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A method is described for deriving all-electron valence wave functions, having the correct nodal
behavior, from the knowledge of the self-consistent nodeless pseudo-wave-functions. The method is

tested for several atoms throughout the Periodic Table.

The resulting “inverted” wave functions

compare closely with the corresponding all-electron frozen-core wave functions, with deviations less

than 1%.

Pseudopotential techniques' have proven to be invalu-
able tools for self-consistent local-density calculations of
the electronic structure of solids and molecules. Their use
enables accurate evaluation of the valence electron densi-
ties and energies. However, within the pseudopotential
formalism, information concerning the core region of
each atomic site is lost. This core information is impor-
tant for relating calculated electronic structures to results
from various experimental probes, such as nuclear mag-
netic resonance (NMR), or x-ray and other high-energy
spectroscopies. In addition, the core information is im-
portant for refining the calculation.

In the original formulation of pseudopotential theory,?
based on the orthogonalized-plane-wave method of elec-
tronic structure calculations,® core information could be
approximated by orthogonalizing the pseudo-wave-
function to the core wave functions. However, the more
recent “first-principles” or “norm-conserving” pseudopo-
tential formulations’** promise to approach the accuracy
of all-electron frozen-core calculations in determining the
valence electron energies and their wave functions in the
valence region. Consequently, it should be possible to “in-
vert” the results of a self-consistent first-principles pseu-
dopotential calculation in order to directly retrieve results
analogous to those obtainable from an all-electron frozen-
core calculation. In this paper, we report a simple scheme
developed for this inversion process. The scheme is tested
for atomic calculations so that we can make a detailed
comparison of the inverted pseudopotential and all-
electron results. The comparison is very encouraging for
the possibility of implementing the scheme in solids and
molecules, and also yields additional insight into the accu-
racy of the first-principles pseudopotentials themselves.
For simplicity, we confine our attention to a nonrelativis-
tic and spherically symmetric (average multiplet) treat-
ment of the atom.

The basis of this work is a self-consistent solution of
the one-electron Schrodinger equation within the local
density approximation® and within the “frozen-core”’ ap-
proximation. In an all-electron treatment, the effective
electronic potential® for an atom having atomic number Z
is given by

V(r)——L+ zfd3 ' ”‘

+ ch[pfc(r)+pfc(r)] . (1)

The method can be extended for use in molecular and solid calculations.

Here, e is the charge of an electron, and pf(r) and pf<(r)
denote the spherically symmetric density distribution of
the frozen-core states and of the valence states, respective-
ly. ¥V, denotes the exchange-correlation functional which
we have taken to be that of Hedin and Lundqvist.® The
solutions to the radial Schrédinger equation are the
valence radial wave functions W5 (r) and their eigenvalues
EXC. Self-consistency means that the valence density

C(r) that appears on the left-hand side of Eq. (1) is re-
lated to the valence states nl, having occupancy w,;, ac-
cording to

| WEC(r) |2
S wn—— . 2)
nl ™
(valence
states)

pro(r)=

A pseudopotential treatment*> can be described

operationally as follows. First, the ionic Coulomb poten-
tial in Eq. (1),
pEc(r')

VFC =___ e? 3 e
fa(r) ~ e [ a*r |r e 3)

is replaced by l-dependent pseudopotentials:
VEa(r)=3 ®)(r)P(T), (4)
1

where ®,(r) denotes a smooth radial function representing
the ionic pseudopotential for valence states of orbital an-
gular momentum [/; P, denotes the projection operator.
Secondly, the valence pseudodensity pb*(r) replaces pf<(r)
in Eq. (1) for both the Coulomb repulsion and exchange-
correlation contributions. Finally, the frozen-core density
pEC(r) in the V,. term of Eq. (1) is approximated by a
smooth function pZ(r), following the approach of Louie
et al.’ The self-consistent valence pseudodensity pP*(r) is
related to the nodeless pseudo—wave-functlons WE(r) hav-
ing valence eigenenergies EJf, according to the self-
consistency condition analogous to Eq. (2). For “norm-
conserving” pseudopotentials,*> the EP closely approxi-
mate those of the frozen-core all-electron calculations*>

Er?lsz nl - (5)

In addition, each pseudo-wave-function closely matches
the frozen-core all-electron wave function in the valence
region“'5

B(r)=VYEC(r), r>R, (6)
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for a pseudopotential radius R;, chosen to lie close to the
last peak of the frozen core all-electron wave function
WEC(r). Typically, R; is chosen so that the pseudopoten-
tial functions ®;(r) and WE;(r) are sufficiently smooth for
the particular application. A further equality is imposed
for norm-conserving pseudopotentials:**

R, ps 2.2 R WFC 2.2
fo | WBS(r) | 2r drzfo | WEC(r) | 272dr . )

The problem of pseudopotential inversion starts with
the results of a self-consistent pseudopotential calculation,
including the valence pseudo-wave-functions WEj(r) and
their corresponding energies E}} and density p(r), as
well as the frozen-core density pf (7). From these results,
one would like to determine the inverted all-electron
valence density p}(r) and valence wave functions W/;(r).
The inverted wave functions are assumed to be good ap-
proximations to the all-electron frozen-core results and
are forced to replace them in the right-hand sides of
equalities (5)—(7) and to be consistent with Egs. (1) and
(2). From Egs. (6) and (7), the inverted wave functions
Wl (r) and corresponding Coulomb potentials are deter-
mined from the pseudopotential results for » > R;. There-
fore the entire inversion calculation is confined to the core
region 0 <7 < Ry, (where R, is the largest of all the R;).
In principle, the inversion could be carried out by inward
integration, starting with the known values at R; and
proceeding toward the origin. However, an analysis of the
error propagation of such a scheme showed it to be nu-
merically unstable. Therefore, we adopted an algorithm
based on outward numerical integration starting at the
origin. Since the screening potential is not entirely known
in this region, this scheme is necessarily an iterative one.

Denoting by p{(r) the ith approximation to the valence
density, we calculate the corresponding effective potential
according to Eq. (1). Then, we numerically integrate the
Schrodinger equation for this effective potential for each
of the valence states n/, using the eigenenergies from the
pseudopotential calculations according to Eq. (5). The nu-
merical integration is accomplished by integrating the ra-
dial equation outward from r =0 using the Noumerov al-
gorithm.!® The initial values for the integration are
known up to normalization from the asymptotic behavior
of the equation for r—0. This determines the unnormal-
ized wave function for O<r<R;. For r>Ry
Wii)(r)=WPS(r) for each iteration so that using Eq. (7), the
wave function can be correctly normalized. The results of
the numerical integration are new approximations to the
valence wave functions, from which we can determine
i+ 1(r). In practice, in order to avoid numerical instabil-
ity, for the (i+1)th iteration p{*"(r) is fractionally
mixed with p{(r). The process is continued until conver-
gence is achieved. We have obtained rapid convergence
using the starting iteration

pO(r)=pB(r) . (8)

In general, the inverted wave function will suffer a discon-
tinuity at R;. The magnitude of the discontinuity
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A =R,[ ¥y (R )—WH(R))] ©

for the converged wave function is generally small; its
smallness is a measure of the success of the inversion pro-
cess.

Another quantity of interest and measure of accuracy is
the total electronic energy.”’ We have calculated a total
valence energy in the form

I I( 1

pu(r)py(r’)

> wan,{I—%fdardJr'—“——v ;
o |r—r'|

(valence

states)

ET=

— [ &rol(nVipES(n+p(r)

+E (pFC+p))—E (pF©) , (10)

where E,. denotes the exchange-correlation energy func-
tional.® Since we are working within the frozen-core ap-
proximation, the constant-core contributions’ have not
been included. E, (pf€) has been subtracted in order to
facilitate comparison with the pseudopotential total ener-
gies which can be calculated using the same form, but re-
placing the frozen-core density pf<(r) with the approxi-
mate core density’ p2(r).

In the present work, we have used the norm-conserving
pseudopotential formalism of Kerker,® which uses R; as a
matching radius. We have studied the inversion of
pseudo-wave-functions for a series of atoms throughout
the Periodic Table. The convergence of the iteration
scheme was very rapid: On the order of 100 iterations
were needed for all the materials studied. The results are
of two general types, depending upon the accuracy of Egs.
(5)—(7). The first type of result is obtained when Egs.
(5)—(7) are essentially exact, using the pseudo-wave-
functions determined for the atom in the same configura-
tion as that used to construct the pseudopotential.’ In
this case, the errors are due solely to numerical errors in
integration. For all the materials studied in this case, the
discontinuity errors [Eq. (9)] were less than 5X 1073
bohr~!/? and the difference between the inverted and all-
electron frozen-core total energies were less than 0.0005
Ry, as expected from the numerical methods.

The second type of result was obtained when Eqgs.
(5)—(7) were only approximately satisfied. Operationally,
this occurs when the pseudo-wave-functions are deter-
mined for an atom having a configuration that is different
from the one used to construct the pseudopotential.’
Since this case is of more general interest, the figures and
tables pertain to it. Figures 1 and 2 illustrate the iteration
process for the inverted valence charge density and the
corresponding Coulomb potential. In these figures, the
starting values are shown with dotted curves; the first
iteration results are shown with dashed curves; and the fi-
nal iteration is indistinguishable from the exact frozen-
core result, shown with the solid line. The effects of the
discontinuities at the pseudopotential radii R; are not visi-
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FIG. 1. Radial valence densities [4mr’p(r)] in units of

electrons/bohr plotted as a function of radius 7 in bohr units.
The atom is Ru, calculated using pseudopotential parameters
listed in Table 1. Dotted curve shows pseudopotential density
(starting iteration); dashed curve shows first iteration of inverted
density; dash-dot curve (not resolved) shows converged inverted
density; solid curve shows all-electron frozen-core density.

ble on the scale of these figures.

In order to make a more detailed comparison of the in-
verted results with the exact frozen-core results, we have
plotted the density differences:

Ap(ry=pl(r)—pEC(r) (11)

in Fig. 3 for two different pseudopotentials. For r >R,

15 T T 1 1

Coulomb Potential

FIG. 2. Coulomb repulsion potential for valence densities
given in Fig. 1 in units of rydbergs, plotted as a function of ra-
dius r in bohr units. The atom is Ru, calculated using pseudo-
potential parameters listed in Table I. Dotted curve shows pseu-
dopotential repulsion (starting iteration); dashed curve shows
first iteration of inverted repulsion; dash-dot curve (not
resolved) shows converged inverted repulsion; solid curve shows
all-electron frozen-core repulsive potential.
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FIG. 3. Radial valence density deviations [4mr2Ap(r)], where
Ap(r) is given in Eq. (11), in units of 10~ electrons/bohr plotted
as a function of radius r in bohr units. The atom is Si with
Ry =R;3;=R;, using R;=1.8 bohr in (a) and R;=2.2 bohr in
(b). Dashed curve shows 3s contributions, dotted curve shows
3p contributions, and solid curve shows the total density devia-
tions.

the deviation is directly due to the pseudodensity error:
pP(r)-pEC(r). For r <R, the deviation is due to the in-
verted density error, the discontinuity at R; being prom-
inent in these plots. The results illustrate the sensitivity
of the inversion results to the accuracy of the original
pseudo-wave-functions, those of Fig. 3(a) being slightly
more accurate than those of Fig. 3(b). It is interesting to
note that in Fig. 3(a), the maximum deviation is smaller
and occurs in the pseudopotential region » > R;, while in
Fig. 3(b), it is larger and occurs in the inversion region
O<r <R;. In Fig. 3(a), the pseudodensity deviation has
both signs, which has a cancellation effect on the inver-
sion error, while in Fig. 3(b) the pseudodensity deviation
has only one sign, which has an accumulative effect on
the inversion error.

Results for a variety of different atoms are listed in
Table I. The pseudopotential parameters are given in
column 1. The configuration of calculation is given in
column 2. In column 3, the values of the wave-function
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TABLE 1. Survey of atomic results.

Pseudopotential Configuration Inversion error® One-electron energies® Total energies®
parameters of calculation Ay ER SE Er AE;

C(25%2p?) 2s'2p? inv  —10.2012 0.6018
Ry;=1.4 bohr Ay=1x10"* E,;=—1.0396 + 0.0007 frz —10.1985 0.6045
Ry,=1.4 bohr Ayp=3x10"* E,,=—0.4347  —0.0003 psd —10.2014 0.6017

Si(3s23p?) 35'3p? inv —7.1207 0.4973
R;;=1.8 bohr Ay =4x10"* E3,=—0.8575 + 0.0002 frz  —7.1219  0.4960
R;,=1.8 bohr Ay, =4x10"* E;,=-0.3552 4 0.0002 psd  —7.0817 0.4949

Si(3s23p?) 35!3p3 inv —7.1241 0.4939
R3;=2.2 bohr Ay =2x10"3 E;,=-0.8584 —0.0007 frz —7.1219 0.4960
R3,=2.2 bohr Ayp=6x10"* E;,=-0.3552  + 0.0001 psd  —7.0906 0.4956

K(4s'4p°) 4s534p-* inv —0.2709 0.0591
R4 =3.4 bohr Ay =6x10"* E=-0.2096 + 0.0001 frz —0.2710 0.0589
R,;,=4.0 bohr Agyp=8%10"* E,=-—0.0901 + 0.0001 psd  —0.2649 0.0565

Fe(4s524p°34°) 45'4p03q7 inv.  —43.8330 —0.0496¢
R4=2.0 bohr Agy=2Xx10"? E,=-0.3314 —0.0028 frz —43.8610 —0.0771
R,;=2.2 bohr Ayp=3x10"3 E,=-0.0791 —0.0016 psd —42.2137 —-0.0767
R;;=1.8 bohr Ayy=3x10"° E;;=-—0.3011 + 0.0062

Mo(55!5p%d>) 551:355p% 4465 inv  —16.2899 0.0010
Rs,=3.0 bohr As;=3Xx10"* Es,=—0.3220  + 0.0008 frz —16.2821 0.0090
Rs,=4.0 bohr As,=4x107* Eg=—0.1006  + 0.0006 psd —16.0776  0.0058
R;=1.5 bohr Ay=7x10"* Ey=-0.3658 —0.0007

Ru(5s'5p%d7) 5525p°4d* inv.  —33.7914 0.1594
Rs;=2.5 bohr As,=2X10"3 Es,=—0.3817 + 0.0023 frz —33.7726  0.1787
Rs,=3.0 bohr As,=2X10* Es,=—0.1183  +0.0017 psd —33.4005  0.1717
R,4=2.0 bohr Ay=3x10"?3 E.=—0.6360 —0.0034

Hg(6526p°) 6s'6p! inv. —1.6138 0.3123
Rg;=2.9 bohr Ag;=2X%1073 E¢(=-—0.5001 —0.0002 frz —1.6137 0.3124
R, =2.9 bohr Agp=5x10"* Eg,=—0.1761  + 0.0003 psd —1.5722 0.3036

2An [Eq. (9)] given in units of (bohr)~!/2,
“Energies given in rydbergs; 8E = Eff — EX°C.

“Energies given in rydbergs; AEr= Er(configuration in column 2)— Er[configuration in column 1 (ground state)]; inv, frz, and psd
denote inverted, frozen core, and pseudopotential total energies [Eq. (10)], respectively.

9Unphysical result for Fe due to average multiplet treatment.

discontinuities at R; [Eq. (9)] are listed. For most of the
materials studied, this discontinuity is in the range of
10~4—1073. In order to quantify the quality of the pseu-
dopotential, the one-electron pseudopotential energies and
their discrepancies with respect to the frozen-core results
are given in columns 4 and 5, respectively.""*> With the
exception of the results for Fe and Ru, for which the
pseudopotentials are of lower quality, the one-electron en-
ergies had errors less than 0.001 Ry. In columns 6 and 7,
the total valence energies as calculated using Eq. (10) and
the energy differences with respect to the ground state are
listed. Results for Mo in the 5s5'%°4d*% configuration
were included in order to verify our frozen-core total ener-
gies with those published by von Barth et al.” Again,
with the exception of Fe and Ru, the inverted total energy
results are within 0.003 Ry of the frozen-core results. The
pseudopotential energies are also listed for comparison.!

It is interesting to note that although the ‘“absolute”
values of the energies calculated from Eq. (10) cannot be
expected to be the same for the frozen-core and pseudopo-
tential calculations, the pseudopotential total energy
differences between the excited and ground configurations
agree quite well with both the frozen-core and inverted re-
sults.! It is somewhat disappointing that the inverted to-
tal energy differences are not reliably more in agreement
with the frozen-core results than are the pseudopotential
total energy differences. This is a further illustration of
the point that the inversion results are intimately tied to
the accuracy of the starting pseudo-wave-functions.

In conclusion, we have demonstrated an efficient
scheme for retrieving core information from a self-
consistent pseudopotential calculation. This scheme has
been demonstrated for atoms, but can be extended for use
in solids and molecules, potentially extending the power
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of the pseudopotential approach. We found that the accu-
racy of the inversion is tied to the accuracy of pseudo-
wave-functions. In order to improve the accuracy of
both, one might try to revise some of the existing schemes
for constructing pseudopotentials, in order to make them
more configuration independent. However, for many ap-
plications, the present accuracy is quite good; the magni-
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tude of the errors being comparable to that of the errors
of the frozen-core apé)roximation7 and of the local-density
approximation itself.®—2
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