies. Thus, the existence of relaxation in the
scatterer, in the most propitious case, is explicitly exhibit-
ed in the SEDM spectrum by the appearance of lines at
positions other than the excitation energy. The exact
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line shape depends on several factors, such as the relative

magnitude of the various scattering cross sections in the
material, the separation of the lines, the nuclear lifetime,
and the relaxation rate. From an SEDM spectrum, one
can obtain direct evidence for the occurrence of relaxa-
tion, measure the relaxation rate, and determine unam-

biguously between which lines the relaxation is occurring.
Thus, froin SEDM one can obtain detailed information
about the kinetic mechanism operating in the system. '
This important information has to be assumed when

analyzing transmission data. The advantage inherent in
the SEDM technique stems from the possibility of
separating and identifying weaker components of the reso-
nance system which would normally be concealed by
stronger lines in a transmission spectrum.

There are many different applications of SEDM. (For
example, SEDM can be used with advantage to search for
small admixtures of nuclear states, such as that due to an
electric quadrupole interaction, i' to look for possible E2
transitions in the nuclear radiation spectrum, or to un-

ravel complex spectra consisting of several hyperfine pat-
terns originating from inequivalent sites. ) In this paper,
however, we concentrate on the study of relaxation pro-
cesses in solids and biological molecules, where SEDM
can be used to determine unequivocally the mechanism
and rate of relaxation.

Hartmann-Boutron has discussed the advantage of us-

ing SEDM in an investigation of slow relaxation. Balko
and Hoy have calculated results which clearly support
this view (Ref. 25, Fig. 13). They show that for slow re-

laxation, the transmission spectra are characterized by a
slight broadening of the line shape, which is difficult to
distinguish from inhomogeneous broadening and thick-
ness effects. In the SEDM spectra, on the other hand, the
relaxation process is clearly identified by the appearance
of lines away from the excitation energy. In another ex-
ample of the application of SEDM to relaxation studies
(Ref. 21, Fig. 3) two completely different modes of relaxa-
tion are differentiated and identified in an SEDM spec-
trum, while it is shown to be difficult, if not impossible,
to separate out these processes using transmission spec-
troscopy.

With SEDM one can look at details of the relaxation
processes. For example, it is possible to distinguish be-
tween perpendicular and parallel relaxation components,
characterized by relaxation times Tt and T2 in nuclear
magnetic resonance work, as discussed by Afanasev and
Gorobchenko. ' These authors propose hemin chloride as
a particularly interesting example of a system in which it
may be possible to obtain information about these relaxa-
tion times using SEDM. They point out that such infor-
mation cannot easily be obtained from transmission stud-
ies.

Thus, SEDM can be used to (i) determine the existence
of relaxation (or time-dependent hyperfine interactions) in
a sample, (ii) determine in a direct way the kinetic paths
of the relaxing system, and (iii) measure the relaxation
rates between the various states of the system. In a relax-
ing system such as the classical paramagnet
TPDC[Fe(III)], all of these determinations are required to
establish the true dynamics.

III. SEDM LINE-SHAPE THEORY

The extraction of information from SEDM spectra on
the time dependence of hyperfine interactions is predicted
on two conditions. First, is the ability to predict the
SEDM spectrum without relaxation occurring in the
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FIG. 2. Modification of photon-energy distribution by vari-

ous processes occurring during an SEDM experiment. The
SEDM geometry is shown in the upper-right-hand corner with

a~ and a2 giving the directions of the incoming and outgoing
photons. The various y; represent photon-energy distributions
at different stages of the SEDM experiment. These distribu-
tions for an energy-transfer process involving two resonances
are depicted in the figure. The functional dependencies of the
energy spectra at various stages are also shown. yl and y2
represent the photon energies emitted by the source and Doppler
shifted by the constant velocity drive (CVD) respectively, y3
shows the photon modification due to incoherent thickness ef-
fects upon passage through the scatterer, y4 represents the emit-
ted energy distribution after scattering by the Fe nucleus, with
second peak indicating relaxation (or magnetic dipole coupling),
and y5 shows the incoherent thickness line-shape modification
of the scattered beam. The SEDM line shape obtained after
analysis with the single-line absorber is I3, and is a function of
the analyzer velocity V„ the natural linewidth I, the total
linear extinction coefficient for electronic absorption p T, the res-
onance energies E;, the relaxation rate 0, and the Rayleigh
scattering cross section in the scatterer, as well as the analyzer
thickness P.
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scatterer, and in this way to determine the presence of re-
laxation by observing deviations from the predicted line
shape. Second, is the ability to calculate the spectrum
with time-dependent hyperfine interaction occurring in
the scatterer to obtain kinetic and dynamic information
by comparison of theory and experiment.

The calculation of the SEDM line shape without relax-
ation occurring in the scatterer has been treated extensive-

ly in the literature 27 and tested experimentally. 2~'

Studies of the various effects such as incoherent thick-
ness, Rayleigh and Mossbauer interference, and
multiple scattering and interference between different
Mossbauer lines in the same nucleus ' have been dis-
cussed before. Coherent thickness effects leading to
Bragg scattering, ' suppression of the inelastic chan-
nels, such as internal conversion ' and the photoelectric
cross section, as well as superradiance, are expected to
be important only under special and well-defined condi-
tions. Many of these effects are discussed in recent re-
views on Mossbauer scattering. " In our discussion of
the application of SEDM to relaxation, such coherent ef-
fects will not be considered.

Incoherent thickness effects, however, which are due to
uncorrelated absorptions, are important for our considera-
tion. A thick sample ' effectively presents a broadened
scattering cross section to the incoming beam, which re-
sults in the outgoing beam line shape closely resembling
the incoming beam line shape. This observation holds for
all thick scatterers and is independent of the details of the
resonance structure of the scatterer (Ref. 27, Fig. 10).
This result simplifies the analysis of SEDM spectra, be-
cause it guarantees that only relaxation (with the impor-
tant exception of coupled or competing nuclear transi-
tions) can shift lines, or in any significant way modify the
line shape. The effect has been checked experimentally
with several samples and remains true even when the
lines are inhomogeneously broadened.

The experimentally observed SEDM line also contains a
Rayleigh component which is elastic, and consequently
appears at the incoming beam energy. The Rayleigh con-

I

tribution can be independently determined by a specially
designed SEDM experiment and simply included in the
computation of the desired SEDM line shape.

The dynamic theory of the SEDM line shape, assuming
a general interaction Harniltonian and arbitrary electronic
relaxation rates, has been developed by other investiga-
tors. ' Their results, however, are restricted to thin
scatterers (P=ncro f=0, where n is the number of Fe
nuclei per cm, ao the maximum resonant absorption
cross section, and f the recoilless fraction), and therefore
cannot be applied to the analysis of experimental SEDM
spectra in general because experiments are usually per-
formed with thick scatterers (P&300). In the following
we have extended the calculations to scatters of arbitrary
thickness, in order to apply the results to the analysis of
our experimental SEDM spectra.

The general calculation of the SEDM line shape must
include all the processes affecting the propagating y ray
during the SEDM experiment, as depicted in Fig. 2. We
consider a y-ray beam emitted by a Co source, scattered
by a thick sample, partially absorbed by a single-line ab-
sorber (the Mossbauer analyzer), and finally detected at a
particular scattering angle. Following the arguments
leading up to Eq. (12) of Ref. 25, the energy distribution I
of the radiation scattered by the sample can be written as

I(E',S)=II(E',S)+II'(E',S),

where E' is the energy of the scattered radiation, S the
resonance energy of the incoming beam, and IM, IIi the
Mossbauer and Rayleigh contributions, respectively. In
Eq. (1) a 90' scattering geometry is assumed so that the in-
terference term between the Rayleigh and Mossbauer
components vanishes and the two intensities can be added.
Following arguments siinilar to those used in Sec. III of
Ref. 25 for the time-independent case, we can calculate
the radiation scattered by a thick sample with a dynamic

Fe environment.
In terms of the differential scattering cross section, the

intensity of the Mossbauer scattered radiation is given by

d o(E,E',0)IM(E', S)=Io dx dE '
,'exp I

—[pT(E)csea ix +p T(E')csca2x] j, (2)

pM(E) =nfo, (E,Q, ), (3)

where n is the nuinber of resonant nuclei per unit volume.
I is the natural linewidth, and a, (E,Q) is the absorption
cross section of the scatterer. The cross section for a
paramagnet in the effective-field approximation is well
known (see, for example, Fig. 11 of Ref. 22). For other

where Io is the intensity of a narrow incoming beam, E
and E' are, respectively, the energy parameters of the in-
coming and scattered beams, ai and a2 are the directional
angles of the incoming and outgoing beams as defined in
Fig. 2, and pT(E) is the total linear extinction coefficient
of the scatterer. The electronic part of pz.(E) is con-
sidered independent of energy (for our purposes) (Ref. 25).
The nuclear part, which is strongly dependent on energy,
is given by

hyperfine interactions and a more realistic spin-relaxation
model, the line shapes required by Eq. (3) can be quite
complex. Some cases of special interest are given in Ref.
26.

The intensity of the scattered radiation is obtained from
Eq. (2). In this expression the integration over x takes
into account the absorption of the beam as it traverses the
scatterer and can be easily performed. The integration
over the incoming beam energy E, however, is not neces-
sarily so trivial. In the stationary case, this integration
can easily be carried out because all the energy-dependent
terms are composed of Lorentzians. In the time-
dependent case this is not true and the integration, in gen-
eral, has to be performed numerically. After a series of
computations, we have determined that, to a good approx-
imation (in most cases of interest), the line shape is not
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1(SS') f1=(E',S)e "' ' ' 'dE (4)

where S' is the Doppler energy of the single-line absorber
and

appreciably affected if pT(E) is replaced by ((bT(S), the
value of the extinction coefficient at the excitation energy.
A comparison of results obtained with the correct but
time-consuming integration procedure and the approxi-
mate computation showed that less than one-half percent
error was introduced by the substitution. We therefore
used this approximation in our numerical line-shape cal-
culations.

Finally, taking into account the effect of the single-line
absorber (or analyzer) attached to drive 2, the SEDM line
shape is calculated from the energy distribution of the
scattered radiation by

P.(rf2)'
p,,(E',S') =

[(E'—S' —E()) +(1 j2)~]T,

The Mossbauer thickness of the absorber is P, =n, trp f~,
where n, is the number of Fe nuclei per unit area and f,
is the recoilless fraction of the absorber, and T, is the
thickness of the absorber in centimeters.

Calculation of the SEDM line shape from Eqs. (1), (2),
and (4) requires the determination of the differential
scattering cross section, which will be discussed next.
During the scattering process represented by Eq. (2), a
Mossbauer nucleus undergoes a transition from a ground
state gi to an excited state f, and then back to another
ground state g2, while a photon with wave vector k and
energy E is absorbed and another photon characterized by
k' and E' is emitted. Following Heitler and Hoyle and
Hall, 4s we write the differential scattering cross section
for this process as

d 0'

dE dE'
&k'g2

I
V If &&f

I

V Ikgi &

g( gi f [(E'—E)—,
' iy][(E—' Ep ) ——,

' iI ]—
where V is the total interaction Hamiltonian between the nucleus and the radiation field, P, is the occupation probability
of an initial state, and y is the width of the ground state due to the incoming beam intensity. For time-independent
processes, the matrix elements in the numerator simply describe the strength of the scattering and the angular distribu-
tion through Clebsh-Gordan coefficients and vector spherical harmonics.

For the analysis of dynamic processes, Eq. (6) can be rewritten by performing a Fourier transformation on the
Lorentzian energy factors. Introducing the incoming beam linewidth I b, and assuming an explicitly time-dependent
Hamiltonian,

=2Re dt dt dt [e ' e ' ' '
&

V+'Vk '(t )Vk+'(t+t, )Vk '(t)&]' (7)
0 0 0

where I, = f dt, f dt f dt, []',
f3

I2 —— f3 t2 t (10)
t~ t2

13= f dt, f dtt f dt[ ]"
The brackets in Eq. (10) represent the stochastic averages
of the time-dependent terms explicitly written out in Eq.
(7). The correlation functions inside the brackets are most
conveniently calculated using the Liouville superoperator
approach. This technique permits the calculation of the
correlation function for all values of the hyperfine param-
eters and a11 relaxation rates. The time integration can
also be easily performed. Several authors have discussed
the evaluation of the SEDM line shape in terms of the in-
tegrals in Eq. (10) and have presented the results formally
as functions of superoperators. '

Following the formalism of Afanasev and Gorobchen-
ko, ' the three terms in Eq. (9) comprising the scattering
intensity of y rays are given by

V'-+' are the interaction operators for the nuclear emission
and absorption and H(t') is the time-dependent Hamil-
tonian for the nuclear-electronic system. (Banarjee
discusses the effect of relaxation on the polarization of the
scattered radiation. Polarization is not measured in our
SEDM experiment and therefore is not explicitly treated
in this development. )

To obtain the SEDM line shape in the presence of re-
laxation, the stochastic average (SA) of the quantity inside
the brackets in Eq. (7) has to be determined. In general,
the stochastic and quantum-mechanical parts do not
separate, and the average has to be taken together, as
shown by Blume. After time ordering is appropriately
accounted for, and introducing t3 t +ti, Eq. (—7—) breaks
up into three terms, with I, =J[[A,J']aJ'A, ]J',

I2 =J[~3[E[~iJ']J'] I
J'0

, =2 Re(I i +I2 +I3 ) (9)
Ii —— J[E[A iJ't]J']Hi I

J-
In Eq. (11), J and J are the emission and absorptionand

Ve '(t) exp +i f =H(t')dt' V'+'exp —i f H(t )dt'
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operators, respectively, connecting the nuclear sublevels,
and the superoperators A~, A2, A3, 8, and E are given by

The Liouville operators M„„are defined by

A~„a=A~ —aA„. (14)

Ai G——, [iE' I—/2],

G„„(u)=
u iA—«+8'

A, =G,s[iE+(I +I, )/2],

A3 G,——s[iE (I—+I i)/2],

B=G~[i (E —E')+I i, /2],

E=6„[—iI ],
where

(12)

(13)

In Eq. (14), A „,A „are Hamiltonians of the system in the
extended space of nucleus and electrons, a is any operator
in this space, and a,~', refer to the nuclear excited or
ground substates, respectively.

Defining the states of the coupled atomic and nuclear
system as Iv&= lfi m;& and IV&= IPf mf & with g;
and ff labeling the atomic states and rn; and mf the nu-
clear states, respectively, we can write the matrix elements
of the superoperators pertinent to the scattering problem
in terms of the matrix elements of the excited and
ground-state Hamiltonians as

(15)

In emission and absorption calculations (appropriate for
transmission work) only the superoperator A,s, which
connects the ground and excited states, appears. The ma-
trix elements for this operator are written in an explicit
notation in Ref. 24 with mf =ms and m;=m„ the nu-
clear ground and excited states, respectively. For the
scattering problem of interest here, the superoperators
A „and A ~ are also required and can be computed from
the general expressions, Eq. (15}, with mf and m;
representing both ground and excited state as required. In
Eq. (13), W is the relaxation superoperator representing
the interaction between the heat reservoir and the elec-
trons. We treat this interaction in the white-noise approx-
imation so that W is independent of energy. The com-
ponents of the superoperator W are functions of the tran-
sition matrix elements Q,J between electronic states i and
j. The structure of the relaxation superoperator under
these conditions is discussed by various authors ' ' and
the matrix elements for a particular model are explicitly
written out in Ref. 24.

The superoperator expression for the scattering cross
section in Eq. (7) is, in general, valid for all values of the
hyperfine parameters and all relaxation rates. However,
to obtain a solution for the line shape in all but the sim-
plest cases is still a formidable computing problem be-
cause the superoperator approach involves computation of
resonance denominators, which are functions of large ma-
trices. In the limiting cases of high and low relaxation
rates, Eq. (9) can be substantially simplified; ' however, it
is in the range of intermediate relaxation rates that most
of the interesting phenomena occur, and it is this region
that needs to be investigated.

For some special cases, such as in an effective-field ap-
proximation, the SEDM line-shape computation can be
carried out analytically and the solution expressed in
closed form as shown in the Appendix. The simplicity of
this relaxation model allows one to follow the contribu-
tion of the various terms to the line shape as a function of
relaxation rate. In particular, it is interesting to observe
the appearance of the elastic peak at the excitation energy,
and to study the difference between Raman scattering and

hot luminescence. ' The analytical solution is useful
for gaining insight into the phenomena normally not
available with a strictly numerical approach.

IV. CALCULATED RESULTS

In this section we present and discuss some sample
SEDM spectra calculated from Eqs. (2) and (4) and the
expressions developed in the Appendix for the effective-
field model. These sample calculations were performed to
gain insight into the relationship between SEDM spectra
and the various physical parameters characterizing the
scatterer, and to assess the information content of an
SEDM spectrum under different conditions. Specifically,
we were interested in determining the dependence of the
SEDM line shape on (i) the relaxation rate 0 and elec-
tronic level population P;, (ii) the Mossbauer thickness pa-
rameter P, which determines the inhomogeneous thickness
effect, (iii) resonance Raman scattering and hot lumines-
cence, ' and (iv} different values for the transverse and
longitudinal relaxation rates, Q~ and Q2.

Figure 3 shows some calculated SEDM spectra for two
different scatterer thicknesses (P=10, P=500) and two
different excitation energies (fifth and sixth resonance
lines in a split scatterer) as indicated by the vertical arrow,
and for equal transverse and longitudinal relaxation rates
(0

~
——+=Q). The columns are labeled by Roman

numerals and the rows by lower case letters. The relaxa-
tion rate 0 is given in units of the natural linewidth. The
first column on the left (I) shows the resonance absorption
cross section for a thin scatterer at various relaxation
rates. The broadening of the lines and the collapse of the
spectrum to a single central line in the motionally nar-
rowed regime is typical of this type of relaxation.
These calculations were performed assuming a thin ab-
sorber, and consequently the observed line-shape modifi-
cations are strictly due to relaxation.

The second column (II) shows SEDM spectra calculat-
ed for excitation of the thin scatterer at line 6 (see Fig. l),
while column III gives the SEDM spectra for the same
excitation of the thick scatterer. Columns IV and V give



INVESTIGATION OF ELECTRONIC RELAXATION IN A. . .

the calculated SEDM spectra for excitation of thin and

thick scatterers, respectively, at the position of resonance,
hne 5. Notice that already for a low relaxation rate of
0=0.5, peaks at the positions of line I (columns II and
IV) and line 2 (columns III and V) in the SEDM spectra
are clearly visible, thus revealing the existence of relaxa-

tion in the sample. In the corresponding absorption cross
sections (column I), the line broadening due to relaxation
is not significant enough to demonstrate relaxation by
transmission techniques until the relaxation rate is an or-
der of magnitude higher. This shows that SEDM is clear-

ly superior to transmission for investigating processes in
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FIG. 3. Calculated SEDM spectra for a Fe nucleus in iron metal in the presence of electronic relaxation approximat& by a two-

state effective-field model. Calculated results are shown for samples of Mossbauer thicknesses p= t0 ' and p= 500, resp ti I, d

two different excitation energies, as indicated by the vertical arrows. Column I shows the absorption cross section, columns II and III
the results for excitation of the thin scatterer, and columns IV and V the results for excitation of the thick scatterer. Relaxation rates

Q, in units of the natural linewidth I, are given between columns I and II.
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the slow relaxation regime.
It is also interesting to note that the difference in the

normalized line shapes for thin and thick scatterers is in-

significant until Q=S.O, when the motionally narrowed
central part of the absorption spectrum tends to "eat out"
a peak in the thick scatterer due to the exponential thick-
ness factor in Eq. (2). This difference becomes especially
pronounced for higher relaxation rates. In the limit of
large relaxation rates [for example, Q= 1000.0, row (j)] we
find the same result previously obtained in the limit of
low relaxation, namely, that excitation of a line off reso-
nance produces, in the SEDM spectrum of thin scatterers,
two lines, one at the excitation energy and one at the
scatterer resonance, but for thick scatterers this produces
an SEDM spectrum showing only a single line at the exci-
tation energy.

Note that the central line in row (j), columns II and III,
is not due to a transfer of energy from the excitation peak
to the central peak but is due to the overlap of two
Lorentzians: the incoming beam profile with the motion-
ally narrowed absorption cross section. How effectively
this overlap is suppressed by the thickness factor depends
on the excitation position (energy of the incoming y ray)
relative to the resonance, as can be seen by comparing row

(j), columns IV and V.
The contribution to the SEDM spectrum from elastic

nuclear scattering, and the distinction between the
resonant Raman process and hot luminescence, ' can be
determined by considering the relative intensities of the

relaxation peak and the excitation peak. For example, in
Fig. 3 [row (c), column II] for a relaxation rate Q=0.5,
the ratio of intensities of the relaxation peak to the excita-
tion peak is II /I6 ——0.20. According to a previous calcu-
lation which included only the hot luminescent part, this
ratio is given by Q/(Q+I ) = —,. The extra contribution
to the peak at excitation in the calculation presented here
comes from the resonant Raman process, ' which was
not included in the limited original theory but is included
in the present superoperator calculation through term I&

in Eq. (10). The effect of this purely nuclear process can
also be observed at higher relaxation rates as a sharp peak
at the excitation energy superimposed on a generally
broader relaxation spectrum, as in the spectrum for
Q=12.5 shown in row h. [This peak is more prominent
in Figs. 18 and 19 of Ref. 27, which shows the energy dis-
tribution of the scattered radiation and, thus, does not in-
clude the broadening effects of the analyzer constant ac-
celeration drive (CAD) in Fig. 1(a).] Electronic Rayleigh
scattering also contributes in a similar way, but the
amount of contribution is constant.

Figure 4 shows calculated SEDM spectra for excitation
of transition 4 [Fig. 1(a)] for different values of the trans-
verse and longitudinal relaxation rates Q~ and Q2. From
these calculations it is seen that increasing QI effectively
increases the relaxation peaks and increasing 02 broadens
the lines of the SEDM spectrum. The two effects can, in
principle, be distinguished in SEDM spectra, whereas as
pointed out earlier by Afanasev and Gorobchenko ' they
are not distinguishable from transmission experiments.

fl& = 0

p ~ p

n& = p5. 0 V. EXPERIMENTAL

SEDM spectra of TPDC[Fe(III)] were obtained using
an experimental arrangement similar to the one described
in a previous paper. The moving Mossbauer source con-
sisted of 165 mCi of Co in a rhodium matrix. The

Qt = p 5

5. 0

Ai = 5. 0

Qp = 0. 5

A
y ly ~ ~ 0

gZ I~ g y~ ~ ~ O~ ~ y$ 4 ~ O~
0

VELOCITY
FIG. 4. Calculated energy distribution of the scattered radia-

tion {y5 in Fig. 2) assuming different longitudinal and transverse
relaxation rates 02 and QI of the electronic super relaxation ma-
trix 8'. Only the inner four lines of the split Fe spectrum
{lines 2—5 in Fig. 1) are shown. The excitation energy is indi-
cated in the figure by the vertical arrows.

I

-16.0
I

-8.0
I I I

0 + 80 + 160
RELATIVE VELOCITY (mm/sec)

FIG. 5. An experimental SEDM spectrum of an iron bar
with a natural content of Fe obtained with the source station-
ary with respect to the scatterer.
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TPDC[Fe(III)] polycrystalline sample was prepared ac-
cording to the procedure described by Wickman and
Wagner, press-packed into a thin lucite dish 2.2 cm in
diameter and covered with a 5-pm-thick sheet of plastic.
The sample handling and mounting procedures were as
described elsewhere. Mossbauer transmission experi-
ments were performed at several temperatures to check
the quality of the sample. Our transmission spectra over
the range of 5.4 to 78 K compared very well with previ-
ously published results, testifying to the quality of the
sample.

The SEDM experiments followed a procedure establish-
ed earlier. First, we determined the maximum instrumen-
tal linewidth broadening, and the channel number corre-
sponding to zero excitation velocity by performing an
SEDM experiment on a bar of natural iron metal. The

Fe nuclei in the metal bar were excited off resonance so
that the elastic scattering was predominantly due to the
electronic Rayleigh scattering cross section. The result is
shown in Fig. 5 and the maximum instrumental }inewidth
broadening determined from this is 0.23 mmisec. A
second set of experiments was performed on a-Fe20i
(92% enriched in Fe with a Mossbauer thickness
P=240) to provide a check on instrumental broadening at

higher velocities and to determine the velocity calibration.
Experimental SEDM spectra of TPDC[Fe(III)] at three

temperatures, 78, 5.4, and 8 K are shown in Figs. 6, 7, and
8, respectively. Each SEDM result is accompanied by a
single-drive scattering spectrum, which represents the
absorption cross section at that temperature [Figs. 6(a),
7(a), and 8(a)]. Vertical arrows show the position of exci-
tation by the constant velocity drive which resulted in the
SEDM spectra shown at the bottom of the figures.

Figure 6 gives the results of experiments performed at
78 K. The spectrum shows that relaxation is occurring in
the sample because there is a shift of the emitted spectral
line from the position of excitation. A similar shift has
been observed in earlier experiments on ferrichrome A

(Ref. 21). For comparison, the dashed line gives the ex-
pected result, assuming no relaxation is present in the
sample.

Figure 7 gives the results obtained at 5.4 K. The
single-drive scattering spectrum, Fig. 7(a), shows a com-
pletely split pattern, although the broad lines imply a cer-
tain amount of relaxation in the sample. Excitation of
line 6 results in the appearance of two lines in the SEDM
spectrum [Fig. 7(b)], one at the position of excitation and
the other, less intense, at the position of line 1. Clearly,
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FIG. 6. Experimental Mossbauer spectra of TPDC[Fe(III)]
taken at 78 K. The single-drive scattering spectrum is shown in
(a) with the vertical arrow indicating the excitation energy for
the SEDM experiments, the results of which are shown in (b).
The solid line gives a theoretical spectrum, assuming the
effective-field model with relaxation. The dashed line shows the
calculated spectrum, assuming no relaxation occurring in the
sample.

FIG. 7. Experimental Mossbauer spectra of TPDC[Fe{III)]
taken at 5.4 K. The single-drive scattering spectrum is shown in
{a) with the vertical arrow indicating the excitation energy for
the SEDM experiment, the results of which are shown in (b).
The solid line gives a theoretical spectrum assuming an
effective-field model with relaxation. The dashed line shows the
calculated spectrum, assuming no relaxation occurring in the
sample.
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VI. DISCUSSION
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FIG. 8. Experimental Mossbauer spectra of TPDC[Fe(III)]
taken at 8.0 K. The single-drive scattering spectrum is shown in
(a) with the vertica1 arrow indicating the excitation energy for
the SEDM experiment, results of which are shown in (b). The
solid line gives a theoretical spectrum, assuming an effective-
field model with relaxation. The dashed line shows the calculat-
ed spectrum, assuming no relaxation occurring in the sample.

an energy transfer due to relaxation is indicated, because
the two lines in the SEDM spectrum are not connected by
the magnetic dipole selection rule. Without relaxation, a
single-line spectrum similar to the one observed after exci-
tation of the sixth line in a-Fe20&, would be expected, as
in Fig. 1(b). Again, the dashed line in Fig. 7(b) gives the
expected SEDM result„with no relaxation occurring in
the sample, and reflects the experimental line broadening
observed in the SEDM spectrum of natural iron metal
(Fig. 5). The solid curve is a calculated SEDM spectrum
using the theory presented in Sec. III and the relaxation
model to be discussed in the next section.

Experimental results obtained with the sample at 8.0 K
are shown in Fig. 8. The excitation energy for the SEDM
experiment is indicated by the vertical arrow under the
single drive scattering spectrum in Fig. 8(a). Excitation at
this energy produces four lines in the SEDM spectrum, as
shown in Fig. 8(b). The line at the excitation energy
represents the sum of the elastic components of the scat-
tered beam. The other lines are due to electronic relaxa-
tion processes occurring in the sample. This will be dis-
cussed in more detail in the next section. Again, the solid
curve represents the calculated SEDM spectrum, includ-
ing relaxation, as mill be discussed in the next section.

Hcf +Hhyper ++n +Hrelax ~ (16)

where the crystalline field spin Hamiltonian H, r, the hy-
perfine Hamiltonian Hh„~„and the quadrupole interac-
tion Hamiltonian H„are given by

H,r=D[S, ——,S(S+1)]+E(S„+Sy), (17)

Hhy~, —AzIzSz+ A„I S„+A„I„S,

H„= [3I, I(I + 1)+(g/2)(I i—+I )] .

(18)

In Eq. (16), H„i,„represents the relaxation interaction
term which at low temperatures is assumed to be strictly

The theoretical SEDM line shapes calculated in Sec. IV
for some selected hyperfine parameters, relaxation rates,
and excitation energies indicate the rich information con-
tent of SEDM spectra. Similar calculations will now be
used to analyze the SEDM spectra of TPDC[Fe(III)] in
order to obtain the electron dynamics.

In TPDC[Fe(III)], the iron is in a structure surrounded
by four sulfur atoms and a bidentate dithiocarbamate
ligand. VA'ckman and Wagner determined that unlike
other similar compounds they studied, TPDC[Fe(III)] has
a full Kramers electronic-level structure with a crystal-
field Hamiltonian H,r= DS„D—=2.1 cm ', whence a
ground state S,=+—', , an effective magnetic field of 540
kG in the ground level at liquid helium temperatures, and
a small quadrupole splitting F& ———0.035 mm/sec.
Mossbauer transmission experiments from 4 to 15 K show
the complete range of paramagnetic spectra, with a sin-

gle motionally narrowed peak at 15 K and a completely
split Zeeman pattern at 4 K. Our interest in this com-
pound stems from the fact that it represents a perfect ex-
ample of a simple paramagnetic structure as revealed by
Mossbauer transmission spectra. With the small quadru-
pole splitting, the spectra are very symmetric and the
whole pattern unfolds over an easily accessible tempera-
ture range.

Our initial reason for studying TPDC[Fe(III)] was to
test in detail the SEDM superoperator line-shape theory
on a well-known system. As this experimental work pro-
gressed, it became clear that SEDM revealed features of
the electron dynamics that were not observed in earlier
studies and that the relaxation in TPDC[Fe(III)] was not,
therefore, actually well understood. In particular, the ki-
netic paths had not been correctly determined from the
preceding experiments and the relaxation parameters 0;~,
the quantities required to construct the relaxation super-
matrix, were not known. We will show how these quanti-
ties can be determined from our SEDM spectra.

The SEDM spectra of TPDC[Fe(III)] shown in Figs. 6,
7, and 8, as well as Wickman's transmission spectra, can
be understood in terms of the high spin ferric model for
the iron nuclear environment introduced by Hoy et al.
In this model the total Hamiltonian appropriate for
describing high spin ferric compounds, such as
TPDC[Fe(III)] and ferrichrome A, is given by
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due to the dipole-dipole Hamiltonian

8 = —,'K g——
i (I —3cos 8J)(S+S 1+S S+j) .

j rJ

(21)

The Hamiltonians Hh„~, and H„establish the nuclear-
level structure shown in Fig. 9(a), which at low tempera-
tures leads to six distinct lines in a Mossbauer transmj. s-
sion spectrum, 1 through 6 in Fig. 9(a). The Hamiltonian
H, i establishes an ionic-level structure as shown in Fig.
9(b).

Each Kramers doublet, although actually degenerate, is
shown as two separate levels for clarity. The levels are la-
beled by their eigenvectors and in general

IA&=a'i
I ~ 2 )+&a

I 2 ~ &+&l
I 2 i &+&41i —

z &

(22)

where the coefficients aJ are functions of A, =EID and, in
particular, for A, =O,

~ P;) are pure magnetic quantum
number states or

~

+ —,
'

),
~

+ —,
' ),

~

+ —,
' ). The maximum

admixture of states is produced when A. = —,'. The relaxa-
tion rates Q,J between the Kramers levels, derived from
the dipole interaction Hamiltonian, are given by

Qif Q(
I (4f I

S-
I @g & I

'+
I &0f I S+ I &i & I

'}'
exp( EfIki—i T)

X g exp( Ek /kii T)—
k

(23)

Hg d K——g —
i [S Sj —3(S rj )(Sj.rj }],

i rJ

where S is the spin of the Mossbauer scattering ion and
the index j extends over all the other ions separated from
the ion of interest by rz and with a spin direction 8J. Our
H„&,„ is the energy-conserving spin reversal term, term 8,
in Dattagupta's expansion of H~.~ given in Ref. 54,

wherei&f, and

6

Q;;= —g Qr.
f=~
f~I

This last relationship follows from detailed balance. In
Eq. (23) kii is the Boltzmann constant, lt; and ff the ini-
tial and final electronic Kramers levels with E; and Ef
their respective energies, and 0 is the "bare" relaxation
rate which is a function of the strength of the dipole-
dipole interaction and includes the contribution from all
ions as in Eq. (20}. For a complete understanding of the
electron-spin dynamics of a system, one has to determine
experimentally the level structure and the relaxation rates
QgJ' 4

It is convenient to introduce another parameter which
is useful in comparing theoretical computations and ex-
perimental SEDM results. Thus, the effective relaxation
rate

0;f
I +(P;/Pf)Q, r

(24}

is a measure of the relative strength of the two competing
processes for depopulation of the initially excited state

~ g;,I,I, ), namely, the nuclear decay process and the elec-
tronic relaxation process represented by the linewidth I
and the relaxation rate Q;r, respectively. For relatively
long nuclear lifetimes, such that I' is small with respect to
(P;/Pf )Q;r, both the initial and final electronic-level pop-
ulations will approach the equilibrium values given by the
Boltzmann distribution. For relatively short nuclear life-
times, such that I' is large with respect to (P;/Pf)Q f, '

very little energy transfer between levels will take place.
The interplay between the static structural parameters

D, E, and A and the dynamic parameters Q;1 is often so
involved that it is difficult, even for "simple" systems, to

(b)
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FIG. 9. Kramers-doublets-level scheme for high-spin ferric iron compounds like TPDC[Fe(III)] and ferrichrome A. (a) The nu-
clear energy levels are labeled by the magnetic quantum number and the allowed transitions are shown as lines 1~6. (b) The elec-
tronic levels are indicated by

~ f; ) =
~
1) through

~
6), a notation which implies the generally mixed spin-state eigenfunctions of the

iron ion. The doublets are actually degenerate in energy but for clarity are shown as split. The possible relaxation transitions from
one electronic spin state

~

i ) to another
~ j) are shown by vertical arrows and labeled by the relaxation rate II,J.
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generate a complete set of consistent spectra with the
same set of parameters over a wide temperature range.
This was only recently accomplished for ferrichrome A

(FA) (Ref. 24) using the nonadiabatic Clauser-Blume re-
laxation theory. A good flt to experimental data over the
complete temperature range of line-shape variability was
obtained. (It should be noted that in this work with FA
only the temperature was changed to generate the dif-
ferent spectra. All the other parameters were kept con-
stant. Thus, there were no free parameters once the
lowest temperature spectra were determined. )

When considering the difficulties involved in determin-
ing electronic kinetics from purely transmission results, it
is interesting to note that the characteristic transmission
spectra of TPDC[Fe(III}] shown in Fig. 4 of Ref. 34, as
well as the single drive scattering spectra shown in Figs.
6(a), 7(a), and 8(a) can be fitted using theoretical models
based on several completely different relaxation mecha-
nisms. These mechanisms are (i) a simple effective-field
flipping model (Ref. 22, Fig. 2), (ii) the Blume-Tjon
effective-field model [Ref. 34, Fig. 4(b)], and (iii) the
Clauser-Blume nonadiabatic spin-relaxation model with
the asymmetry parameter (Ref. 24, Fig. 3} varying be-
tween A, =O and a maximum value of A. = —,'. The models

permit different kinetic paths and therefore give rise to
different matrix elements of the relaxation matrix IV.
These paths are indicated by vertical arrows in Figs.
10(a}—10(c) for the transitions between electronic levels al-
lowed by the three models. Since it is difficult on the
basis of transmission and single drive scattering spectra to
distinguish between such different kinetic paths, even for
a simple system like TPDC[Fe(III)], one wonders about
the conclusions reached from transmission results about
the electron dynamics in more complex systems such as
biological molecules. This observation induced us to in-
vestigate the relaxation in TPDC[Fe(III)] with SEDM and
to test our theoretical techniques on this well-studied sys-
tem.

Let us consider the results of the SEDM experiments
presented in Figs. 6, 7, and 8 in the theoretical framework
of our spin-relaxation model. The SEDM spectrum
shown in Fig. 6(b} indicates the presence of time-

dependent effects by the shift of the scattered radiation
from the excitation position. The dashed line gives the
expected result for no relaxation, i.e., if, for example, the
broad single-line spectrum were due to inhornogeneous
broadening and not due to dynamic effects. The solid hne
is a calculated spectrum obtained from the dynamic
model presented in Sec. III. (Input parameters for the
theoretical calculations were obtained from the experi-
mental conditions. With the exception of the normaliza-
tion which was performed at the excitation peak, there
were no other free parameters. The experimental line
broadening was determined by fitting the calibration spec-
trum in Fig. 5 and the same value for the incoming
beamwidth was then used in all the subsequent calcula-
tions. ) In this high relaxation limit, it is difficult to dis-
tinguish relaxation rates 0,&, even with SEDM. However,
at lower temperatures (and slower relaxation rates) the sit-
uation changes dramatically. The results at 5.4 and 8.0 K
shown in Figs. 7 and 8, respectively, reveal new and in-

teresting details about the relaxation dynamics. Excita-
tion of the outermost line of the split spectrum shown in
Fig. 7(a) results in two lines in the SEDM spectrum, one
at the excitation energy, line 6, corresponding to the tran-
sition

z& Il'~ i&

as shown in Fig. 10(a), and the other at the opposite end
of the spectrum, corresponding to line 1 and the transition

The occurrence of the line at position 1 is directly related
to a "spin-flip" relaxation in the ground Kramers doublet
or ~1 &~~~ 6&. From a theoretical fit to this spectrum, we
obtain a relaxation rate for the process of Qi6 ——4.5 in
units of the natural linewidth I'. This relaxation mecha-
nism is schematically depicted in Fig. 10(c) where it is la-
beled mode A.

The results shown in Fig. 8(b) indicate another relaxa-
tion pathway [labeled mode 8 in Fig. 10(c)] operating in
the sample at a temperature of 8.0 K. This mode
transfers energy between the ground and intermediate

ic

(a)

FIG. 10. Spin-relaxation transitions allowed by three different relaxation models. Electronic transitions between the six Kramer
levels are shown for {a) a two-state effective-field flipping model, {b) a Slume-Tjon effective-field flipping model, and {c)a Clauser-
Blume nonadiabatic spin-relaxation model.
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Kramers levels and is responsible for the occurrence of
the line at position 6' in the spectrum. This process
transfers energy between the ground-state Kramers dou-
blets ~1),

~
6), as shown in Fig. 10(c), and ~4),

~

5). The
line at position 1 indicates a transfer of energy within the
intermediate-energy Kramers doublet, levels ~4) and ~5).

It is interesting to note that modes A and C were not
identified as occurring in TPDC[Fe(III)] in a previous
study which was based solely on transmission results.
From our SEDM results, it is clear that mode A is dom-
inant at low temperatures and mode C becomes important
as the population of the intermediate Kramers levels in-
creases at higher temperatures. This is not the case in
FA, as was determined from earlier SEDM and transmis-
sion experiments. '

In order to understand the different dynamic behavior
of the two paramagnets FA and TPDC[Fe(III)], we need
to obtain a clearer picture of the interplay between the
static structural parameters and the dynamic parameters
which govern the behavior of paramagnetic systems. Let
us concentrate on three parameters: the Kramers-level
population P;, the relaxation rate within the ground level

Q]6, and the relaxation rate between the lowest doublets
Q». These parameters are functions of D, A, , and T. We
consider two cases, one with D = —0.25 cm ' (case 1}
representing a hypothetical compound similar to FA, and

the other with D= —2.5 cm ' (case 2) representing a
compound similar to TPDC[Fe(III}]. We will consider
both weak coupling or slow relaxation with A&I, and
strong coupling or fast relaxation with Q » I . Specifical-
ly, calculations were performed with Q = 1 and Q= 100 in
units of the natural linewidth.

Figures 11(a) and 11(b}give the electronic-level popula-
tion of the doublets, P;, as a function of temperature as
determined by the Boltzmann factor in Eq. (23). Clearly,
the ground Kramers doublet must contribute in a dom=
inant way to the Mossbauer spectrum at low temperatures
when D = —2.50 cm '. Even at 10 K, the population of
the ground-level doublet is more than three times the pop-
ulation of the other two doublets. On the other hand, for
the case D = —0.25 cm ' at 10 K, the level population of
the three doublets does not differ by more than 15go.
Thus, one expects intradoublet relaxation to play a major
role in case 2, but not in case 1, over the temperature
range 1.0 to 10 K. This is confirmed by the calculated re-
sults shown in Figs. 12 and 13 where the effective relaxa-
tions T~s and Tiz for these two cases are plotted.

For D = —0.25 cm ' and A, = —,', at teinperatures down

to about 2 K, the dominant relaxation mode transfers en-

ergy between Kramers doublets [mode B in Fig. 10(c) for
both slow relaxation (Q = 1.0) and fast relaxation
(Q= 100)]. This occurs because T» & Tis, as can be seen
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FIG. 11. Population of different Kramers levels as a function
of temperature for (a) D = —0.25 cm ' and (b) D = —2.5
cm ', A. = 3 and the curves are labeled according to the conven-

tion introduced in Fig. 10, so that 1 and 6 are the ground-state
levels with D~O.
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FIG. 12. Effective relaxation rate T~6 and T~5 [as defined by
Eq. (24)] between levels of the ground Kramers doublet and the
ground doublet and first excited level, respectively, plotted as a
function of temperature for two values of the base relaxation
rate A=1.0 and A=100 (in units of the natural hnewidth) for
k= 3 and D = —0.25 cm
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from Fig. 12. Relaxation of this type was observed in FA
in both Mossbauer transmission and SEDM (Ref. 21)
experiments. For D = —2.5 cm ', the situation changes
markedly for fast relaxation (Q=100), as can be seen
from Fig. 13. In this latter case, relaxation within the
ground Kramers doublet dominates [mode A in Fig. 10(c)
since Tis & T» for low temperatures below 10 K].

The relaxation mechanism depicted in Fig. 10(c) and
Fig. 13 is, in general, consistent with our experimental re-
sults on TPDC[Fe(III)]. Transfer of energy between the
energy levels of the Krarners ground doublet, ~1) and ~6),
was determined to exist at T= 5.4 K by the appearance of
the peak at the position of the No. 1 resonance peak after
excitation of the No. 6 resonance peak (Fig. 7). At T=8
K the appearance of the other two lines in the experimen-
tal SEDM spectrum (Fig. 8) shows the existence of relaxa-
tion between the ground state,

~

1) and ~6), and intermedi-
ate, ~2) and ~5), Kramers doublets, as well as within the
intermediate doublet,

~

2 ) and
~

5 ), and the ground-state
doublet

i
1) and i6).

A schematic picture of the relaxation processes occur-
ring in TPDC[Fe(III)] is shown in Fig. 10(c). The arrows
labeled A, 8, and C indicate the transitions actually ob-
served in our SEDM experiments. A fit of the SEDM
theoretical spectra to the experimental results provided
the relaxation rates Q,J. Spectra calculated from Eqs. (1),
(2), (4), and (Al), which give the best flt to our data at 5.4
and 8.0 K, are given by solid lines in Figs. 7 and 8. For

0 0 I I I
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TEMPERATuRE (X)

FIG. 13. Effective relaxation rates TI6 and T» between lev-

els of the ground Kramers doublet and the ground doublet and
first excited level, respectively, plotted as a function of tempera-
ture for two values of the base relaxation rate 0=1.0 and
0=100 (in units of natural linewidth) and for k= —, and

D = —2.5 cm

the calculations, we used p, =300, p, =14, which was
determined by the Fe content in the sample and the
single-line absorber, respectively, and I b ——2.4, as deter-
mined from the experiment on the natural metal (Fig. 5).
Thus, the calculations were performed without any free
parameters except for the normalization factor which was
determined froin the best fit at the excitation energy (indi-
cated by the vertical arrows in the figures). The results
are summarized in Table I, where the relaxation rates are
given in units of the natural linewidth I .

From the results given in Table I, the strength of the in-

teraction or "bare" relaxation rate Q can be obtained if D
and k are known. Using D = —2.1 cm ' (Ref. 34) and
assuming A. = —,, which gives the maximuin admixture of
states, we get Q= 512 in units of the natural linewidth or
5.24' 10 sec ', which is about 50 times greater than the
value obtained from previous transmission studies of this
compound (Ref. 34). [Our Eq. (23) is a more general form
of Eq. (10)(Ref. 34) with the coupling constant C replaced
by our bare relaxation rate Q.] For smaller values of A,

even larger bare relaxation rates would be required to fit
the data. (For the case A, =0.25, above relaxation rate an
order of magnitude larger would be required to explain
the data. ) In the extreme case A, =0, the relaxation mecha-
nism described by Eqs. (20)—(23) would give Qi6 ——0 and
thus would not explain the lines on the extreme left of the
SEDM spectra shown in Figs. 12 and 13 to first order.
Clearly, an independent determination of k is required to
tie down the coupling constant. Comparing our results
with earlier findings for FA (Ref. 24), where the bare re-
laxation rate Q=1.32 in units of the natural linewidth or
1.35/10 sec ' was obtained, we conclude that relaxation
in FA is consistent with the weak-coupling picture or
slow relaxation with Q=t, whereas relaxation in
TPDC[Fe(III)] is consistent with the strong-coupling pic-
ture or fast relaxation with Q ~ I .

VII. CONCLUSIONS

It seems clear from the calculations and experimental
results presented here that SEDM experiments, together
with superoperator line-shape theory, can provide detailed
information about electronic and molecular dynamics.
Our results show that SEDM determines directly the
dynamic paths of the relaxation processes occurring in the
sample by measuring the energy of the scattered radiation
which is modulated by the processes in the sample. This
information may be difficult if not impossible to obtain
by other techniques.

In the case of TPDC[Fe(III)], we found that at 5.4 K
there is one predominant relaxation path which simulates
a "spin-flip" in the ground Kramers level. This mecha-

TABLE I. Relaxation parameters for TPDC[Fe{III)] obtained from theoretical fits to experimental
data. (Relaxation rates 0;J- given in units of the natural linewidth. }

T =5.4
T =8.0

QI6(A )

4.5+0.3
4.0+1.0

T16

0.82
0.80

nis(8)

0
0.144

&52«)

0
649

T52

0
0.99
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nism has not been observed heretofore with other tech-
niques, such as Mossbauer transmission experiments, be-

cause of their insensitivity to differences produced in line
shapes by various relaxation mechanisms (see Sec. III).

At 8.0 K we again measured with SEDM the spin-flip
transition within the ground-state Kramers doublet.
However, at this temperature we also measured a relaxa-
tion between the ground-state doublet and the intermedi-
ate doublet and another spin-flip transition within the in-
termediate doublet. These observations force a new inter-
pretation of relaxation in TPDC[Fe(III)], as shown in Fig.
10(c) which is still consistent with the Clauser-Blume
theory.

Our results indicate that SEDM is a powerful tool for
relaxation studies, even with the presently available, rather
weak, natural sources of Mossbauer radiation. With the
advent of stronger Mossbauer sources, possibly from fi-
ltere synchrotron radiation and y-ray lasers, such ex-
periments will become much more practical even with
unenriched samples.

ACKNO%'LEDGMENTS

The author would like to thank Professor H. H. Wick-
man, Oregon State University, for suggesting the applica-
tion of SEDM to relaxation studies in TPDC[Fe(III)] and
Dr. R. F. Chen, National Institutes of Health (NIH) for
preparing the samples used in the experiments. He is
grateful to Professor G. R. Hoy, Old Dominion Universi-
ty, for many helpful discussions regarding Mossbauer
scattering and relaxation studies, and to Dr. B. Furu-
bayashi of the Electrotechnical Laboratory, Taneshi
Branch, Tokyo, for indicating the significance of resonant
Raman scattering and hot luminescence in SEDM spectra.
The experimental work was performed while the author

APPENDIX

The effective-field-reversal model permits a closed-
form expression of the SEDM line shape for all values of
the relaxation rate. In this model there is no coupling be-
tween the outer two lines of the spectrum and the four
inner lines. The field reversal merely interchanges the en-
ergies of the nuclear levels (see Ref. 22, Fig. 9). The
smallest independent subsystem for describing this process
in Fe is composed of four nuclear substates (+—,

' for
both excited and ground states) and two electronic states
(+,—) as depicted in Fig. 14. All the possible transitions
between the four nuclear energy levels are given by the
transiton matrix elements J;. The only thing that has to
be provided now to permit the line-shape calculation is
the form of the relaxation matrix W, which determines
the relaxation mechanism. For our two-state electronic
system, the relaxation superoperator matrix elements
(a,P~5

~ y, 5) are"

—0)
0)
0
0

0)
—0)

0
0

0
0

—Q2
0

0
0
0

—Qp

The three terms in Eq. (11) can now be obtained in closed
form for this eight-state, nuclear-electronic system depict-
ed in Fig. 14. Assuming Q~ ——Aq, these terms are given by
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FIG. 14. Energy levels and allowed transitions for the eight-state system. The two electronic states are labeled + and —and the
four nuclear substates + z and ——, where values of 2 for the excited state and 2 for the ground state are assumed.
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8J —— , i,j =1,2 and k&i,
eIJ8kj +0

with

I2 —— g [(1 5b—d )[ed labe+81ad, ]YbcJ,J,
a, b, c,d =1
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3 2J [ 1( ll 1+el) 2)+a2(e2Y1+e2Y2)]

where

a —iQJi
a;aJ+0

i =1,2

(also for y;,5;,e, e'with a; replaced by c;,d;, e;,e, respec-
tively)

The terms comprising Eq. (Al) are written out explicit-
ly in Table I of Ref. 27. The eight-state„nuclear-
electronic system is the basic structure unit for calculating
the SEDM spectrum of Fe in the effective-field model.
Transitions Jl and J2 give the four inner lines (2,3,4,5) of
the full six-line Fe spectrum, as shown in Fig. 2. To ob-
tain the outer lines, we have to include transitions between
the ground-state levels (+ —, ) and the excited levels (+ —,

' ).
These can be treated as a special case of the eight-state
system with J2 ——0, J1 ——Jq, where

J3=(+-', V i+-,' )'.
Combining transitions J1, J2, and J& gives the total

Fe spectrum. For a degenerate nuclear ground state
(50=0, J2 ——0), Eqs. (Al) reduce to much simpler expres-
sions:

a,q
E' b tj i (—I—/2+——Q ),

b,j (E E' d——,j )+—i (I b—/2+Q),
c1

=E —6,) + I [(I + I b )/2+ Q], e,j—— d;I i ( I —+Q )—,

~1 1 5 50 d 1 1 d21

~21 (5 50) dl2 d22 250

~12 5+50 d 11 d 21

~22 (5+50)~ d12 d22

b+iQ
b +Q

a 1 2 (E'+5) ——i (I /2+ —Q),

c12 (E+5)+i——[(I b+I )/2+Q)],

d12 (E+5) i [——(I b+ I )—/2+ 0],
b =(E E)+1(I b/2+ Q)—,

el —— i (I +—Q), e2 —— i (I +Q—),
e'1 —— 25 i (I —+Q)—, e2 =+25 i (I +Q—) .

'H. H. %'ickman and G. R. Wertheim, Phys. Rev. 148, 211
(1966); and, in Chemical Applications of Mossbauer Spectros-
copy, edited by V. I. Goldanskii and R. H. Herber (Academic,
New York, 1968), p. 548.

G. Lang and %'. Marshall, Proc. Phys. Soc. London 87, 3
(1966).

K. Spartalian, in AdUances in Mossbauer Spectroscopy Applica-
tions to Physics, Chemistry and Biology, edited by B. V. Tho-
sar, P. K. Iyengar, J. K. Srivastava, and S. C. Bhargava (El-
sevier Scientific, New York, 1983), Chap. 8, pp. 455—486.

4E. R. Bauminger, S. G. Cohen, E. Giberman, I. Nowik, and S.
J. Ofer, J. Phys. (Paris} Colloq. 37, C6-227 (1976).

5H. J. Ubelhack and F. H. %'ittmann, J. Phys. (Paris) Colloq.
37, C6-269, 1976.

6H. %'inkier, H. J. Heinrich, and E. Gerdau, Phys. (Paris) Col-

loq. 37, C6-26 (1976).
~J. A. Tjon and M. Blume, Phys. Rev. 165, 456 (1968).
%'. Kundig and R. S. Hargrove, Solid State Commun. 223, 7

(1969).
98. Balko and G. R. Hoy, J. Phys. (Paris) Colloq. 37, C6-89

(1976).
' I. P. Dzub and A. F. Lubchenko, Fiz. Tverd. Tela 3, 2275

(1961) [Sov. Phys. —Solid State 3, 1651 (19621].
J. E. Knudsen and S. Morup, Proceedings of International
Conference on Mossbauer Spectroscopy, Bucharest, Romania,
1977 (unpublished).

'2A. J. F. Hoyle and J. R. Gabriel, Phys. Lett. 19, 451 (1965).
' F. Van der froude, Phys. Status Solidi 17, 417 (1966).
' G. K. Shenoy, B. D. Dunlap, S. Dattagupta, and L. Asch,

Phys. Rev. Lett. 37, 539 (1976); S. Dattagupta, Phys. Rev. B



33 INVESTIGATION OF ELECTRONIC RELAXATION IN A. . .

12, 3584 (1975).
' G. R. Hoy and M. R. Corson, J. Magn. Magn. Mater. 627, 15

(1980).
6G. R. Hoy and M. R. Corson, in Mossbauer Spectroscopy and

Its Chemical Applications, edited by J. G. Stevens and G. K.
Shenoy (American Chemical Society, Washington, D.C.,
1981),Chap. 21, p. 463.

'7S. L. Ruby and J. M. Hicks, Rev. Sci. Instrum. 33, 27 (1962).
'8S. Margulies and J. R. Ehrman, Nucl. Instrum. Methods 12,

131 (1961).
' A. M. van Diepen, 2C3, International Conference on Magne-

tism, Amsterdam, 1976 (unpublished).
oP. P. Wintersteiner, Ph.D. dissertation, Boston University,

1976.
2'B. Balko, E. V. Mielczarek, and R. L. Berger, in Frontiers of

Biological Energetics: From Electrons to Tissues, edited by P.
L. Dutton, J. S. Leigh, and A. Scarpa (Academic, New York,
1979), Vol. I, p. 617.

22H. H. %'ickman, M. P. Klein, and D. A. Shirley, Phys. Rev.
152, 345 (1966).

2 B. Balko, E. V. Mielczarek, and R. L. Berger, J. Phys. (Paris)
Colloq. 40, C2-17 (1972).

24G. R. Hoy, M. Corson, and B. Balko, Phys. Rev. 8 27, 2652
(1983).

58. Balko and G. R. Hoy, Phys. Rev. 8 10, 36 {1974).
zsB. Balko and G. R. Hay, in Mossbauer Effect Methodology,

edited by I. J. Gruverman (Plenum, New York, 1974), Vol. 9.
B. Balko and G. R. Hoy, Mossbauer Spectroscopy: Applica-
tions in Physics, Chemistry and Biology, edited by B. V. Tho-
sar, P. K. Iyengar, J. K. Srivastava, and S. C. Bhargava (El-
sevier Scientific, New York, 1983), Chap. 8, pp. 455—486.

B. Balko and G. R. Hoy, Physica 86—888, 953 (1977).
3oB. Furubayashi and I. Sakamoto, J. Phys. (Paris) Colloq. 40,

C2-677 (1979).
A. M. Afanasev and B. D. Gorobchenko, Zh. Eksp. Teor. Fiz.
67, 2246 (1975)[Sov. Phys. —JETP 40, 1114(1975)].
F. Hartmann-Boutron, J. Phys. 37, 537 (1976).

S. Banarjee, Ph.D. dissertation, State University of New York
at Stony Brook, 1977; Phys. Rev. 8 19, 5463 (1979).
H. H. %'ickman and C. F. Wagner, J. Chem. Phys. 51, 435
(1969).
B.Balko, Ph.D. dissertation, Boston University, 1973.

36D. G. Klissurski and I. G. Mitov, J. Phys. (Paris) Colloq. 40,
C2-353 (1979).

378. H. Huynh, E. Munck, and %'. H. Orme-Johnson, J. Phys.
(Paris) Colloq. 40, C2-526 (1979).
B. Balko and G. R. Hoy, Phys. Rev. 8 13, 2729 (1976).
J. P. Hannon and G. T. Trammell, Phys. Rev. 169, 315 (1968);
186, 306 (1969);J. P. Hannon, N. J. Carron, and G. T. Tram-
mell, Phys. Rev. 8 9, 2810 {1974).

~Yu. Kagan, A. M. Afanasav, and I. P. Perstnev, Zh. Eksp.
Teor. Fiz. 54, 1530 (1968) [Sov. Phys. —JETP 27, 819 (1968)].

4~Yu. Kagan and A. M. Afanasev, Zh. Eksp. Teor. Fiz. 49,
1504 (1965) [Sov. Phys. —JETP 22, 1032 (1966)].

4 D. C. Champeney, Rep. Frog. Phys. 42, 1016 (1979).
~3J. P. Hannon and G. T. Trammell, Optics Commun. 15, 330

(1975).
~J. H. Terhune and G. C. Baldwin, Phys. Rev. Lett. 14, 589

(1965).
45F. E. Wagner, J. Phys. (Paris) Colloq. 37, C6-673 (1976).

B. Balko and G. R. Hoy, Phys. Rev. 8 10, 4523 (1974}.
4~W. Heitler, Quantum Theory of Radiation (Clarendon, Ox-

ford, 1954), pp. 196—204.
A. J. F. Boyle and H. E. Hall, Rep. Frog. Phys. 25, 455 (1962).

~9M. Blume, Phys. Rev. 174, 351 (1968).
5 S. Dattagupta, Phys. Rev. 8 16, 158 (1977).
5'M. J. Clauser and M. Blume, Phys. Rev. 8 3, 583 (1971).
52Y. R. Shen, Phys. Rev. 8 9, 622 {1974).
53Y. Toyogawa, A. Kotani, and A. Sumi, J. Phys. Soc. Jpn. 42,

1495 (1977).
54S. Dattagupta, Phys. Rev. 8 12, 3584 (1975).
55J. P. Hannon, Bull. Am. Phys. Soc. 27, 453 (1982).

G. C. Baldwin, J. C. Solem, and V. I. Goldanskii, Rev. Mod.
Phys. 53, 687 (1981).


