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Correlation effects on the oscillator strength of optical absorption:
Sum rule for the one-dimensional Hubbard model
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The optical sum rule which is related to the mean kinetic energy of band electrons is evaluated for the
one-dimensional Hubbard Hamiltonian. The case of a half-filled band is treated exactly by use of the Bethe
ansatz solution of Lieb and Wu. The kinetic energy decreases monotonically as a function of U and tends
to zero like 1/U for U — oo. For other band fillings the Gutzwiller ansatz is used. Correlation effects in-
crease quadratically with the density n of electrons (or holes) for n << 1 and exhibit a maximum at n =1

(i.e., for the half-filled band).

Optical absorption experiments are efficient tools for
determining the importance of electronic correlation in or-
ganic conductors.! It is found that the plasma frequency w)
as determined from the plasma edge is not sensitive to weak
or intermediate correlation and therefore can be used to
determine single-particle parameters like the hopping in-
tegral +. On the other hand, the plasma frequency w, as
determined from the partial sum rule involving all intraband
transitions turns out to depend rather sensitively on correla-
tions. In fact, the ratio w,/w; can be used as a measure for
correlation effects.! In this note we evaluate the sum rule
for a system of independent chains, each of which is
described by the Hubbard Hamiltonian

H=T+V , ¢))
where
T= —tZ(CLIClH,s"'CL-l,sCu) V)]
is

is the kinetic energy, and
V=U2n,»1n,-l (3)

is the on-site Coulomb interaction. (The operator ¢, de-
stroys an electron at site / with spin projection s, and n;
= c,«fc,,.) The f-sum rule for the conductivity is given by?

fo‘”dw(w)= —mela(T)/(2Nd%?) , @

where a is the lattice constant, N is the number of sites per
chain, and d is the interchain distance. Therefore, the sum
rule provides the mean kinetic energy (7') per chain. Since
the Hubbard term tends to localize the electrons, the abso-
lute value of the kinetic energy is expected to decrease with
increasing U. We evaluate (T) with respect to the ground
state of the full Hamiltonian (1). It is related to the
ground-state energy E = (H) by

(TY=1d,E . (5)

This relation is easily derived by use of the Hellmann-
Feynman theorem. For the particular case of a half-filled
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band (one electron per site), we use the exact result for £
as obtained by Lieb and Wu® and obtain

—(T)/@ND) = [ dw Jo(@)J1 () {To(1 +e29)]"!
+u/[1+cosh(2wu)]} ,
G

where u = U/(4t). The asymptotic behavior is found to be

(1-0.21358u%)/7 foru <<1 ,
(3102 ($)23)u"2Nu~" for u >> 1
(@)
For the limit # — 0 we have used the asymptotic expan-
sion of Economou and Poulopoulos.* The result of our nu-
merical integration of Eq. (6) is shown in Fig. 1, together

with the limiting behavior of Eq. (7). As expected the ab-
solute value of the Kkinetic energy decreases monotonously

—(T)/(4Nt) ~l

5 u/(4t) 10

FIG. 1. Kinetic energy as a function of U. The solid line
represents the exact solution, Eq. (6). The dashed lines correspond
to the asymptotic expansions of Eq. (7).
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FIG. 2. Dependence of the correlation effect on band filling.
Results for kg > -;-17 are obtained from this figure by replacing kr
by m-kp (i.e., by substituting electrons by holes).

with U. The crossover between ‘‘small-U behavior’’ and
‘“‘large- U behavior’’ occurs for U ~ 4+,

For general band fillings an explicit expression like Eq.
(6) is not available. Therefore we have evaluated the kinet-
ic energy by use of the Gutzwiller ansatz for the ground
state

ly) =exp

—71‘772”:'1”:'1]|¢> . ®)

where 7 is the correlation parameter and |¢) the ground
state of T. Following the procedure of Refs. 5 and 6 we ex-
pand the variational ground-state energy,

E(n) = (ylH )/ (wly) , 9)

in powers of n. As shown in the Appendix, this corre-
sponds to an expansion in powers of U. To second order in
U we find for n electrons per site as a function of kr = -;—-n-n,

~{(T)/(4N1) =7 'sinkell — y(kp)u?] , (10)

where

kA1 —4dkg/3m)?
7(kF)= R )
sinkgl kp(7r — ki) + sinkr]

For the special case of a half-filled band where kr =+,
Egs. (10) and (11) lead to

—(T)/(4N)=(1-0.1951u?)/7 , (12)

in remarkable agreement with the exact result of Eq. (7).
The function y (kr) measures the effect of correlations as a
function of band filling and is shown in Fig. 2 for 0 < kr
< %—'n. It first increases quadratically and reaches a max-
imum for a half-filled band. The quadratic increase for
small density can be easily understood since for a very di-
lute system the interaction effects are essentially due to
two-particle scattering. This physically appealing behavior
for kr — 0 and the good agreement with the exact result for

an
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kf‘"’;‘ﬂ’ suggest that the Gutzwiller wave function repre-
sents a good approximation for the kinetic energy (and thus
the f-sum rule) in the case of small U, U << 4t. For larger
values of U, the exact diagonalization of the Hamiltonian
(1) for short chains or rings’ is expected to provide good
answers for particular band fillings.

One of us (J.C.) would like to thank the Portuguese Na-
tional Science Foundation (INIC) for financial support.

APPENDIX

Using the linked-cluster theorem® we find the following
expansion for the expectation value of the energy [Eq. (9)],

E=(¢|T|¢) —sn(s{W,T}I¢).
+ 1ol W, (W, T))e).

+U(oIWlg) —n(sIWs).) , (A1)
where { W, T }= WT + TW and
W=2ni|ni1 (A2)

In Eq. (A1) we have omitted all terms which after mini-
malization turn out to be of higher order than U?. Through
the use of Wick’s theorem, the various terms in Eq. (A1)
are decomposed into products of correlation functions,

Py=(plcicsld). (A3)
For a band filling up to kr we find
p={frim =g, (Ad)
sinlkeGi = DV mGi=)), i=j .

The different terms in Eq. (A1) are found to be
<¢lTl¢>/(4Nf)= =Py, (AS5)
(|UWI|$)/(4Nt) = (kp/m)?u (A6)
(dl{W,T)I$) =0 , (A7)

(ol{w, (W,T}}I¢)/(4N1)
= —N_IZPi,i+l[Pi?+| +ke/m— (ke/7)?] . (A8)

(| W?2|¢p)/(4Nt) = (ke /m)1— (4kp)/(37)] . (A9)

Inserting Egs. (A4) to (A9) into Eq. (A1) and minimaliz-
ing with respect to n we find,
Emin — ——la _ . 2
GND m~sinkgl1 — uk@/ (mr sinkg) + u?y (ke)]
(A10)

where y (kf) is defined by Eq. (11). From Eq. (A10), Eq.
(10) is easily derived.
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