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Thermionic emission in heterosystems arit different effective electronic masses

A. A. Grinberg
Deparonenr ofElecrrieal Engineenng, University ofMinnesota, Minneapolis, Minnesoia 55455

(Received 8 July 1985; revised manuscript received 16 December 1985)

It is shown that the usual way of calculating thermionic emission takes into account incorrectly the con-

servation law of the quasimomentum of the electrons on the boundary separating two regions with different

effective masses of electrons. Therefore, at a thermodynamic equilibrium the opposite flows of the elec-
trons crossing this boundary are different (because the Richardson constants are different). This paradox

disappears if one takes into account that not all electrons with larger effective mass can cross the boundary

even if the part of their kinetic energy perpendicular to the interface is larger than the barrier height. In

fact, this condition is contained in the quantum-mechanical coefficient of electron transmission. It is shown

that in the spherical and parabohc effective-mass approximation the Richardson constant is defined by the
smallest effective mass. This fact is important in the calculations of the thermionic currents in semiconduc-
tor contact phenomena especially in heterostructures. It makes clear what eff'ective mass must be used in

the definition of the preexponent factor of the thermionic current.

Modern semiconductor devices often employ carrier
transport across heterointerfaces —boundaries of materials
with different band structures. The dominant factor deter-
mining the current in such structures is the existence of a
potential barrier due to band discontinuities, which affects
the thermionic or tunneling current exponentially. There
exists, however, another (preexponential) factor which is
not connected with the barrier but depends on the probabili-
ty of electrons, crossing the interfacial region (whose thick-
ness is of the order of the interatomic distance) where the
energy dispersion law is changed from one material to the
other. %hen both materials possess a simple electron ener-
gy spectrum, the passage of an electron through the boun-

I

dary can be described in terms of the dispersion relations
alone, just as in the case of light passing through the boun-
dary of two media of different dielectric permeabilities; the
knowledge of the latter completely determines the processes
of light transmission and reflection.

In the parabolic mass approximation when energy spectra
of the electrons are defined by relations

Et'&(k)- 0'2k2
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where mi and m2 are the particle masses in the materials"1" and "2," respectively, the densities of the opposite
currents of the electrons crossing the boundary are given by
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where U is the height of the barrier, p, is the Fermi level,
W- (U —p, ) is the work function, A, em, ks2/2rr its is the
Richardson constant containing the effective mass m/ kg is
the Boitzrnann constant, Eq and EiI are parts of the kinetic
energy perpendicular and parallel to the surface, and it is as-
sumed that 8'&& k~T.

This is the usual form of the derivation of the Richardson
formula in standard texts. '~ %e came to the paradoxical
result that the currents do not balance in equilibrium if
mi~m2. Clearly, one must have the same Richardson con-
stant for both thermionic flows, but which electron mass
should it contain? The answer derived belo~ is that the
properly defined Richardson constant should involve the
smaller of the two effective electron masses.

The best known case of the electron passage across a
boundary of two media with different effective masses is the
case of vacuum emission from a metal. In this case the
thermionic emission current density J is given by the
Richardson-Dushman formula (2) (Refs. 7 and 8) where ef-
fective mass m& must be replaced by the free-electron mass
mo Then Ai Ao emokk/2sr2&3

As can be seen in this case, the Richardson constant in-
volves no characteristics of the emission body —a result
which is quite contrary to the experimental evidence. To
explain this contradiction a number of arguments have been

t

advanced, such as a nonuniformity of the surface, a depen-
dence of 8'on temperature, etc. Though all these factors
are important there is, however, a more fundamental (and
trivial) reason for the constant A entering the Richardson-
Dushman equation not to be universal, namely, the fact
that the usually used condition E & U (Refs. 1-6) may not
be sufficient for transmission. Because of the conservation
of the tangential momentum, electrons incident on the
boundary from the heavy-mass side at a sufficiently large
angle to the normal direction will suffer a complete internal
reflection. In fact, this assertion was pointed out by Herring
and Nichols in the review paper~ devoted to thermionic
emission. Because it was stated in general form the quanti-
tative influence of this reflection on the Richardson con-
stant remains not clear. This we can see from the way that
thermionic emission is described in every textbook. '~

The "paradox" disappears if one takes into account the
conservation laws of energy and momentum at the inter-
face. Assume that the boundary is perfectly smooth. Then
from the continuity of the electron wave function along the
surface it follows that wave-vector components (k„,k„)= ko
parallel to the surface are conserved (ko-k'o). We thus
have
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Let mi be larger than m2. Then the possible values of k
are restricted by the inequality

2mi U
(4)a' "
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At the same time there is no restriction on the perpendicu-
lar component of the k vector of light particles which
penetrate to the side 1 of the system.

If we plot a family of the hyperboloid surfaces defined by
Eq. (3) (in the ki )0 of the Ir space) using ki as a param-
eter of this family, then they will fill up an inner part of the
cone that is shown in Fig. 1. The asymptotic cone of these
hyperboloids is defined by the equation

(5)
m2

In the case of mi & m2 the hyperboloids are transformed to
the ellipsoids that envelop the center of k space and there-
fore fill up the whole space. In other words, due to the
conservation laws a right side of the It space is reflected on
the inner part of the cone of the lr. space.

It follows from the above that the integral (2) must be
taken to the right, relative to the dashed line part of the
cone (see Fig. 1). To do this we have to replace the lower
limit of the integration variable Ei by U+ [(mi/m2)
—1]E~~. Then we obtain'a

) Ji ( A2 T2 exp( —W/ks T)- [ J2(,
that is, the solution of the Richardson constant paradox.

From Eq. (6) it might be seen that in a spherical mass ap-
proximation the Richardson constant is defined by a smaller
mass. As a result it follows that in the case of the vacuum
emission the Richardson constant Ao is only the upper hmit
of its possible values. This assertion is in a perfect agree-
ment with numerous experimental data. " From the data
for the 7'7 elements of Mendeleev's table, contained in Ref.
11 only ten of them (C, Fe, Co, Zr, Mo, Rh, Cs, W, Re,
Pt) were observed to have A )Ao. However, the experi-
mental data for these ten elements contradict one another
and the most probable values are less than Ao. There is

only one exception, for Cs (A -162); the reason for this is
not clear.

It is necessary to underline that under "perfect agree-
ment" we only assume the fact that observed values of the
Richardson constant are not larger than its classical value
Ao. From this assertion it does not follow that the average
effective mass of the energy surface S [see Eq. (&)] is lower
than free-electron mass in the all elements. Though such
factors as the above-mentioned temperature dependence of
the work function and inhomogeneity of the emitting sur-
face certainly were taken into account in the experimenta11y
deflned values of A, it is impossible to say that there are not
other factors which can decrease A. Nevertheless, it is in-

teresting to see that an overwhelming amount of experi-
mental data show A which are less than Ao and we cannot
exclude the possibility that the small average effective mass
of the energy surface S is at least partly responsible for it.

So far we have not taken into account the wave-
mechanical aspect of the electron transmission across the
boundary surface. In fact, it was partly done when we re-
stricted k space of electrons with a larger mass by the cone
shown in Fig. 1. At the same time we implied that the
transmission coefficient D for these electrons was equal to
unity. The transmission coefficient automatically contains
the restriction of the variance region of the variable E"
that is equivalent to the inequality (4). It is important to
emphasize that this restriction, in the case mi4m2, is gen-
erally more important than the correction that is introduced
by the distinction of D from unity in the region of energies
E, where D is not equal to zero.

Let us now consider a more general situation with arbi-
trary dispersion of the particles. %e will neglect the distinc-
tion of the transmission coefficient from unity except in that
region where it is equal to zero. This is provided by the
conservation laws from which the equation

E ' (k, It ) E 2 ( k ', Ir ) + U (7)

follows. Then the density of the electron current from the
region "1"to the region "2"can be written9

J f(E) dE dS
(2w) lr " " )gradaEI

(8)

The value (BE/Bk)/IgradaE[ is the cosine of the angle
between the normal to the energy surface element dS and
the normal to the interface. Therefore, the product of this
value by dS is a projection of dS on a plane parallel to the
interface in question. Because the region of the integration
is subjected to the restriction defined by Eq. (7), an integra-
tion over S in Eq. (8) gives the area S that is the overlap of
the projection surfaces E" =E and E'2'-E U(see Fig. —
2). We thus can write

+ ty)
Il

FIG. 1. A k-space cone from which particles with larger mass
{mi & m2) can cross a boundary surface.

Ji = f(E)S(E)dE,
2n

where E „ is the minimum value of E ' (ki, k~~) that is
compatible with Eq. (7) and f(E) is the Fermi function.
Let us assume that both energies have a quadratic depen-
dence on the wave vector so that E'"(ak) =~'E'". Then
S(E) can be written as S(E)-yE. As substitution of it in
Eq. (8) yields

J-
2 In(1+exp[(p, —e;„)/ks T]] . (10)
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FIG. 2. Overlap of the "shadows" of the constant energy sur-
faces: E(' Eand E 2 E- U.

If 8'- —(p, —E~;„))& kttT as is practically always the
case, then we have

ekT2

come up with the result (6).
%e have considered the simplest situation when the ener-

gy minima of the electrons on both sides of the interface are
located at the center of the Brillouin zones. For some sys-
tems this does not take place. In this case we can expect a
dramatic decreasing of the Richardson constant because to
cross the boundary surface an electron has to change wave
vectors by a value of the order of the reciprocal lattice vec-
tor. A large difference of the electron wave vectors can be
compensated by their interaction with some inhomogeneities
of the surface. (It is not surprising, for instance, that the
observed value of the Richardson constant of the Si is less
than 10 A/cm2K2. ") The thermionic current calculation
then presents a much more complicated problem. It should
be noted, also, that if at least one of the materials contains
overlapping bands so that an incident electron can enter ei-
ther one of the bands, then even the complete knowledge of
the energy spectrum is insufficient to describe electron
transmission. In this case one must also know the form of
electronic interaction within the interface layer in order to
determine the relative probabilities of electron irjection into
each of the bands. This represents a complicated problem
which, as far as we are a~are, has not been considered.

In a parabolic mass approximation the value S is equal to
the area of the main section of the constant energy sphere
to which the smaller effective mass corresponds. In this
case we can write S 2mrntE//f2, where y-2srm, /t2 and we
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