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Quantum corrections to the Boltzmann equation for transport
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%e have investigated quantum corrections to the Boltzmann equation for transport in high, spa-
tially uniform electric fields, with weak scattering. Parabolic bands show no effects for constant
fields up to 10 V/cm; nonparabolic bands or time-varying fields give quantum corrections by dis-

torting the energy-conserving 5 function in semiclassical transition rates. We have found that in

practical cases the scale of this is less than that from collisional broadening, almost invariably

neglected. These results extend greatly the known range of validity of the Boltzmann equation in
semiconductors.

Recent experiments' have demonstrated directly the
existence of ballistic carriers in semiconducting devices.
Important features of these experiments are the following:
high electric fields (exceeding 10 V/cm), that accelerate
the ballistic electrons and drive the distribution far from
equilibrium; contact effects, which are used to inject the
electrons over a barrier' or through a tunnel junction, 2

and which rely on rapid spatial variation of the electric
field to launch the ballistic carriers; and very high scatter-
ing rates, which necessitate an extremely narrow active re-
gion (300—600 A} to preserve the ballistic features.

The theory of transport in semiconductor structures is
traditionally based on the semiclassical Boltzmann equa-
tion, the solution of which for a submicrometer devices
has demonstrated the importance of ballistic camers.
However, these experiments emphasize important ques-
tions concerning the validity of the Boltzmann equation
in such structures. (a) Can transition rates calculated
using the golden rule be used (as in Ref. 1), even in the
prestmce of a high (uniform} electric field? (b) At what
field strengths does the Boltzmann transport equation it-
self fail? (c) Do the electric field and density vary too
rapidly in space for the semiclassical description to be
applicable?

In this paper we address the first two questions, paving
the way for an approach to the third. We identify causes
of possible deviations from the Boltzmann equation and
present, for the first time, quantitative estimates of the as-
sociated energy scales. Our analysis is based on an in-
tegral equation derived recently by one of us from the
quantum transport theory. s This equation is valid for
nondegenerate electrons moving in a spatially homogene-
ous, time-varying field and coupled weakly to phonons

and impurities.
Our main results are as follows. Contrary to previous

suggestions we find that there is no intracollisional field
effect, and the effect of collision duration is negligible
since the collision-duration time t, is smaller than the
time between collisions ~~ by a factor of 10 . For a con-
stant field and a parabolic band the Boltzmann equation
is valid for fields as strong as 10 V/cm. For nonparabol-
ic bands or time-varying fields deviations from the
Boltzmann equation do appear, solely through a distortion
of the energy-conserving 5 function in the semiclassical
transition rates. This distortion can be characterized by a
suitably defined energy scale 1L,. We find for a nonpara-
bolic band Aa ~ ct'/ F /, where ct is a measure of the non-
parabolicity and F is the field stren th. For a time-
varying field of frequency to, A,„~to'~ F'~s, while for a
field switched on at t =0, +~~F'~2. Numerically, Aa,
A,„,and A,„,~ are all comparable to A. =1—6 meV, which
characterizes the width due to scattering (collisional
broadening) and which is almost always ignored. 9

For a spatially homogeneous system it is convenient to
introdup the field F(t) by a vector potential A(t)

p
F f t. I e e ectrons belong to a single band with

dispersion relation E(p) which, for a parabolic band,
reduces to p'/2m', where rn' is the effective mass. Here
we consider only electron-phonon scattering, which is
most relevant to hot electron physics. For weak scattering
the Born approximation for the self-energies will be used.
In addition, the phonon subsystem is considered to be in
equilibrium. %e use units such that fi=c = 1.

The physical information is contained in the distribu-
tion function f(p, T}. In the weak-scattering limit f(p, T}
satisfies the integral equation

Tt 2 Ttl 2T'
f(p, T)= f dT'exp —f dT"f,d~y(k(p, T",T), ~, T —T") f,dr ( s(k, p'TT), r, T —T'), (la}
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where

XP,(p, q, r, t), (2a)

y(p, r, t)= g ~Mz ~ [Ns+ —,'(1—s)]P,(p, q, r, t),
q, s=+1

(2b}

where Nq is the equilibrium distribution function of a
phonon of momentum q and energy toq„Ms is the
electron-phonon matrix element, and

t/2
P, (p, q, r, t) =exp i — dti[E(k(p, ti, t}+q)

(2c)

It must be stressed that in deriving Eqs. (1) and (2}
from the quantum theory, all Green's functions and self-
energies have been rescaled by the exact field-dependent
scattering-free spectral function. Thus s and y are fully
field dependent though the time evolution of the momenta
in p, [Eqs. (2c) and (lb)] and are not just the equilibrium
self-energy and scattering rate.

We now examine the differences between Eq. (la) and
the Boltzmann equation. Since the only r dependence of s
and y .is through the function 4„ the effect of the two r
integrals in Eq. (1a) can be taken into account by defining

2t'

P, (p, q, t', t) =—,dr P, (p, q, r, t t') . — (3)

Equation (la) reduces to an integral form of the
Boltzmann equation if g, is replaced by
2n5(E(p+q) —E(p) —st0~), which is just the energy-
conserving 5 function of the golden-rule transition rates in
semiclassical theory. Thus the quantum effects con-
sidered here are all contained in Eq. (3). The 5 function is
obtained if the field dependence of P, is ignored and the
limits (+2t') on the r integral go to + cc.

It is interesting to note that for a constant field and a
parabolic band P, is independent of the field (and of its
second time argument):

k(p, t i, tz) =p+e A(ti ) —eA(t2 —t i ) .

The self-energy s, which depends on f(p, t), and the
scattering rate y, are given by

e(p, r, t)= g ~Mq ~
i[Nq+ —,'(1+s)]f(p+q, t)

equation, the effect of scattering has been neglected ioithin
the self-energy and the scattering rate, consistent with the
weak-coupling approximation. This effect could be in-
cluded, at least phenomenologically, by multiplying P,
[Eq. (2c)] by a decay term: P, ~P,exp( —A, r/2), where

is some average scattering rate. In the Boltzmann
equation this decay term would convert the 5 function
into a Lorentzian of width A,~. In practical calculations
such broadening is almost always ignored with the as-
sumption that as long as A, & ktt T its effect will be small.
For semiconductors a typical collision time r„ is
10' —10' s, which means A, =1/r~=0 6 6. —meV.
Room temperature corresponds to ktt T =25 meV, while

for hot electrons the effective temperature can be much

larger. We are only interested here in the energy scales as-

sociated with quantum corrections, so the inclusion of the
decay term will make no difference. Nonetheless, A, pro-
vides a convenient small quantity with which the quan-
tum corrections considered below can be compared.

Finite collision duration. To examine this effect we spe-
cialize to the case of a constant field F and a parabolic
band. Then s, y, and tt are independent of their second
time arguments. Equation (3) gives

2sln[2tkg (p, q)]
(4)

s p~q

h, (p, q) =E(p+q) —E(p)—stoq .

Note that this particular form of 1(, is also present in
equilibrium (F=0) and in golden-rule calculations of
transition rates. ' As long as the collision-duration time
t, (defined below) is much smaller than the time between
collisions r~ the 5 function is a valid approximation" for

f, . In the exponential factor in Eq. (la) the effect of let-

ting the limits on r go to + oo is equivalent to replacing
the r integral by y(p —eFT",co=0), where y(p, c0) is the
Fourier transform of y(p, r}. Then we can thus define
r (p, P) by the timescale on which the exponential in Eq.
(la) decays:

SC

ty p —eFt, a)=0 =l .

To see whether the 5-function approximation for g, is
valid we expand y(p, t0) in powers of co, which leads to a
characteristic timescale t„ the collision-duration time, de-
fined as'2

P, =exp[ —i(E(p+q) —E(p}—scoz)r] . in@(p —eFt, co) (6)

We emphasize that this field independence of P, is also
true for the exact quantum theory: it is not merely a
result of the weak-scattering approximation. Since there
is no field dependence there can be no intracollisional field
effect. s

The right-hand side of Eq. (3) differs from a 5 function
either because of the finite limits on the integral or be-
cause of the field dependence of P, arising from nonpara-
bolic bands or time-dependent fields. Before discussing
these effects we note that in Eq. (la), as in the Boltzmann

here t is the argument of y is of order r . Numerical cal-
culations based on optic-phonon scattering in Ge show
that' t, /r~=10 over a wide range of p and F. We ex-
pect similar results to hold for other types of phonons and
other semiconductors. Thus the colhsion-duration effect
can be neglected. '~

Now consider the factor involving s in Eq. (la). We
can replace g, [Eq. (4)] by a 5 function only if b,,» 1/T',
i.e., for b, »1/r~ because of the exponential factor in
Eq. (la). Since s contains the distribution function f this
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—E(p)[1+2(p F) ) I

1/3

Here p'=p+q and p, y', & are unit vectors. Thus for
a+0 the 5 function is distorted with energy scale

I

means that the approximation is valid only if f varies

slowly on the scale of 1/~, that is, if ksT & 1/r (p, F).
Thus ksT=1/~ (p, F, ) defines a critical field F, above
rvhich the Boltzmann equation may not be vahd. Numer-
ical calculations show' that F, is as high as 10 V/cm.

Next we consider the quantum effects due to field
dependence of [I), in Eq. (3). Since the effect of the finite
limits on r has been shown to be negligible we let them go
to + )x). Then ]](,(y, q, t', t) depends only on t t', —so we

drop the redundwnt argument to obtain

P, (p, q, t)= f dr/, (y, q, r, t) . (7)

This form will be used to estimate the effects of band
structure and of time-varying electric fields.

Band-structure effects. For many semiconductors the
conduction band at the I' point is not parabolic. The non-
parabolicity is usually expressed by writing'5 p /2m'
=E(y)[1+aE(p)], where a=[1—(m /m )2)/Er and
the band gap Er = 1 eV is much larger than a typical pho-
non energy cosh=40 —50 meV. To estimate the effect of a
nonparabolic band we specialize to a constant field and
take a to be small. Then Eq. (7) becomes

W(pq))= J, , drexp( —)[rk, (p, q)+ —,'2).,']]
Ai[lk, (p,q)/A, ], (&)

A Q

where Ai is an Airy function, and

(E(p')[1+2(y' 8') ]

Aocxa'~ F ~. To obtain a numerical estimate for A, we

replace (p F) and (y' F) by their angular averages, and
the energy difference between the initial and the final
states by the phonon energy. This gives

5
(&F)2

CO

12m ' Er

()/3

m
1 ——

m

For A, =5 meV, co=1.6)&10' GHz. These are very high
frequencies, so for a frequency-dependent field the quan-
tum corrections are rather small.

Another case of interest is when a field is suddenly
switched on at time r =0, F(t)=F08(t), which gives rise
to transient effects. In this case

Because of the —,
'

power, A,~ is insensitive to the parameter
values for different semiconductors. Using F=10
V/cm, co&h ——50 meV, and m'/m =0.5 we obtain A, =1
meV. Thus A,N is rather small and comparable to the
broadening due to scattering, A, .

Time-ucirying fields D.eviations from the Boltzmann
equation also occur when the field varies in time. To esti-
mate this effect we consider first a parabolic band and a
slowly varying field F(t) =F[]coscot, where co is small. Ex-
panding the field within the exponent in Eq. (2c) to lowest
nonvanishing power in co, one obtains for P exactly the
same Eq. (8), but with A,, replaced by

A.„=[(eqFOISm')co sincot]'~

A,„increases slowly with Fo and the frequency. To obtain
a numerical estimate we compute the frequency co that
gives rise to a width of 1 meV. Using q =(10 A) ' for a
typical phonon wave vector and Fo ——10~ V/cm, we obtain

eqI'0
=13 GHz .

Sm'

ieq-Fo
[t),(p, q, i, r) =exp i'd, ,(p, q—)+, [8(t)ti——,

' 8(t +~/2)(c +~/2) + ,
' 8(t r—/2)(t—~/—2)~]

m

Deviations from the Boltzmann equation arise due to the
term in square brackets, whose effect vanishes as

) t
~

~ oo. The analysis of it), is somewhat complicated,
but we can obtain a rough estimate for the size of the
quantum effect by setting r =0, since the effect is largest
just after the field is turned on. Then

T

.eq Fo r
(II), =exp i rb, , i —[8—(z) ——8( —z) ]m'

L

so that the energy of the distortion of the 5 function is
given by

1/2
eq Fo =8—9 meV,
8m

which is comparable to A, .
To summarize, we have shown that, for a spatially

homogeneous time-dep&uident electric field, quantum

corrections to the Boltzmann equation arise from a non-
parabolic band structure or time variation of the field, and
that these corrections appear through a distortion of the
energy-conserving 5 function in the scattering process.
Our results show that the associated energy scales A, are
comparable to the broadening due to scattering which is
usually considered to be small at room temperature. On
the other hand, at lower temperatures when A, =ks T the
quantum corrections may become important.

In this paper we have treated carriers in a single un-
bounded energy band. Relaxing this restriction mould in-
troduce Stark ladders mthin a bounded band and inter-
band processes such as Zener tmmeling and impact ioniza-
tion, all of which are quantum mechanical in nature. A
strong magnetic field would also produce nonclassical
behavior. Our result, that electrons in a simple band can
be adequately described by the semiclassical Boltzmann
equation even in very high electric fields„means that fu-
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ture work can concentrate on the influence of intrinsically

quantum effects on transport in semiconductors.
An important advantage of the integral transport equa-

tion used here, in contrast to the usual integrodifferential
equation, is that the qu mtum corrections appear
through Eq. (3), which does not involve the distribution
function. A numerical solution of Eq. (la) with full quan-

tum effects is therefore feasible. We have considered only
electron-phonon interactions in semiconductors here, but
the extension to metals and the inclusion of impurity
scattering is straightforward within the weak-scattering
approximation. Finally, since the field-induced quantum
corrections are found to be small, it is conceivable that a
careful application of the gradient-expansion technique

can be used to study quantum effects in small devices
where there are strong spatial variations of the electric
field in the contact region, or when the scattering is
strong. '"
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