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We present a treatment of the x-ray scattering from a two-dimensional (2D) liquid modulated by
its periodic host. While this is general for all fluids within (or upon) periodic lattices, we concentrate
on alkali metals intercalated in graphite to reveal the origin of the following: (a) the alkali-metal
contribution to the graphite Bragg peaks, (b) the replication of the alkali-metal liquid scattering
about the graphite reciprocal-lattice points, and (c) the anisotropic sixfold angular modulation of the
normally isotropic 2D liquid scattering. While the first is linear in the relevant Fourier coefficients
of the modulation potential, the latter two appear to second order. Finally we indicate a method for
accurately evaluating the above Fourier coefficients from graphite Bragg peak intensities in the
disordered (liquid) state of the intercalated alkali-metal species, which includes corrections for corre-

lations in the liquid.

I. INTRODUCTION

In the study of intercalate and overlayer systems we en-
counter two-dimensional (2D) fluids in, or adsorbed on, a
periodic host crystal with which they interact. These
fluids or liquids exist basically in a disordered state at
high temperature only weakly perturbed by the host po-
tential. As the temperature is lowered, the in-plane corre-
lations increase, along with substrate effects, leading even-
tually to often complex ordering in two dimensions with
the third dimension entering, in the staged intercalates, as
a weak perturbation. In the alkali-metal—graphite inter-
calation systems with which we will be mainly concerned,
there is ample evidence of the two dimensionality of these
liquids.!~* They are distinguished by the following obser-
vations.

(1) At room temperature in stage n >2, where n is the
number of graphite basal planes separating the periodical-
ly spaced alkali-metal layers, the liquid structure has a
basic in-plane spacing incommensurate with its graphite
hosts ax7xd it cannot be treated as a simple disordered lattice
gas.

(2) The circular average of the liquid structure factor of
all the alkali metals studied shows a familiar liquidlike
diffuse scattering associated with an alkali-metal spacing
of 3at;out 5.90—6.10 A and a coordination number of
six.”

(3) The liquid scattering pattern observed in a single
crystal, first by Parry® in C,,Cs and more recently by
Rousseaux, Moret, and co-workers in C,u K (Refs. 9 and
10) and C»4Rb (Ref. 10), shows clearly that the circularly
averaged diffuse scattering measured in highly oriented
pyrolytic graphite (HOPG) is actually anisotropic; the 2D
liquid is perturbed by its periodic host into a pronounced
sixfold angular intensity variation whose maxima appear
roughly along [11.0] for C,,Cs (Ref. 8) and CRb (Ref.
10) and along [10.0] for C,uK (Ref. 9). In addition, the
anisotropic liquid pattern appears to be repeated as halos
about the set of six {10.0} graphite reciprocal-lattice
points; it does not seem, however, to have been observed
about {11.0} and higher positions. Figure 1 presents the
room-temperature x-ray photos of Rousseaux et al.>!0 in
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which these substrate effects on the 2D liquid may be
seen. Schematic summaries of the effects are included.

(4) The disordered alkali-metal atoms make a pro-
nounced contribution to the graphite Bragg peak intensi-
ties.!! This has been confirmed in a set of recent experi-
ments*!? in which this contribution was treated as evi-
dence of either partial registry* or host modulation of the
2D liquid."?

(5) The alkali-metal liquid and the ordered state at
lower temperature both demonstrate a dynamical
response, as determined by incoherent inelastic neutron
scattering, characterized by a two-peak frequency distri-
bution (phonon density of states) which is not very tem-
perature dependent.!’> The liquid also shows diffusional
behavior typical of both a (registered) hopping solid and a
(unregistered) diffusing liquid,!* where the solidlike
behavior dominates at lower temperature as ordering
proceeds.

Clearly a theoretical perspective is needed. The present
treatment analyzes the variety of diffraction data from
the standpoint of a 2D alkali-metal liquid modulated by
its graphite host. It is a detailed development of the
theory sketched briefly in Ref. 12. Other theoretical treat-
ments include Bunde and Dieterich,!’> who introduced a
sinusoidal perturbation into a one-dimensional Percus-
Yevick liquid to demonstrate modulation effects including
Bragg peak contributions. Plischke!® carried out a de-
tailed study of the unmodulated 2D liquid, and Plischke
and Leckie!” performed Monte Carlo simulations in the
presence of a simple (sinusoidal) substrate potential to
study both the liquid and its freezing. Our own treatment
develops the scattering formalism far enough to extract
realistic modulation potentials from available diffraction
data and shows clearly both the origin and form of the
(static) structure effects discussed above.

II. THEORY

A. Bragg contributions

We begin with a 2D alkali-metal liquid layer in its gra-
phite host. We choose Rb as we shall wish to make exper-
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FIG. 1. (a) and (c), single-crystal x-ray photos from Rousseaux et al. (Refs. 9 and 10); (b) and (d), schematic representation of the
principal effects including angular variation of the diffuse scattering and halos. The distortion in the data, due to cylindrical film
geometry is not reproduced in (b) or (d). (a) and (b): Cp,K with peaking roughly in [10.0]; (c) and (d): C,4Rb with peaking roughly in

[11.0).

imental comparisons with Cp,Rb.!*!® The formalism, of
course, applies equally well to all species that intercalate,
or for that matter, exist as monolayer liquids on a period-
ic substrate surface.!” Because the Rb layers are uncorre-
lated, we need only treat a single layer subject to the per-
turbing potential of the bounding graphite sheets. These
sheets are known to be positioned directly over each oth-
er! which greatly simplifies the treatment. The perturbing
potential may be written

Vir)= Y v(r—R;), (1

where r is a continuous position vector in the alkali-metal
layer, R; are the lattice vectors of the graphite, and v(r)
is the effective interaction potential for a single pair of in-
tercalate and graphite atoms. If Rf, is any in-plane com-
ponent of a graphite lattice vector,

V(e+Ri)=V(r), V)

whereby the potential has the periodicity of the 2D gra-
phite lattice. It therefore may be expanded as

2mi(Hb 4+ Kb,)-r
V(r)= 2 Vak(z)e ! 2 s
HK

(3)

where =z is the out-of-plane coordinate and
qyx =2m(Hb,;+Kb,) is a graphite reciprocal-lattice vec-
tor. We will assume for simplicity that only the H=0,
K =0 term has a significant z dependence, and obtain

V( £p2)=Vo(2)+ 2 VHKeZﬂi(Hb1+sz)-rI| .
HK

Vo(z) confines the alkali metal in the plane. The z
dependence of the Vyx that we have neglected introduces
a coupling between the z motion and the (x,y) motion. In
the absence of this coupling, the density matrix for the
system factors into a product of density matrices for the z
and (x,y) configurations and the coefficient Vyx may be
regarded as the average of the Vyx(z) over the density
matrix for the z coordinates. This interpretation is strict-
ly correct for the calculations we will present that are first
order in the Vyy, but it is not exact for the higher-order
calculations. In as much as these higher-order terms will

(4)
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be important, then, one must regard the Vg as effective
parameters related in a nontrivial, although calculable,
way to the actual Fourier coefficients of the potential in
(3). Because, however, the scattering experiments measure
precisely this effective potential averaged over the z dis-
placements, we choose to leave the factoring into parallel
and perpendicular contributions as indicated, even when
the first-order (linear) treatment breaks down.

The Hamiltonian for the Rb atoms may be expanded in
the small displacements in the z direction, and we obtain a
Hamiltonian for the system that describes a two-
dimensional liquid, modulated by the potential given by
the second term in (4), and a set of oscillators describing
the motion in the z direction. The z motion then leads
only to an experimentally determined Rb Debye-Waller
factor. The perturbation of the 2D fluid by the graphite
potential produces static density waves in the fluid at the
graphite reciprocal-lattice wave vectors which give a Rb
contribution to the Bragg peaks at these wave vectors.
The amplitude of these density waves, assuming the per-
turbing potential is not too strong, can be obtained initial-
ly from linear-response theory, treating the liquid classi-
cally.

Let q=q;+q,. We wish to calculate the Fourier
transform of the number density {p, ) where

pe=3e"
1

and the r; are the locations of the Rb atoms. The Hamil-
tonian with which we calculate the average, given the ap-
proximations described, is H =HZ% +Hgy, +Hgry, Where
HE describes the 2D fluid. It is not likely that the in-
teraction between the intercalate atoms bears much resem-
blance to the potential between these atoms in the 3D
liquid state as there is significant charge transfer to gra-
phite layers. In fact, the calculations by Plischke'® of this
potential suggest that it may be purely repulsive. Hky,
gives the out-of-plane motion and Hgpy, is the modulation
potential,

Hgro= 2, 3, Vaxe e
i HK

qux are the graphite reciprocal-lattice vectors as noted
above. To first order in the modulation, the distribution
of the r‘,] is given by the density matrix, which we will
denote by D,

e —BHR +Hiy)

D="“—§B-l'—“(l—BHGRb+ ), (5)
ZRvZro

where B=1/kgT. If we denote the average over the
noninteracting density matrix, given by the first term in
(5), by { )o and the average over D by ( ), then

(pg) ={pg(1—BHgro+ " ))o

= 3 () NN BH g+ - )e.  (6)

Since, for the noninteracting fluid, the density is uniform,

3 (e

o
||’)0=N5q,0 ,

where the & function should be regarded as a Kronecker 6.
(One actually gets the Fourier transform of the sample
shape here.) The average of the second term is

—BN%VHKBMHK 14p [ ¥ g (rdry |, (D

where g(r) is the in-plane pair correlation function for
particles separated by r, and p is the number of particles
per unit area. The term within large parentheses would be
the familiar static structure factor S(q) if g(r) were re-
placed by g(r)—1. At normal values of g it makes no
difference and at g =qpyx they are identical and nearly
equal to 1.0. In C,,Cs, for example, Clarke et al.® present
a circularly averaged S(q) in which S(g;0)~0.87 at
q10=2.94 A~ At ¢;;=509 A~} S(g,,)=1.0. The
near equivalence of S(gq) to unity is due to the fact that
the rubidium atoms are much larger than the carbon
spacing so that the first peak or maximum in the lig-
uid S(g) comes at g ~12 A~! while g;0=2.94 A~!
comes well beyond the second liquid peak. To the extent
that S(ggx)+#1.0, a correction can be applied using the
method developed in Appendix A which requires as input
the measured S(g). This correction includes exactly the
two-particle correlations, but it neglects higher-order
correlations. It is appropriate particularly when the linear
approximation of Eq. (5) is not valid.

The rubidium atoms in C,4Rb are stacked in sandwich
layers with three layers to a unit cell. The full structure
factor for a single sandwich layer of two graphite planes
with Rb between has been presented for the case of C,;Rb
with the Rb atoms in (partial) registry.* Our case requires
merely that the N in Eq. (7) be replaced by the number of
Rb atoms per unit cell for a single carbon sandwich where
each carbon sandwich contributes four atoms to this unit
cell. We then may use (7) for the Rb amplitude, together
with the previously derived carbon contribution, to give
below the full layer structure factor, F;, where fc and
frp are scattering factors for the carbon and rubidium
atoms, C, is the ratio of the sandwich or gallery spacing
to the C axis, and X' gives the deviation of the Rb con-
centration from C,,Rb (X'=1 corresponds to C,4Rb).
The stacking of the alkali-metal—graphite sandwiches in
the sequence ABC/ABC affects only the structure factor
selection rules:

Fp=4fce MW =M o[ 2 0(H 4 2K)]cos(7LC)))

’

}g Fave MRb(ql)(aq”,o_—ﬂﬁq”quKVHK) . (8)

This expression has recently been used'? to obtain pre-
liminary values of the Vyg’s from the measured intensi-
ties and energy dependences of the Bragg peaks in disor-
dered C24Rb.

If BVyx << 1 is not satisfied, it is necessary to go to
higher orders in BVyg, or to go beyond perturbation
theory altogether. The general expression that replaces (6)
is

(Pq > S 2 (eiqlzi )0 (eiq“'rie —ﬁHGRb>O/(e_EHGRb>O . (9)

+

The perturbation expansion of (9) involves higher-order
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correlation functions of the 2D fluid, evaluated at the
wave vectors of the graphite reciprocal lattice. Given, as
noted above, that there is a large mismatch in size be-
tween the alkali-metal atoms and the graphite spacing, we
neglect, for the moment, alkali-metal correlations in
evaluating the Bragg peak contributions. In this case we
may perform the integrals associated with a complete nu-
merical evaluation of Eq. (9) which then becomes

gl
(Pyy=(pg) /Ne M*o

[ e
e €X
0 0 P

- f()a foaexp [_B 2 VH’K'eXP(iQH'K"l') }d2l'
H'K'

—B 2 VH'K'eXp(qu'K"r) ]dzl'
H'K'

=F(q)/F(0), (10)

where the integration in the numerator is evaluated at
q=qgx and the denominator is associated wilth q=0.

The term N, the number of Rb atoms, and e " R appear

in Eq. (8) as X'/6 and e ™%’ and need not concern us
here. The set of (py,, )'s are the measured quantities

from which a complete set of BVyx’s can be extracted
through an iterative solution of (10). When BVyx <<1,
Py ) =—BVruk. The integrals are, in principle, per-
formed over a planar graphite repeat (or unit) cell of
length “a” but symmetry permits a significant reduction
of this task. These calculations are currently being per-
formed with our experimental data and will be reported in
a separate publication.!® The results indicate that the
linear approximation of Eq. (5) is inappropriate.
Correlations can be included in Egs. (9) or (10) by mak-
ing a cluster expansion and neglecting three-particle and
higher cumulants. The result, derived in Appendix A, is

(py) =[F(q)/F(0)]e ¥~

where

1y

]
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Fy(@)= 3 Fi(qux)Fi(—q+quk’)

Li:d¢

X [S(qgx)—11/F1(0)F(q) . (12)

Typically, S(qgy)—1 is only significant for the {10}
star, and is the same for every wave vector in the star.
F,(q) is then proportional to an average of the values of
F, on the star surrounding the point q of the reciprocal
lattice, divided by the value at q. It may easily be
checked that, if all Vg are sufficiently small, the linear
approximation for F,(q) is valid and Eq. (11) reduces to

(Pg ) =840—BVukS (quk) , (13)

a result that is derivable directly from linear-response
theory and which appears in Eq. (7).

As noted in Appendix A, the procedure developed for
the evaluation of BV is applicable not only to the alkali
metals and acceptors in graphite but to species adsorbed
on graphite and other surfaces. The above correction will
become increasingly important as the ratio of adsorbate to
substrate spacing decreases.

B. Modulation of the liquid pattern: halos

In addition to producing an alkali-metal contribution to
the host, or substrate, Bragg scattering, the coupling dis-
cussed here also changes the diffuse scattering pattern
from that of an isotropic 2D liquid to a modulated liquid
pattern and produces “halos” of this anisotropic liquid
scattering about the graphite reciprocal-lattice points.
Both effects have been seen experimentally and are repro-
duced in Fig. 1. The angular variation in the diffuse
scattering pattern about ¢=0 is clear. Its ghost (halo)
about all graphite {10.0} reciprocal-lattice points is weak-
er but evident as well. To lowest order, the change in the
diffuse scattering for ¢g=40 is

8L{pgp—g)— 1 €pg) |’ 1= X (BVuk)*(PeP —g PP —gpx — PapP—apx?)) > (14)

H,K

where there is no first-order term in (14) because of the
translational invariance of the fluid in the absence of the
interaction. In Eq. (14), {(p,p_,) is the familiar
transform of the pair correlation function while | {p,) |?
is the Bragg peak intensity contribution from the alkali-
metal atoms, neglecting the normal carbon contribution
and the attendant carbon—alkali-metal cross terms. The
diffuse scattering is then formally associated with the
difference (A42)—(A)? where A is a scattering ampli-
tude. This familiar statement is noteworthy here because
an analysis of the 2D diffuse liquid scattering which
neglects it will be in error. Indeed, as the experimental
system is cooled and the alkali metal makes an increasing-
ly greater contribution at the graphite reciprocal-lattice
points, there will be less alkali metal left for the diffuse
scattering pattern. Finally, in a fully registered lattice gas

f

state, the alkali-metal scattering available for the eventual
ordering or superlattice reflections will be given by the
Laue monotonic term, Nx (1 —x), where N is the number
of alkali-metal atoms and x is the ratio of alkali-metal
atoms to total available hexagon sites.’

The quadratic term above involves a four-particle corre-
lation function given explicitly by

> (explilq-(r;—r))+qpug-(r, —1,)1}) . (15)
i,j,m,n
The terms for which m =i and n =j, or vice versa,
contribute
3 (1w (16)
iJj

This is the familiar liquid structure factor, or transform
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of the pair correlations, but shifted by *+ggzx. That is,
these terms produce liquid halos about each graphite
reciprocal-lattice point. (We will show in Appendix B
that the terms for which m=4i, n+j, which must there-
fore be higher order in the density, lead primarily to an
angular dependence of both the central ring and the
halos.) It follows, then, that the relative total intensity of
the modulation halo about a particular Bragg point com-
pared to that about the origin, at ¢=0, is (8Vyx)?. This
provides an independent check of the measured coeffi-
cients and explains why the halos about {11.0} are not
readily observed in the x-ray photos.®~!° In principle the
halos, being a second-order effect, should be more diffi-
cult to see than the intercalate contribution to the Bragg
peaks which is a first-order effect. On the other hand, the
halos appear by themselves in the diffuse alkali-metal pat-
tern so that, while their strength enters proportional to
(BVyk )%, they are not necessarily a less “visible” effect of
the substrate perturbation than the first-order Bragg peak
contribution. They will, nonetheless, fall off much faster
with gyg, as noted.

C. Angular dependence of the liquid scattering

To see the effect of the interaction on the angular
dependence of the diffuse scattering about ¢=0 (and in
the halos about the other reciprocal-lattice points) requires
a calculation of the four-particle correlation function and
we do not know any simple way of doing this. At the
densities and temperatures of the experiment, the simplest
way that we have found of calculating the four-particle
correlation function is based on a linear integral equation
derivable from the Percus-Yevick equation. Since we
wish primarily to show how the effect arises, rather than
develop a detailed comparison with experiment, we will
give a simpler derivation based on a low-density perturba-
tion expansion of the pair correlation function. The basis
of both calculations is the observation that, to second or-
der, the effect of the substrate on the pair correlation
function of the fluid is the same as that of an effective,
angular-dependent, two-particle potential. We note that
the change in the pair correlation function, {p,p_, ), due
to a change in the pair potential of the interacting inter-
calate atoms of the form

8H= 3 8V(r—r)= 3 3 ' ¥ gpp,

rry ry,ry HK
= I%(SV}IquHKp_qHK (17

would be, to first order,

HK
- <p?m(p—'1ﬂx ny .

(18)

That is, the effect of the substrate on the diffuse scatter-
ing to second order in the interaction with the substrate,
as in (14), is determined by the same correlation function
that arises to first order from an effective change in the
pair potential of the fluid. Note that Vg should be
chosen to be —BVZx to make the diffuse scattering iden-
tical, to lowest order, for the two cases of a substrate with
modulated fluid (14) and an effective free fluid (18). Thus
the effective potential is always attractive. This can be
partly understood by noting that in a periodic potential of
whatever shape, the fluid energy will be lowered, since the
ions spend more time at the minima of the potential.
Consequently the effective two-body interaction that
reproduces the perturbed configurations must, on average,
be attractive. The actual result is a bit stronger, in that all
the Fourier coefficients, §Vyk, of the effective modula-
tion potential are negative. This, however, places no re-
straint on the actual Vyg’s. One can, therefore, determine
the correlation function in (18) by differentiating the pair
correlation function with respect to the potential. The
pair correlation function, g(r), is related to the two-
particle density function

P(ry,1r)=p%g(r;—1,),
and to {p,p_,) by

(pgp-g) =N [1+p [ e¥g(n)dr |=NT1+pg(@)] .

(19)
Thus,
3(pgp—q)
__q_'_g__ = “'B(pqp—q(pqimp"qm( - <quKp—q”K 2
Vux
—Np ag(’g) , (20)
aVHK Vi =0

where we think of g(q) as a function of the effective pair
potential. An integral equation for dg /d¥yx can be de-
rived by differentiating one of the self-consistent approxi-
mate equations for the pair correlation function. We give
in Appendix B the result for the Percus-Yevick equation.
Here, we use the leading terms in a density expansion of
the pair correlation function:

glri—r=e " [14p [ar(e ™ e T | @1
Then,
ag(r,—rz) _ —BV(r;—r,

Sy =B g (ry—r)—2pBe

' [ drsgotri—re " gytr, —r) 1] . 22)



7214 GEORGE REITER AND S. C. MOSS 33

The first term contributes —Bg (q+qgx) to the Fourier transform. It is large when q~—qg, and produces the halo at
—9qHk-

Let us consider the effect of the second term in (22) on 8{p,p_,). The values of 8V, that correspond to equivalent
positions in the reciprocal lattice must be the same. Let us divide the sum over all reciprocal-lattice vectors into sets
{ H;K;}, which include all the vectors in the equivalent class; that is, vectors that transform into themselves under the ac-
tions of the symmetry group of the lattice. For example, in {1,0} we would have (1,0), (0,1), (1,0), (0,1), (1,1), (T,1)
which arise because the 2D hexagonal reciprocal space properly requires a three-vector specification using H, K,

—(H +K). Then the second term contributes

~Bp X 8Vuxk, X
i (H.K,)

This term leads to an angular variation with r=r;—r,,
and hence to an angular variation of 8(p,p_,) with g.
This angular variation must have the sixfold symmetry of
the graphite lattice. To see this, observe that if r'=Rr,
where R is a rotation by 60°, then q-r'=R ~!q-r=q'r.
Changing variables from q to q’, and noting that g, de-
pends only on the magnitude of ¢, we get for the integral
in (23),

1 .
(r')= e'T"go(Rq' —qy.x.)
S)=s {%ﬂ [ e go(Rq —qp,

X[golq')—8(q')]dq’ . (24)

However, | Rq'~qux, | =9 —R "'qux, | and

R _1(111,.1(,. =qpu,x,. Since the sum is over all H;K;, the two
integrals are identical, and f(Rr)=f(r). This term is
thereby responsible for the six-fold modulation of the
liquid scattering pattern in Fig. 1.

We note that if we write the leading contribution as

8¢pgp—q ) =N (BV10)%a;(q)cos(66) , (25)

the sign of the coefficient a,(q) determines whether the
pattern peaks in the [10.0] directions, a;(q) >0, or in the
[11.0] directions, a(q) <0. Both patterns occur in prac-
tice as in Fig. 1. In view of the fact, demonstrated in Ap-
pendix B, that a,(q) is given by multiple integrals of g(r)
and e " °" against Bessel functions, the possible sign
variation is not surprising, as the integrals oscillate rapid-
ly over most of the domain of integration. While it is not
transparent either in (25) or in Appendix B, this sign is
controlled primarily by the relative size of alkali metal to
graphite spacing and thus by the in-plane density in these
compounds.

The halos, it should be noted, are also modulated. This
arises from higher-order terms in the perturbation expan-
sion and can be treated by solving the integral equation in
Appendix B.

III. SUMMARY

The major effects that arise in the x-ray scattering from
a 2D alkali-metal liquid modulated by its periodic gra-
phite host include the following.

(a) Alkali-metal contributions to the graphite Bragg
peaks which appear as a first-order effect. Assisted by the
fact that the alkali-metal size is considerably greater than

TP [ e g (a—anx, go(@)—Bl@)a @

r

the carbon spacing in graphite and, therefore, that the
alkali-metal liquid scattering, S(q), is nearly featureless at
the graphite reciprocal-lattice points (gyx ), we present an
accurate and useful method for extracting the Fourier
coefficients, Vyk, of the modulation potential evaluated
at the alkali-metal layer which includes corrections for the
actual liquid pair correlations. Because this modulating
potential is appreciable compared with kzT, the linearized
treatment presented in Egs. (5)—(8) and used earlier in a
preliminary calculation,'? will be a poor approximation.

(b) Replication of the alkali-metal liquid scattering pat-
tern as halos about the graphite reciprocal-lattice points.
This effect arises only to higher order in the Vyg’s and is
associated with four-particle correlation functions. It falls
off with increasing gy, proportional to (8Vgx)?. While
it is thus a second-order effect, it appears by itself rather
than under the graphite scattering and is quite visible in
Fig. 1 around the {10.0} positions.

(c) Development of anisotropy both in the 2D liquid
scattering and in its halos about the graphite Bragg peaks.
This anisotropy also arises only to higher order in BV
and clearly is due to the anisotropy of the impressed po-
tential. Its explicit dependence on angle, however, while
possible to demonstrate, is not easy to calculate, since it
involves complex integrals against higher-order Bessel
functions. We do note that the sign of the angular depen-
dence of the liquid structure factor can produce a max-
imum in the 2D reciprocal lattice along either [10.0]
directions or [11.0] directions and both are observed. This
effect is higher order in the intercalate density than the
appearance of the halos.

It is fortunate that a principal result of this theoretical
study are useful expressions, Egs. (10) and (11), for the ex-
traction of a set of Vyx’s, and thus a realistic ¥'(r))), from
measurements of Bragg peak intensities and/or their ener-
gy dependence.*!> This will be presented in a forthcom-
ing paper.!®
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APPENDIX A

We present here a method of including the correlations
in the liquid into the determination of the intercalant-
substrate potential. Inasmuch as three-particle and
higher-order correlations are not experimentally available,
they will be neglected in the cumulant expansions we use.
It is required to calculate, as in Eq. (9),

_aml
(py)=(pg) /Ne M

_ <eiq-;l ﬁ e-BV(r,~)>/< INI e

i=1 i=1

_pV(ri)> : (A1)

where the average is over the unperturbed liquid and ¥'(r)
is the intercalant-substrate potential. If we regard
iq-r;— BV (r;) as the variable X,;, —BV(r;)=X;, i> 1, the

|

exp[K (X)) +(N — 1K (X5)+(N —DK,(X1,X;)+ 5 (N —1)(N =2)K,(X,,X3)]

7215
averages in (A1) can be written as
N
<Hex'l>=exp S KX+ KX X))+ ],
i=1 i ij
(A2)
where
ex‘(x,.)=(ex,.> ’
(A3)

X X)) _ (ex"exf y /(™) (") ,

and we will neglect all higher-order terms in the expan-
sion. K, can be determined from the pair correlation
function. The denominator in (A1) is obtained from the
numerator by setting g=0. We have, therefore, using the
fact that the particles are identical,

(pg)

or
(o) = exp[K (X)) +(N —1)K,(X, X,)] (A5)
Pa’ = explK (X)) +(N — DK;(X3,X3)]
Now
(e¥1e™)
Kz(X1X2)=1n 1+"‘X_“—}_ (A6)
(e"')(e™?)
where

(eMeMiyc=(ee™y (™))

Noting that the two-particle probability distribution for
the liquid can be written as (1/V?)g(r,—r,), where
f g(r;—ry)dr,=V, we have

1 X,
(ex‘exf)c= fdr,- fdrjﬁ[g(r,'—rj)—l]ex‘ex’

(A7)

Since the function g(r)—1 is integrable, the integral is
proportional to 1/ ¥, and we have, therefore,

(N —DKy(X,Xy)= 3, Fi(qux)Fi(—qux +Q)[S(qux)— 1]1/F,(Q)F,(0)=F,(q) ,

9HK

while

(N —1K5(X3,X3)= 3 Fi(qux)F1(—qug)[S(qux)—1]/[F,(0)]*=F,(0)

9HK

(A4)

exp[NK(X;)++N (N —1)K,(X,,X3)]

[
(N - DK, X) =L [ dr; [ drjlg(ri—r))-1]

xeie® /(eMy (e .

(A8)
If we define
[S(q)—1]=p [ " [g(r)—~1)dr, (A9)
we have
1 —iq-
P[g(r)—l]=7fe T[S (q)—1]dq . (A10)

Since V(r+na)=V(r), where a is a primitive vector of
the graphite cell, we have

e BV 2 e—"qnx'fFl(qHK)
H,K

and (A11)

1 iqr, — 1
v Jdreae ﬁwr)‘—‘? 2 Fi(@ux)8q,q,,

¢ qux

where V¢ is the volume of a single primitive cell of the
graphite lattice. Thus

(A12)

(A13)
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and hence
Fi(q) o2 @—Fy(0)]

F,(0) (A14)

{pg)=
Equations (A12) through (A14) thereby provide a correc-
tion to Eq. (10) of the text and give us an expression for
the measured alkali-metal contribution to the peak inten-
sities in terms of the coefficients in the potential which
enter F, and the value of the diffuse scattering from the
unperturbed liquid evaluated at the graphite Bragg peaks.
We note that the S(q) that enters the theoretical expres-
sion is not actually accessible experimentally, since the
measured values include the effect of the substrate on the
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pair correlations whereas the theory uses the unperturbed
liquid structure factor. This is not a serious drawback for
small values of BV, since the corrections to the mea-
sured S(q) are second order in BVyx. It would present a
problem of interpretation if the observed intensity in the
halos and the depth of the angle-dependent intensity
modulation were comparable to that of the liquid diffuse
scattering. With this proviso, the intercalant-graphite po-
tential may be obtained from the measured data by stan-
dard fitting procedures. In fact, the methods which we
have obtained here, once the appropriate corrections given
above are made, apply to a wide variety of intercalant and
overlayer systems.

APPENDIX B

We wish to provide an integral equation for dg(r)/dVyk that can be used to calculate the diffuse scattering pattern
when the density is too high to make Eq. (21) appropriate. We begin from the Percus-Yevick equation,?

g(r)=e=P¥0 lH—Pfdl"g(r—-r’)(l——e”V""”)[g(r’)—

Letting V(r)=Vy(|r| )+8V1',Keiq”“", we find

1]] . (B1)

ag(r) =—Beiq”K.rg(r)—Bpe_ﬂV(”fdr’g(t-—r')eﬂy(’"”[g(r’)—-l]eiq”’(.(r_r,)

Wix
+p [ drBETT) (B0 (r) —1]4p [ drgr—r)(1—efr-0) L) (B2)

A consistent iteration of these equations as a density ex-
pansion leads to Eq. (21) of the text. Note that the modu-
lation of the rings requires that a pair of particles be af-
fected by the angular-dependent potential of a third parti-
cle and hence is a higher-order effect in the density than
the appearance of the halos. For example, it might at
first seem that we can extract all of the angular-dependent
factors simply by noting that, to lowest order,

—B

g(r)=exp Vo(r)+ 3 8V1€1Keiq’""r
HK

l . (B3

Because the exponent contains an angular varying part,
g(r) varies with qyg'r«cosf. By expanding (B3) and
transforming it, however, we see that this angular depen-
dence produces only the halos and not the desired angular
variation about the origin of the principal liquid pattern
in Fig. 1.

To evaluate more explicitly the expression in Eq. (23) in
order to obtain the leading term in the angular variation
of the structure factor, we rewrite, dropping the subscript
0,

S ga—aux)= 3 gilg)cos(6n0) , (B4)
{H;,K;} n=1

f,x OWVak

where 0 is the direction of q, with respect to q;o. Then,
using

g(q)= fe"“"g(r)dr

and the expansion

efdT= ix 2i"J,(gr)cos(n8)+Jy(qr) , (BS)
n=
we have
g,‘;(q)=l fj cos(6nf) | > fe“q—qH‘K")‘rg(r)dr do
™o {H;.K;)
=4nm [ dr il (g enlquxrIg (r) (B6)

where n; is the number of wave vectors in the set { H;K;}.
Inasmuch as Jg,(gyuxr) is rapidly varying on the scale of
g(r), the sign of this coefficient is indeterminate.

We have, then, for the contribution of the angular-
dependent term

sg(n=3 Msv;ﬂ:*szsv;,i,qe””f’(”a—:;)—z [ e'¥7gi(g)cos(6n6)[g (q)—8(q)]dg

—BVyn) (—1)"

=— 1%
Bp % H,K,€ .

[ Tealarigi(@)g (q)—5(q)/2mqlq dg cos(6ng) , (B7)
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where ¢ is the direction of r with respect to the graphite (10.0) direction (along the real axis). Finally, upon Fourier

transforming and using the relation 8V, = — BV} we obtain

N —BVAr )
8pep_g) = 3P BVix P [ Jenlarie " Jeu(a'rIgi(a"g (q')—8(q")/2mq' Icos(6nO)q’ r dg’ dr . (B8)
in
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(c) (d)

FIG. 1. (a) and (c), single-crystal x-ray photos from Rousseaux et al. (Refs. 9 and 10); (b) and (d), schematic representation of the
principal effects including angular variation of the diffuse scattering and halos. The distortion in the data, due to cylindrical film
geometry is not reproduced in (b) or (d). (a) and (b): CpK with peaking roughly in [10.0]; (c) and (d): C,4Rb with peaking roughly in
[11.0].



