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Temperature dependence of atomic transport in less-simple liquid metals
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%e report on the atomic transport properties, viz. , the coefficients of shear viscosity and self-diffusion

for certain less-simple liquid metals at various temperatures. The basic assumption made is that these prop-

erties of a liquid metal resemble those of an appropriate hard-sphere system. The temperature dependence
of the basic ingredients, i.e., the hard-sphere diameters and packing fraction, is considered via a full ther-

modynarnic perturbation theory. The optimal values of these basic ingredients are employed in calculating

the atomic transport coefficients of Cu, Cd, In, and Pb. The calculated results are found to be in good
agreement with the experimental and available theoretical results.

I. INTRODUCTION

The study of the transport coefficients of liquid metals is
important for various chemical and metallurgical purposes.
Over the last few decades there have been a variety of ex-
periments' and theoretical developments along this stream
of investigations.

In the present investigation we model the liquid metal by
a hard-sphere description and the relevant formalism for the
transport coefficients is correlated with this model and the
pair potentials derived from the pseudopotential theory. It
is mentioned here that there is a variety of expressions
available in the literature to consider the temperature
dependence of the hard-sphere diameters and packing frac-
tions. '4 Since these parameters are the basic ingredients for
computing the transport coefficients, we believe that they
should be determined by a full thermodynamic variational
method so that they inherit self-consistency. Consequently,
we use a perturbative treatment and the so-called Gibbs-
Bogoliubov inequality based on a third-order theory in the
pseudopotential formalism. This procedure incorporates the
temperature dependence in these ingredients via ihe stan-
dard variational technique. '

It is reiterated here that to ensure the best yield of the
basic ingredients one should include in the formalism all
possible features inherited by the structural properties of the
relevant systems. In this respect, if we look at the electron-
ic structures of Cu, Cd, In, and Pb, we note that the occur-
rence of the d bands in the close vicinity of the respective
Fermi levels necessitates an inclusion of the band hybridiza-
tion effects in the electron-ion interactions. 6 On the other
hand, in accordance with the so-called cancel]ation theorem,
the nonlocal effects in these interactions are significant, and
they should be included precisely in the formalism. In view
of these inferences we have employed an on-Fermi-sphere
model potential' that adequately takes care of the effects of
hybridization and partial nonlocality. Furthermore, for
cohesive reasons we have included a term in the free-energy

l

expression that accounts for the exchange and overlap
energy.

The optimal values of the basic ingredients obtained
through the standard minimization procedure of the upper
bound of the free energy are employed to calculate the coef-
ficients of self-diffusion and shear viscosity for Cu, Cd, In,
and Pb.

II. PORMUI. ATION

A. Basic i~«edients: Pseudopotential theory

x [u„(q, 2kF) ]'S(q) q' dq (2)

where Xp(q) is the static Lindhard function, U (q) the
electron-electron interaction function, v (q, 2kt. ) the
screened quasilocal pseudopotential, and S(q) is the static
structure factor. The Madelung contribution is

woo 4 ta2Z42

The third-order contribution9 is

%e consider a metal consisting of N atoms having valency
Z' contained in a volume A. Using a standard third-order
perturbation theory, the upper bound of the Helmholtz free
energy in terms of the hypothetical hard-sphere (HS) diam-
eter o. for a finite temperature T is given by

F(~ ft ~ ) ~0(f1 2)+(U2)HS+(~M)HS

+ ( Us) Hs+ U.o.—&2'SHs ~

where () denotes the ensemble average. The first term in
this equation consists of the structure-independent but
volume-dependent contributions. The other terms are the
second-order band-structure contribution

N
(U2) Hs-, i&p(q) —&ii(q) U (q) ~

(Us)„s- 3 (4/qm) l
rg dtut dtu2 lY( —tut) W(tu) —tu2) 8'( 'tu) 2'0( t,ut» t)P2( t,uttu)2 (4)
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~ g(r)v „(r)r2dr (5)

where v„„ is an exchange and overlap function derived in
the analytic form. " The various components of the effec-
tive entropy SHs are available in the closed forms. '2

B. Transport coefficients: Self-diffusion and shear viscosity

e employ the standard statistical theory" of a fluid com-
bined with the pair potential $(r), the radial distribution
function g(r), and the static structure factor S(q) in writ-

ing an expression for the self-diffusion coefficient

Ds = k T/(( + f, + f H) (6)

The various friction coefficients appearing in Eq. (6) are
due to the hard-core contribution

where

8'(cu) = v„(a))/4me"0)', o) = q/2k',
and r, is the electron gas density parameter given by
4n r3/3 0/XZ .Here Hi and P are, respectively, the
third-order response function and the three-body structure
factor; the latter is calculated by using the so-called
geometric approximation. '0 The exchange and overlap
repulsive energy is

the linear-trajectory approximation

ps= —n(arm/ksT)'~2/3(2m)2 q CP(q)G(q)dq, (8)

and the cross effect between the hard and soft forces in the
pair potential

—ng (a ) ( m/n ks T)' /3

[(q(r)cos(qo) —. sin(q(r) ](Ps(q) dq, (9)

where n is the number density of atoms, g(0 ) is the value
of g(r) at r=a ( the hard-sphere diameter), and m the
ionic mass. The functions (ps(q) and G(q) appearing in
Eqs. (8) and (9) are, respectively, the Fourier transforms of
the soft part of the pair potential and [g(r) —1]; the form-
er is taken to be the Yukawa shouldered potential. '4

The coefficient of shear viscosity p, is given by"

p, -p ")(o ) +p "'((r ) +p "'(r & a ) +p '"(~ ) (10)

In this equation the first two contributions,
'I 'I

(i)( )= '"B 2~n~'
1

4mn~'
( ) 8(1)

Sg((r) 15 15
)

and

S~'(o') -
15

n'~'g((r)ksT/8"' (12)

arise due to the hard part of the pair potential. The soft-
part contribution is

(„-~ng(o)o'(~ mks .T)"',
the soft-core interaction between the neighboring atoms in

p, "'(r )~)- 4mmn2 "
4 82+ 4 8+r4 + — g(r)dr30(' 'o jr r Qr

Finally, the kinetic part in p. is given by

(13)

p, (a) SksT[1+(4mo. g(r)/15v]/Sg(a)[8 ' +[5('v/4mg(o)]] (14)

~here ~ is the thermal velocity of an ion given by
mv2/2-3ksT/2 The quan. tities 8(') and 8'2) appearing in
Eqs. (11) and (12) are

8" [8 + 5$'/8nmg(a ) ]

x (1+48~ '/(48~"'+ [5('/nmg((r)]]) (15)

8 - (4n ks T/m ) ' a' (16)

The final expressions for the self-diffusion and shear viscos-
ity coefficients are

D- Cg (&)D,

/A Cgw ())p ts (18)

III. RESULTS AND DISCUSSIONS

In calculating the structural free energies we employ the
on-Fermi-sphere pseudopotential due to Animalu' and the

where CAw (q) and Cgw (g) are the scaling corrections that
take care of the relaxation process in the back scattering sit-
uation. Since there is no simple way of determining these
functions theoretically for the hard-sphere fluid, we follow
the Alder-%ainwright approach in extrapolating them from
the tabulated values. '6

t

exchange correlation function of Geldart and Vosko. " The
optimal values of the hard-sphere diameter o. and packing
fraction g are evaluated by minimizing the free energy ex-
pressed by Eq, (1). These optimal ingredients are then used
in calculating the pair distribution functions, structure fac-
tors, and the relevant parts of the pair potentials. These
functions are finally employed in computing the transport
coefficients.

The results for the coefficients of self-diffusion and shear
viscosity are presented in Figs. 1 and 2, respectively. The
self-diffusion coefficients for all of the four metals are
found to be in good agreement with the experimental' as
well as with the previous theoretical results. The
present results are found to be closer to experiments than
most of the previous semiempirical calculations. This may
be expected, because while there remains a considerable un-
certainty in the temperature dependence of the hard-sphere
ingredients in the previous theories, the present calculations
succeeded in removing this uncertainty through self-
consistency.

The results for the shear viscosity coefficients are present-
ed in Fig. 2 together with the experimental and the available
theoretical results. After proper scaling the present results
are found to be in reasonable agreement with experi-
ments ~ I and previous theories; ~ ~ 7 without scaling, how-
ever, the results are higher than the measured values for all
of the metals. This is also true for the self-diffusion coeffi-
cients. Finally, it may be mentioned that the differences
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FIG. 1. Self&iffusion coefficient D(10 scm2/sec) for (a) Cu,
(b) Cd, (c) In, and (d) Pb. Here curve A denotes the present
results and B, C, D, E, and F denote the calculated results due to
Refs. 3, 23, 24, 25, and 26, respectively. Curves M1, M2, M3, M4,
and M5 denote the measured values obtained from Refs. 18, 19,
20, 21, and 22, respectively.

noted between the present and other theoretical values, as
noted earlier, are due to the scale of temperature depen-
dence encountered by the basic hard-sphere ingredients.

IV. CONCLUSIONS

FIG. 2. Coefficient of shear viscosity it, (eP) for (a) Cu, (b) Cd,
(c) In, and (d) Pb. Here —denotes the present results while --,
0, and + denote the calculated results due to Refs. 4, 2, and 27,
respectively. 8 and 8 denote the experimental values.

tions in the formalism generates the free energies more con-
sistently; this in turn ensures more refined values of the
hard-sphere ingredients. It has been noted that these in-
gredients obtained from the second-order theory alone
reproduce results for the atomic transport which deviate by
a few percent from those calculated using the ingredients
obtained from the third-order theory; this deviation is also
noted when a comparison is made with experiments. In ad-
dition, the structural details included in the formalism
through the linear-trajectory approximation'5 via the pair
distribution functions and the pair potentials, are some~hat
left out by the conventional Enskog theory used by many of
the previous authors. 3 ~

In conclusion, we may mention that the present variation-
al calculations have generated the best possible values of the
hard-sphere ingredients in a self-consistent fashion by incor-
porating into the formalism the essential features reflected
in the electronic and atomic properties of the relevant met-
als. This self-consistency is also essential for thermodynam-
ic and structural considerations. As an example it may be
mentioned here that inclusion of the third-order contribu-
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