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Wave functions at the critical energy separating localized and extended states in disordered electron sys-

tems are sho~n to have fractal structure. We present results for the fractal dimensionality numerically cal-

culated for a two-dimensional system with Landau quantization in strong magnetic fields together with a

turbulent structure when the phase of the wave function is considered. Implications for transport properties
are discussed.

The current interest in fractal geometry' in solid-state
physics leads naturally to the question of how this concept
manifests itself in quantum systems. In fact, the analysis of
the fractal systems so far, which includes infinite clusters at
percolation threshold, diffusion-limited aggregates, ' and
colloidal emulsion, has primarily concentrated on classical
systems, and a clear picture of a quantum fractal is desired.
I was the first to show that wave functions in electron sys-
tems at the Anderson transition, at which states become lo-
calized due to disorder, have a fractal nature. ' In this paper
the fractal dimensionality of the wave functions is calculated
for systems in a continuous space, and implications of the
fractal wave function for transport properties are explored.

Before presenting results let us briefly review the discus-
sions leading to fractal wave functions. In an electron sys-
tem with disorder, a mobility edge E, separates localized
states from extended states on the energy spectrum. The
question is, what is the wave function at E, like. Starting
from Wegner's argument for the participation ratio p,
which is the reciprocal of the mean fourth po~er of the
wave function (p), I point out that the critical behavior of
p 0 as E E, implies that the wave function at E E,
has to occupy an infinitesimal fraction of the total volume
of Le in the space of dimensionality d.s Since f at E,
should be extended as well, the only way to accomplish this
is to have a wave function which is filamentary and extends
over the ~hole system as a network. The nature of this
structure is suggested by a scaling argument. The real-space
renormalization approach' to Anderson localization sho~s
that E, corresponds to a fixed point in the renormalization,
at which the renormalized Hamiltonian has a scale invari-
ance. This is reminiscent of the fluctuation at a phase tran-
sition, at which the critical fluctuation is similar on every
length scale. Hence the picture emerges that the wave func-
tion at a mobility edge has a fractal nature with a scale-
invariant network structure. The range of length scale over

which P may be regarded as self-similar depends on the
physical system considered. In short, a wave function at E,
has large, but special (self-similar) fluctuations. 9

One should note that, although percolation with fractal
critical clusters' is sometimes regarded as a classical counter-
part to localization, the physics involved in Anderson locali-
zation is quite different from that involved in percolation, in

that the former is essentially a quantum effect governed by

quantum tunneling and interference.
We encounter a self-similar wave function in other physi-

cal systems with a typical example being the almost periodic
system. ' " In a tight-binding system in an external period-
ic potential of periodicity incommensurate with the lattice
constant, wave functions have self-similar structure with a
Kantor-set energy spectrum. One can develop an exact scal-

ing property by a renormalization-group method in this
case, awhile the wave functions at the randomness-driven
transition discussed here has a statistical scale invariance.

To explore the nature of wave functions at E„weuse
here the two-dimensional (2D) electron system with ran-

dom potentials with Landau quantization in a magnetic
field. This system is of particular interest, since, apart from
the quantum Hall effect' realized in this system, we can
work on a continuous space rather than a tight-binding sys-

tem, and, second, the position of the mobility edge has
been worked out in detail. "

When a magnetic field is applied in a two-dimensional
electron system, the density of states collapses into a series
of Landau levels. In the presence of random potentials,
each Landau level broadens with a width I . Although we
can take Gaussian functions as a basis in a magnetic field,
the envelope of a localized state is shown to be exponen-
tial. " The inverse localization length a(E) is shown" to be
a continuous function of E, touching the n = 0 axis at the
center E~ of each Landau level of Landau index N, which

may be identified as E, .
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FIG. 1. A typical wave function, whose eigenenergy (-Eo
—0.003I' } is closest to E,-Eo for the system of size
L -(2mNL)'~ I with NL -256 being the total number of states for
N 0. We depict the region where the amplitude of p is appreci-
able ((p~ &0.025 for the normalized p with I l), outside of which

ittI damps off exponentially.

An example of P at Eg is shown in Fig. 1 for the N =0
(lowest) Landau level. This is a typical eigenstate with an

eigenenergy closest to Eti for a large but finite [40I &40l
with l (ct/eH ) t z being the cyclotron radius] system in

periodic boundary conditions with dense (c,-l0), short-
range scatterers distributed at random. The expected net-
work structure for Q is clearly exhibited. We have actually
calculated the fractal dimensionality D of i'. The fractal
dimensionality of an object is its Hausdorff dimensionality. '

Its original definition is that, when an object is covered by
elements of linear dimension AL, the number n of elements
required behaves as n —hL D. Here we adopt the original
definition, since this definition does not depend on the
choice of origin, so that it is applicable to any (random
and/or finite) systems. In Fig. 2 an example is shown of
the log-log plot of the number of elements required to cover
the regions where [ill ~ has appreciable amplitude, versus the
size of each element. Since a wave function is a linear com-
bination of the Gaussian Landau wave function of size I,

the lower limit of the length scale for the fractal is naturally
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FIG. 2. The number of elements (n) required to cover Itf, as
shown in the top panel, vs the inverse linear dimension (31 ) of
each element is plotted in logarithmic scales. The broken line indi-

cates the Hausdorff dimensionality of two. D ( = 1.60 for the exam-
ple here) is determined by the least-squares fit to the data.

of O(l) The fina. l D is obtained by an ensemble average
over 80 samples, in which 127 states with eigenenergies ly-

ing within 0.008I of the level center are taken. The result
shows that D = 1.57 J0.03.

Now let us comment on this result. First, in a 2D ran-

dom system in strong magnetic fields considered here, the

f Itn' jl.

ili l ~
' ',n'I'~l

')I' ~l&'&+st f s fgI

, i

~P Pw~& f w+'tt))&~+4 A~&+&&~w&& V V

P~XQ'tttQe, ~~ 4 A A ~»»~~~ V t V

~'tt, ggli54 kyyV A»&~~ O' J V V

, I, i
y A c~&V t A, 4 V»&&W V

t zC. PCCiC+ t

It t ~VVAAAht +&c ~ c+
Itgcgg ~

SI P'P V&~qd 4 l k J S&vw~~
lt/P ~~ & g d 4 V V V V V

sI IS' P ~» A A il A V Y V Y 4 ~
ti/ / 0 0' ~ 'h A h A A t & Y Y 4 & ~

W W'at ~-===~ME it' V 4 ~ 4 A h h t & & V V 4 4 ~ & 4 4
~ ~~w== = = = ~ P j' V 4 ~ g h h t h w & P V V 4 4 4 4 0 &
~&»~~~~~~~k' V V 4 VY V &a~&&& V V 4 44&
& c.y y ~ c + ~ ~ w w & V V l a r & V y ~ a cx c.a
V VAAht'Vk't hh VVVP&t t

Y V V 4 g it bc&&c~y~ l-ce
&+re»+»~r&Y44&~qg V V V h VC&~+~~~~~~»&4 V 4 4&~wc Y Y4 y y

4 4 4 ~~g
hA+g»444 V PVCce +4, &r~w44%w
E| hAA+4 v v vrvs~~e&
+ V 't E w~& f O' V V V v A h
t WVW&&~+A'VVYlo. & & w y y y y v & c C s c
A by&~«~cl y4g~ w r r ~ c C C c.
h hy~&cx~&s- I V 4 ere
t W~~«c««c. t VW~(&~a~~~»

&&cc j. y $y V

V y

he current density, j(r), is plotted for the eigenstate sho~n in Fig. 1. The vector, j(r), in a continuous 2D space is represe t d
by arrows in a region where j(r) has appreciable amplitude ( 0.0&6e&/m) with the length of each stem proportional to j(r). The right
panel is an enlargement.



HIDEO AOKI 33

electronic structure depends strongly on the nature of ran-
dom potential. '~ In the above example, we consider the
limit of short-range scatterers, in which the quantum jump
of cydotron motion is maximal, so that the wave function
may be called a quantum fractal. In the opposite limit of a
slowly varying potential, on the other hand, the motion of
an electron reduces to a drift along equipotential lines, Per-
colation theory" for a random potential in a continuous 2D
space shows that there is always a percolating path at
E Eg, so that the state at E~ in this opposite limit corre-
sponds to a critical path, which is again a fractal.

It is noted that the obtained fractal dimensionality of 1.6
is similar to that of the geometrical pattern called a
Sierpinski gasket (or arrowhead) in the literature. ' If we go
to 3D systems, the wave function at E, is expected to have
a fractal dimensionality less than three, which may possibly
be similar to that of a fractal skewed web, a 3D analog of
the Sierpinski gasket. It may be interesting to note that the
critical percolation clusters' in 2D and the diffusion-limited
aggregates3 in 2D also have a fractal dimensionality close to
1.6, although the existence of some universal fractal dimen-
sionality is unlikely.

Another point of much importance is specific to systems
in magnetic fields. In a magnetic field, a wave function has
to be complex with P(r)- ~P(r)~exp[i@(r)]. It has been
shown'a that there is an extra structure in p related to the
behavior of the phase. If we look at the gauge-invariant
current density, j(r) - (et/m ) (p('(Vp —eA/ct), f is seen
to have a striking turbulence structure as shown in Fig. 3.
The current, which is divergence free for a stationary state
due to the equation of continuity, exhibits a number of vor-
tices. At E-E„the wave function in a magnetic field
should thus in fact be called a turbulent fractal. "

The concept of a quantum fractal can be a key concept in
understanding some of the basic properties in disordered
systems. Here I comment on its relevance to the transport
property. In the localized regime belo~ E„each state is
confined within a finite region. However, if we consider the
conduction paths along which low-temperature, phonon-
assisted hopping [variable-range hopping (VRH) ta] takes
place, the paths extend over the whole system. %e can
consider this type of network woven out of states with ener-
gies within hE (optimized for a given T in the VRH) of a
given E as shown in Fig. 4 to ask ourselves what their frac-
tal dimensionality is. The dimensionality of the network
should again be lower than that of the host system
(D 1.75 for the example shown in Fig. 4 for a 2D sys-
tem). Now, in standard VRH theory, the total number of
states involved in the hopping conduction is assumed to be
L~ times the density of states per unit volume in a region of
linear dimension L, from which the conductivity,
o —exp[ —(Ta/T)t~'~+"], results. The above considera-
tion shows, however, that the relevant states form a fractal
as a whole with the number of the states behaving like LD

instead. This is quite physical, since the conduction takes
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FIG. 4. An example of the set of localized wave functions form-
ing an extended network with their eigenenergies close to a given
energy. Here three states are shown with (E—Ea)/I' —0.348
(shaded), —0.332 (), and —0.317 (0) by a similar plot as in
Fig. 1.

place along a network, in which only a fraction of the states
participate. ' The hopping conductivity should then be re-
placed by o —exp[ —(To/T)t ' +"], i.e., the power (v) of
T is predicted to be larger than 7 (T ) in 3D (2D).

In the critical-percolation-path method, ' which is one of
the standard theories used to derive the VRH, the hopping
conduction is related to a classical percolation path, so that
the critical hopping path always has the structure of a critical
percolation cluster. The fractal dimensionality, D~, of the
critical cluster at the classical percolation has been exten-
sively studied, 2' but the results for D~ vary according to the
definition or the method used to calculate the quantity.
Hyperscaling gives D vd/(I+I/8), where the index 8 is
estimated to be 5 (18) in 3D (2D), but this result deviates
from the fractal dimensionality of about 1.6 for the back-
bone of the critical cluster in 2D obtained by Kirkpatrick. '
Thus the determination of the precise values and relation of
D and D~ remains a future problem.

The experimental results for the VRH for 2D electron
systems in strong magnetic fields ranges from v = T (Ref.
22) to ~."' We should, however, note that (i) the experi-

mental results quoted above are obtained for E~ in the tail
region (minimum of the density of states between adjacent
Landau levels), where locahzation is the strongest and a lo-
calized state can be almost Gaussian rather than exponen-
tially localized, and (ii) the electron-electron interaction,
which is neglected here, can give rise to effects such as a
Coulomb gap.
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