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Extension of the Lang-Kohn work-function calculation to the density of metallic hydrogen
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%'e have made a calculation of the work function of metallic hydrogen using the approach given

by Lang and Kohn. %e made the calculation using the jellium model and taking for metallic hydro-

gen r, = 1.0. The value we obtained for the work function is 4.67 eV.

Metallic hydrogen is a material which has attracted
considerable interest recently. ' ' The prediction and
knowledge of its properties is becoming important.

It is known from experiment" and theory' ' that the
value of the work function depends on the crystalline face
considered. It is clear that the ionic potential plays a cru-
cial role in this anisotropy of the value of the work func-
tion.

On the other hand, when the jellium model is used to
compute the work function for simple metals in polycrys-
talline form, a good agreement with experimental results
is obtained. '

If the effect of each inetal ion on the conduction elec-
trons is taken into account in order to calculate the work
function in a realistic way, a very difficult problem arises:
solving a self-consistent, three-dimensional system of
equations. ' What Lang and Kohn' did in order to avoid
this difficulty was to use pseudopotentials and perturba-
tion theory. They considered that the replacement of the
uniform background by the ion pseudopotentials
represents a small perturbation 5u(r), and taking the per-
turbation to first order, they gave an expression for the
change of the work function with respect to the value they
found using the jellium model. Within this approxima-
tion Lang and Kohn calculated the variation of the value
of the work function from one crystal face to another for
some metals. Monnier and Perdew' and Monnier, Per-
dew, Langreth, and Wilkins' made a generalization of the
approach given by Lang and Kohn to deal with the in-
clusion of the effect of the ions on the conduction elec-
trons, and treated the discrete lattice perturbation [5u(r)]
variationally. Their calculation is reduced to the one by
Lang and Kohn in the limit of weak 5u(r). The results
obtained in Ref. 13 for the jellium model and for the
value of the work function for different crystal faces in
Ref. 14 agree with the results of Lang and Kohn, al-
though the approach in Ref. 14 is more accurate. The
pseudopotential used in all cases was an Ashcroft pseudo-
potential. "

If we were interested in calculating the work function
of metallic hydrogen for different crystal faces, we would
have to assume a specific crystal structure for this materi-
al and to choose a pseudopotential different from

Ashcroft's pseudopotential because a metallic hydrogen
ion has no inner core. Perhaps we could construct a pseu-
dopotential for metallic hydrogen using the method given
by Manninen et al. ,

' which has been applied with some
success to aluminum. In this method the pseudopotential
is constructed using the electronic density around a metal
ion. It is a first principles pseudopotential.

We are interested here in the value of the work function
for metallic hydrogen in polycrystalline form. From
Refs. 12—14 we conclude that the jellium model is ade-
quate for this purpose.

On the other hand, following Lang and Kohn, ' if we
take a simple arithmetic average, for qualitative purposes,
of the values of the work function for different crystal
faces for every one of the metals studied in Refs. 12—14
we get values which are very close to those obtained using
the jellium model.

In this work we made a calculation of the work func-
tion of polycrystalline metallic hydrogen, using the jelli-
um model for the metal. We have followed the approach
given by Lang and Kohn. ' ' They use the formalism of
Hohenberg, Kohn, and Sham, 's'9 and perform the calcu-
lation of the work function for values of r, between 2.0
and 6.0. It seems that for metallic hydrogen we should
expect a value of r, between 1.0 and 2.0, ' so we have ex-
tended their calculations to the case r, = 1.0. Their results
obtained using the jellium model are in good agreement
with experimental values. These results are even im-
proved a little (-5—8%) when they include the effect of
the lattice using a pseudopotential.

For the convenience of the reader we describe briefly
the method we followed and for more details the reader
may see Refs. 12 and 17.

Defining the work function 4 as the minimum energy
required to remove an electron from the inetal at 0 K, it
can be shown that'

where hP is the change in the electrostatic potential
across the dipole layer create by the "spilling out" of the
electrons at the surface and P is the chemical potential of
the electrons in the bulk relative to the mean electrostatic
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Pl, X +0n+(x) =
0, x~0.

The corresponding expression for P is

1

I = &kF+I [~ol

where k~ is the bulk Fermi wave vector and p„,[no] is the
exchange-correlation contribution to the chemical poten-
tial.

Notice that in order to find hP we need to know n (x)
and to know n (x) we need to know the efftx:tive potential
on the electrons. This effective potential includes bP. In
this way we have a self-consistent problem.

When the Hohenberg-Kohn-Sham formalism is used to
find the electronic density, the resulting self-consistent
equations to he solved are the following i

+~~[&(»] 4k(x)= —,'(k' —kp)1tg(x),
2 x2

~.trl&(xj]=@[a]—4~ J ax' f, dx"[n(x")—n (x")]

+p,„,[n (x)],

k~I (kF —k ) ~fk(x) ~2dk .

n (x)

unif or m positive

background n (x)

density

FIG. 1. Schematic representation of the charge densities in

the metal.

potential there. All many-body effects are contained in
the exchange and correlation contribution to p, and in
their effect on the barrier potential.

A schematic representation of the system considered is
given in Fig. 1. The expression for hP, imposing charge
neutrality is

5,$=4n I x[n(x) n—+(x)]dx,

where n (x) is the electronic density and n (x) is the posi-
tive uniform background density TABLE I. Electronic densities for r, =2.0; n (x) is obtained

in this work; nt, x(xj is by Lang and Kohn (Ref. 11). For
r, =1.0 the obtained electronic density and the effective poten-
tial are shown. The distance x is given in fractions of the Fermi
wave length. The densities are given in fractions of no. The ef-
fective potential energy V~ is given in fractions of the Fermi
energy. (For r, =1.0, E~——50. 1 eV, A,~——3.27 a.u. )

Position
x /kp

r, =2.0
n (x) nz~(x} n(x)

r, =1.0
V~(x}rs,

—1.20
—1.15
—1.10
—1.05
—1.00
—0.95
—0.90
—0.85
—0.80
—0.75
—0.70
—0.65
—0.60
—0.55
—0.50
—0.45
—0.40
—0.35
—0.30
—0.25
—0.20
—0.15
—0.10
—0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.90
1.00

1.0051
1.0028
0.9953
0.9966
0.9953
0.9963
0.9994
1.0036
1.0071
1.0078
1.0053
0.9995
0.9923
0.9864
0.9847
0.9877
0.9937
0.9971
0.9895
0.9615
0.9057
0.8194
0.7069
0.5791
0.4508
0.3361
0.2427
0.1712
0.1187
0.0813
0.0551
0.0371
0.0248
0.0166
0.0110
0.0073
0.0048
0.0032
0.0021
0.0014
0.0009
0.0004
0.0001

1.0036
0.0013
0.9982
0.9954
0.9941
0.9953
0.9986
1.0029
1.0065
1.0076
1.0051
0.9995
0.9925
0.9869
0.9852
0.9884
0.9944
0.9979
0.9904
0.9626
0.9070
0.8209
0.7084
0.5805
0.4521
0.3373
0.2437
0.1721
0.1194
0.0819
0.0556
0.0375
0.0251
0.0168
0.0112
0.0074
0.0049
0.0033
0.0022
0.0014
0.0010
0.0004
0.0002

0.9953
0.9951
0.9943
0.9927
0.9908
0.9890
0.9876
0.9869
0.9867
0.9866
0.9859
0.9840
0.9806
0.9756
0.9687
0.9592
0.9455
0.9249
0.8956
0.8561
0.8051
0.7419
0.6674
0.5843
0.4968
0.4101
0.3301
0.2607
0.2034
0.1572
0.1206
0.0921
0.0700
0.0531
0.0401
0.0302
0.0227
0.0169
0.0126
0.0094
0.0070
0.0028
0.0020

—0.9976
—0.9973
—0.9969
—0.9965
—0.9960
—0.9955
—0.9948
—0.9940
—0.9931
—0.9920
—0.9907
—0.9892
—0.9861
—0.9853
—0.9829
—0.9799
—0.9761
—0.9587
—0.9332
—0.9036
—0.8691
—0.8285
—0.7807
—0.7240
—0.6584
—0.5673
—0.4688
—0.3838
—0.3S12
—0.4688
—0.3212
—0.1812
—0.1487
—0.1217
—0.0984
—0.0787
—0.0524
—0.0260
—0.0055

0.0060
0.0150
0.0298
0.0415

The wave function gk(x) when x~—00 has the asymp-
totic form

fk(x) =sin[kx —y(k)],
where y(k j is the corresponding phase shift.
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For p,„, we took the expression given by Hedin and
Lundquist, based on the work of Singwi et a1. .~I

p„,[n (x)]= —0.029 02 +0.7734 ln 1+21 21

r, (x) r, ( x)
I I I I I I

-I P

Velf/FF iI

0.2

I I I

xikF

(9)

in a.u. (double rydbergs), where
' 1/3

r, (x)= 3
4mn (x)

(10)

Notice that the work function is P[n] in Eq. (6). For
metallic hydrogen we took the electronic equilibrium bulk
density in such a way that r, = 1.0.

The self-consistency of the solution to the set of equa-
tions (5)—(7) is not achieved automatically. What we did
was to propose an adequate trial effective potential and
with it to find the wave functions gq(x). From these
wave functions we constructed the density and from it we
got the new effective potential. When this new effective
potential was not close to the trial potential we changed
the trial potential and started the procedure again. The
procedure was repeated until we got satisfactory self-
consistency. Plotting the trial and the effective potentials
was very helpful to find out the changes to make in the
trial potential.

Using this procedure we could reproduce the results

FIG. 2. Self-consistency in the input-output effective poten-
tial. Input:; output: ———.The self-consistency is the
same as the one obtained for the case r, =2.0, listed in Table I;
EF=50. 1 eV; A.~ ——3.27 a.u.

given by Lang and Kohn for r, =2.0, also obtaining
4=4.0 eV. In Table I we show our calculated density
and that of Lang and Kohn for r, =2.0. In the same
table we show the density and the effective potential for
metallic hydrogen with r, = 1.0. The resulting work func-
tion is 4=4.67 eV. In Fig. 2 we show the input and the
output for the effective potential, V,rr[n (x)] in the final
calculation. It is clear that if the expected value for r, for
metallic hydrogen is between 1.0 and 2.0, we should ex-
pect the corresponding value of the work function to be
between 4.0 and 4.67 eV.
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