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Analytical determination of the density-of-gap-states distribution in amorphous semiconductors
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%e report on the analytical solution of the Fredholm integral equation of the first kind which relates the
induced space-charge density, p( V), to the density of gap states, W(E). The formula for W(E) is given

for the general case in which p( V) can be expressed as a polynomial function of the band-bending po-

tential V.

p( V) = —e N(E)[f(E —eV) f(E) jdE, (1)—
where f(E) is the Fermi function, e the electronic charge,
and V the potential inside the semiconductor.

By putting

y = exp(e V/kT), a = exp( —Ef /kT)

and introducing the variable

z = exp(E/kT)

Eq. (1) can be written as

p(V) = —e (y —I)~(z)
dzy+ az

(4)

The knowledge of the density-of-states (DOS) distribution
in the energy gap of a semiconductor is a fundamental prob-
lem for the determination of its electronic properties. Up to
now, many techniques have been used to determine the
density of states. Unfortunately, each of them presents the
same limitations and, generally, the predictions of one
technique do not coincide with those of another one. One
of the more used techniques is the field-effect technique
which allows one to measure the induced change in conduc-
tance of the semiconductor when an external voltage Vq

produces a bending of the mobility edges of the valence and
conduction bands upwards or downwards for negative or
positive values of V~, respectively. The bending is due to
an electrostatic potential V(x) which obeys Poisson's equa-
tion. The potential distribution in the space-charge region
depends on the density-of-states distribution, N(E), in the
energy gap.

Lately, the method of calculation of N(E) has been im-
proved;2~ the calculation is based either on an iterative
self-consistent method' or on a deconvolution procedure.
Both methods have several limitations. The iterative
method does not allow one to decide about fine structures
in the density-of-states curve, ' awhile the deconvolution pro-
cedure leads to a set of algebraic equations ~hose solution
is, generally, physically unreasonable. '

In this note, we obtain a formal analytical solution of the
Fredholm integral equation of the first kind which relates
the density of the space charge p( V) to the density of states
N(E):

where

Q(t) e nto(z)dz
&0

we get formally

s+z (10)

Second, we have that if the integral (10) converges for a
point s = zo not on the negative real axis, then it converges
for every such point. Furthermore, (i) it converges uni-
formly in any closed bounded region not containing a point
of the negative real axis, and (ii) it represents an analytical
single-valued function in the complex-s plane cut along the
negative real axis. %e notice that our problem is reduced to
finding an inversion formula for Eq. (8).

In order to illustrate the procedure of solution of Eq. (6),
we limit ourselves here to providing an explicit example. In
doing so, let us assume that the space-charge density is a
polynomial function of the potential V:

p(V)=a, V+a, V2+ +a„V" .

where V = (kT/e) lny and

to(z) akTN(kT lnz)/(az+ 1)

It can be easily shown that Eq. (4) is the Stieltjes integral
equation

(a/e)(l —ax') 'p(kT ln(ax')/e) ~, dz —=$(z)4 o x'+z
(6)

where

x'- y/a

Therefore, the problem of solving the Fredholm integral
equation is reduced to that of solving the Stieltjes equation
and determining, when it exists, the inverse Stieltjes
transform, to(z). To this aim, for the reader's convenience,
we recall some properties of the Stieltjes transform (see, for
example, Ref. 6).

First, the Stieltjes transform is connected to the Laplace
transform in a simple way. In fact, if

P(s) = e Q(t)dt (8)
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It must be noted that in Eq. (11) the zeroth order term is
missing; this has both physical and mathematical reasons.
From Eq. (1), if V-0, p(V)-0, which occurs in flat-band
conditions. On the other hand, the inverse Stieltjes
transform does not exist if p( V) is a constant. Moreover,
this seems to exclude the possibility that the potential distri-
bution inside the semiconductor has a parabolic profile, un-
less the density-of-states distribution in the energy gap is
null.

Inserting Eq. (11) in Eq. (6) and taking account of Eq.
(2), we obtain

ai
FI

Im s

g(x') =P(y/a) -— p lnye1—y e

where

XA lnya 1

e 1-y (12)

kT
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e
(/tt-1, 2, . . . , n)

FIG. 1. Contour of integration of integral (14).

Now, let us consider the integral

1
' lns

. )e'" ds,
2mi r 1-s (14)

where s is a complex variable and I is the contour of Fig. 1,
where CBA and FED are arcs of a circle of radius R whose

l

center is the origin 0, and GHI is the arc of a circle of
radius a (also with center at 0). Since the function
ln s/(1 —s) is analytic inside I' and the integrals around the
arcs CBA, FED, and GHI vanish as R ~ and ~ 0,
respectively, we are led to the expression

lim ) e" ds-1 Ines 1 ~ +' e"In~s " e (in~xi+in )~ds+ dx+2ni~r 1 —s 2ni -& 1 —s & -cto 1 —x 4
e 0

from which we have

t o+ loo esf lnIN$0 (t)—= ds
2~i ~ ~-&~ 1 —s

2mi 40 1+x dx, 16
1

" e ~(inx —in) —(lnx+in)~ ~

Coming back to Eq. (12) and taking account of Eqs. (6),
(9), (10), and the additivity property of the Laplace
transform, we can write

(

1 ~ +' a " ln~s0(t)- . e" —X A ds2~i 4~-l~ e
&

1 —s

~here the change of variable x —x has been performed
in both the integrals of the right-hand side of Eq. (15).

It is easy to see that the quantity (16) can be written as

0 (t)=„, e

-—XA0 (t),
e m-t

where 0 (t) is given by Eq. (17).
Comparing Eq. (20) with Eq. (9), we find

(20)

IN Nl
x X ( —1) "+' / n" ' (lnx) "dx (17)

co(x)- —X A eu (x),
e m-i

(21)

where it = 1, 3, 5, . . . (odd integer). Since [see Eq. (9)l

0 (t)=J, e "ru (x)dx, (lg)

where a& (x) is supposed to be a continuous function, the
comparison of Eqs. (18) and (17) gives

W(krinx) - X ~. .(x)IN IN (22)

where cu (x) is furnished by Eq. (19).
Finally, inserting Eq. (21) in Eq. (5) we get the formula

IN Nl
(x) = Q ( I)(a+1)/2~6 —I (inx)ss —a

1+x ~q h (19) for the density of states N.
In conclusion, the problem of the determination of the
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density-of-states distribution in the gap of amorphous semi-
conductors is reduced to the determination of the analytical
dependence of the induced charge density p on the band-
bending potential V(x); this can be done, for example, ei-
ther by measuring the density charge at the insulator-
semiconductor interface, p( Vs), by capacitive techniques or

by calculating p( Vs) by field-effect measurements, '
Vo be-

ing the potential at the interface (x-0). p( V) can be ob-
tained by fitting p( Vs) data for different field voltage VF,
since'

V(x, Vs+LE Vs) V(x —hx, Vs)
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