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A numerical technique is described for calculating the indirect-exchange interaction in semicon-
ductors. Calculations have been performed for localized moments in a narrow-band-gap semicon-
ductor and the results show that the indirect interaction alternates in magnitude as the distance be-
tween magnetic moments is increased. It is suggested that the formation of a spin-glass phase in di-
luted magnetic semiconductors may not be due to the frustration mechanism alone.

I. INTRODUCTION

In a wide range of materials which contain localized
moments, the indirect-exchange interaction between the
moments is much more significant than the direct-
exchange interaction between them. In the case of metals,
the indirect interaction is mediated by the electrons in the
partially filled conduction bands and is known as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.!
In the case of nonmetals, the main contributions to the in-
teraction involve a virtual transition across the band gap
between the filled and empty bands. Examples in nonmet-
als include the exchange interaction of the nuclear spins in
insulators? and of the localized moments of the 4f shell
electrons in magnetic semiconductors such as EuTe.’ In-
terest in the indirect-exchange interaction in semiconduc-
tors has been stimulated recently by reports of magnetic
ordering and spin-glass phenomena in a new class of semi-
conductors, for example Hg,_,Mn, Te, which have been
called diluted magnetic semiconductors,* or semimagnetic
semiconductors.’ Since the indirect exchange between the
Mn ions has been taken to be antiferromagnetic at all
separations between the ions,* it has been concluded that
the formation of a spin glass in the semimagnetic semi-
conductors is due to the frustration mechanism. In met-
als, the indirect interaction alternates in sign with increas-
ing distance between the localized moments and the alter-
nation in sign can itself lead to the formation of a spin
glass. Therefore it is necessary to examine carefully
whether the indirect-exchange interaction in semimagnetic
semiconductors must indeed be negative for all spin
separations, with the consequence that the frustration
mechanism alone must determine the spin orientations.
The purpose of the present work is to describe an im-
proved calculation of the indirect-exchange interaction in
semiconductors to provide information about these and
other questions.

The calculation of the indirect exchange in both non-
metals and metals is difficult, and in previous work a
number of approximations which have significant effects
have been made. In probable decreasing order of impor-
tance, the approximations have usually included the re-
placement of the real Brillouin zone by a spherical one,
the use of unrealistic energy bands, and the neglect of ma-
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trix element terms which occur in the expression for the
interaction. For example, Bloembergen and Rowland?
calculated the indirect exchange between nuclei in an insu-
lator using a spherical Brillouin zone, a flat valence band,
and a parabolic conduction band. Although results were
obtained in this approximation, it was later pointed out
that had the correct, nonspherical Brillouin zone been
used in the calculation, the result would have been identi-
cally zero for the case of interest, namely moments occu-
pying the lattice sites.® This shows that the approxima-
tions required to obtain results for the indirect-exchange
interaction in analytical form can lead to incorrect results.
Other analytical calculations of the indirect-exchange in-
teraction in semiconductors have involved the neglect of
matrix elements and the use of parabolic bands and either
a spherical or an infinite Brillouin zone.>’~!° Lewiner
and Bastard have calculated the indirect exchange for
Hg;_,Mn, Te using a Kane model of the band structure
in the parabolic and extreme nonparabolic limits.>!°
They included the relevant matrix elements in their calcu-
lations but assumed an infinite Brillouin zone with cutoff
factors to obtain convergence for the interaction.

In all the above approaches, the models of the semicon-
ductors were constructed so that the indirect-exchange in-
teraction could be obtained in analytical form. A dif-
ferent approach would be to use the correct Brillouin zone
and a realistic band structure and use a numerical tech-
nique to calculate the exchange interaction. The ultimate
need for a numerical approach was pointed out previous-
ly.” We show below that it is possible to perform the in-
tegrations that are required in the calculation numerically
using the linear tetrahedron method.!'=!* The results are
quite different from previous analytical approximations.

In the next section we briefly outline the theory of the
interaction and develop the numerical method used to
evaluate the theoretical expressions. In the Results sec-
tion, we apply the method to a model case similar to that
first considered by Bloembergen and Rowland.? Firstly, it
is shown that the numerical results are in good agreement
with the analytical results for a spherical Brillouin zone.
Secondly, it is shown that the numerical technique gives
the correct zero result for a real Brillouin zone. Finally,
we calculate the indirect exchange for the model band
structure proposed by Lewiner and Bastard.!°
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II. THEORY

In the absence of spin-orbit coupling and using second-
order perturbation theory, the indirect-exchange interac-
tion between localized moments is given by a Heisenberg-
type interaction,

H= EJ(R,—RJ)S,Sj > (1)
i>j
".’
where S; and §; are the spin operators of the localized
moments located at R; and R;, respectively. The interac-
tion J(R; —R;) can be written

exp[i (k—k’)-(R; —R;)]
E,(k)—E, (k')

JR-R)=2F
Q% vy

X |jk,k)|?, (2)

where Q is the volume of the crystal, k (k') is the wave
vector of states in the n (n’)th conduction (valence) band
and E,(k) [E,(k')] is the corresponding energy. The
summation over k and k’ extends over the entire zone for
each band. The above expression represents the interband
contribution to the indirect-exchange interaction, and it is
assumed that the valence-band states are all full and the
conduction-band states are all empty. In the absence of
spin-orbit coupling in the band states, the matrix element
is given by

1 (k)| 2=0Q2| (@plk’) | j (1) | $a(K)) | %, 3)

where ¢,(k’) and ¢,(k) are the normalized valence- and
conduction-band wave functions and j(r) is the exchange
interaction between a localized moment and a band elec-
tron at a distance r from it. A summation over the two-
fold spin degeneracy of each band state has already been
made to obtain the above form.

If the bands are modified by a spin-orbit interaction,
the band states still have twofold Kramer’s degeneracy
but each state is composed of admixtures of both
electron-spin orientations. Therefore the band states can
be written

|62(k)) = |65 . (K)) | L)+ |45 _(K)) | —3),

where +7 refers to the m, value of the components of
wave function and o= *1 identifies the two states of the
Kramer’s doublet. With the inclusion of spin-orbit cou-
pling, the quantity in Eq. (3) is therefore a dyadic and the
exchange interaction is anisotropic. If only the isotropic
part is retained, the above formalism is preserved with the
matrix element given by

[(kk))|2=0*

o,0'=%*1

| {$2(K’) | j(r)s, | $S(k)) |2,

where s, operates on the m, values of the components of
the wave function.

We have used a modification of the linear tetrahedron
method to evaluate the summation of Eq. (2). In the
method, the Brillouin zone, or an irreducible wedge of the
zone if appropriate, is divided up into tetrahedra and the
variable of integration is linearly interpolated throughout
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each tetrahedron. The method is most advantageous
when analytical expressions can be obtained for the in-
tegral of the function of the linearized variable. In that
case, the value of the integral can be obtained in terms of
the values of the function at the vertices of the tetrahedra.
The advantage of using tetrahedra is that an integral
number fills the irreducible wedge of the Brillouin zone.
The method was first applied to the calculation of the
density of states and related functions'"!? and later ex-
tended to the calculation of magnetic susceptibility.'?

To proceed with this method in the present application,
Eq. (2) is rewritten as a double summation over tetrahedra
t and t’, in the irreducible wedge of the first Brillouin
zone, of a double integration in each pair of tetrahedra:

JR)=2m 53 3 [ dk [, dk'g (kK R)f (kK
- &
X |jkk)|?, 4)
where
g(k,k’',R)=48%cosk, R, cosk,R,cosk, R cosk; R,
X cosky R, cosk;R,

and f(k,k')=[E,(k)—E,(k’)]"! and R,,R,,R, are the
Cartesian components of R=R; —R; which has been tak-
en to be in the 'L direction. There are two difficulties in
applying the tetrahedron method to Eq. (4). Firstly, a
double summation is required and , secondly, the function
to be summed is a product of three factors, one of which
is rapidly varying and should be dealt with as accurately
as possible. It was decided to treat the three terms
separately, that is, replace within any one tetrahedron the
integral of the product of the three terms, by the product
of the integral of each term separately. The advantage of
doing this is that the integrals within tetrahedra of the
rapidly varying exponential term and of the energy
denominator can then be performed analytically.

The integration of g(k,k’,R) in each tetrahedron is
readily obtained using the result

-1
4 4
ftcos(u)a'u=—6v S sin(u;) | [T (wi—uj) |,
i=1 j=1
J#i

where v is the volume of the tetrahedron ¢ and the u; are
the values at the vertices of the tetrahedron of any quanti-
ty, u, which is linear within the tetrahedron.

The result of the integration of f(k,k’) in Eq. (4) in one
tetrahedron is given by Rath and Freeman.!> The energy
E (k') could be linearly interpolated in tetrahedron ¢’ and
integrated, but it is shown below that sufficient accuracy
is achieved by approximating the second integration by
the average of the values of the first integration at the ver-
tices of tetrahedron ¢'.

The integral of the matrix element term in Eq. (4) was
taken as the average of the values at the vertices of the
tetrahedron ¢ for each ¢'. The results which follow were
obtained using the above results for 107 tetrahedra in the
irreducible wedge of Brillouin zone.



7136

III. RESULTS

In order to test the accuracy of the above scheme it was
applied to a model for which exact results can be obtained
analytically if matrix elements are taken to be constant:
j(k,k')=ca. In the model, one band was taken to be flat,
E,(k)=E and the other to be parabolic,
E, (k) =k )2/2m where # is Planck’s constant A di-
vided by 27 and m™ is the effective mass. There are two
ways of using the model to test the numerical scheme.
Firstly, for a real Brillouin zone, the strength of the ex-
change interaction given by Eq. (2) is zero when the local-
ized moments are separated by lattice vectors. Secondly,
for a spherical zone, the results for the model can be ob-
tained analytically for all intermoment spacings and com-
pared with the numerical results.

The results for the numerical calculation were obtained
for a cubic crystal with a cubic unit cell dimension of 0.3
nm, for localized moment separations R in the I'L direc-
tion and for an effective mass of 5 times the free electron
mass, m,. In the following, R is expressed in multiples of
0.52 nm, the nearest-neighbor distance in the I'L direc-
tion. Firstly, the results in Fig. 1 show that for the real
Brillouin zone, the result is indeed zero for localized mo-
ments separated by multiples of the lattice vectors, that is,
for R =1, 2, or 3. The latter value corresponds to over 7
times the nearest-neighbor distance. Figure 1 also shows
that the correct result is obtained for different values of
the band gap, Eg,,. Secondly, the results in Fig. 2 show
excellent agreement between the numerical results and the
analytical results for a spherical Brillouin zone with ra-
dius k,, =7/V3 which is the radius of a sphere inscribed
in the first Brillouin zone in the above case. The analyti-
cal result for the matrix element independent quantity,
I(R)=J(R)/a? is obtained from

pli (k—k')-R]
I(R)=—2m)~°¢ [ dk [ d*k' [i(
(R) (2m) f f 7k 2m*

om* sinRk,, | .
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FIG. 1. Indirect-exchange interaction between localized mo-

ments as a function of moment separation for the case of a flat
valence band and a quadratic conduction band. The prediction
of the zeros at integral values of R is observed for two different
values of the energy gap.
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FIG. 2. Numerical and analytical results for the indirect-
exchange integral, calculated using a spherical Brillouin zone of
radius k,, =m/V3.

where Si(x)= f [sin(¢)/t]dt and the integrals are per-
formed within sp(ileres of radii k,,. The numerical results
were obtained by taking the contnbution from a tetrahe-
dron through which the Fermi surface passed to be equal
to the contribution of that tetrahedron times the fraction
of the volume of the tetrahedron that was occupied. Be-
cause this calculation was performed only as a check on
the method, it seemed unnecessary to divide the occupied
volume up into several smaller tetrahedra to obtain a
more accurate result for the contribution from the partial-
ly occupied tetrahedra. Thus the results of the numerical
method for the full zone in Fig. 1, and in the following,
should be more accurate than the numerical results in Fig.
2 for the spherical zone.

Since the numerical scheme gives correct results for the
above example, it can be applied with confidence to cases
for which it is not possible to obtain an analytical result
without making approximations. A recent example of im-
portance is the calculation of the indirect interaction in
Hg,_.Mn, Te for a composition x corresponding to zero
band gap. An analytical result was obtained after the
Brillouin zone was assumed to be spherical and infinite.'°
The contribution to J(R) from virtual transitions between
the conduction band and the heavy-hole valence band is
given'® in terms of a function ¢(8):

(R)= —(m,B* /96T #R*)p(8) ,

where B is a matrix element invo]ving the components of
the band wave function, m, is the effective mass in the
parabolic valence band, and 8=R /1.13 (for R in A). The
function ¢(8) from Ref. 10 is shown in Fig. 3. For com-
parison, we also show the values of ¢(8) which we have
extracted from our calculation of J(R) for exactly the
same model, namely E,(k)=—#%k%/2m, with
m,=0.5m, and E,(k’)=#k'(2E,/3m,)'/* where E, =18
eV. The matrix elements in Eq. (4) were calculated using
the wave functions given in Ref. 10 and the results are for
R in the 'L direction. For the analytical result,'® the
direction of R is immaterial because the solution is spher-
ically symmetric.

It is clear from Fig. 3 that the analytical and numerical
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FIG. 3. Comparison of the numerical calculation of the
indirect-exchange interaction, employing a real Brillouin zone,
with analytical results obtained using an infinite Brillouin zone
(Ref. 10).

results for @(8) and hence J(R) differ in three respects.
The numerical result is oscillatory, has a different sign
and a different dependence on localized moment separa-
tion R than the analytical result. In view of the excellent
agreement between the numerical method and an exact
analytical result shown in Figs. 1 and 2, we would suggest
that the differences shown in Fig. 3 are a result of the ap-
proximations used to obtain the analytical result in the
latter case.

IV. CONCLUSION

The most important conclusion to be drawn from the
numerical results is that the indirect-exchange interaction
is oscillatory and not a monotonic decreasing function of
distance between spins for spins separated by multiples of
the lattice constant. It has been argued! that oscillations
in the indirect interaction predicted previously”’ were
mostly unphysical and a result of the use of a spherical
Brillouin zone with a finite radius. The present work
shows that oscillations are characteristic of the interaction
even when the correct Brillouin zone is used. Indeed, one
would expect the indirect-exchange interaction to oscillate
because in the case of a flat conduction band, a quadratic
valence band, and constant matrix elements, the interac-
tion must go to zero when the localized moments are
separated by lattice vectors. While it is not unreasonable
that the inclusion of matrix elements and dispersion of the
conduction band would change the details of the interac-
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tion, it seems unlikely that the oscillations of the former
case would be removed altogether in the latter one.

Figure 3 illustrates the difference between the numeri-
cal and analytical results for the same model band struc-
ture. It may be that neither result indicates the correct
variation of the exchange interaction involving the upper
valence band and lower conduction band in Hg; _,Mn, Te.
This is because the band structure has an important influ-
ence on J(R) but the bands used in both calculations do
not correspond closely to the real bands of Hg;_,Mn,Te.
Apart from the idealized dispersion of the bands, the
separation of the bands at the edge of the zone L is 19.7
eV compared with an expected value of less than 3 eV.
Since the difference in the band energies appears in the
denominator of Eq. (2), this distortion has the effect of
overemphasizing the relative contribution to J(R) of the
part of the Brillouin zone near I'. Because this part of the
zone corresponds to small k, it makes a ferromagnetic
contribution to the overall interaction. Therefore the nu-
merical results are likely to be more antiferromagnetic for
the real band structure than for the model band structure.
Thus the oscillations shown in Fig. 3 for the numerical re-
sults would probably involve changes in sign as well as
changes in magnitude for the real case, similar to the re-
sults in Fig. 1 where the bands were separated by 4.2 eV
or less. On the other hand, the analytical results in Fig. 3
may give an antiferromagnetic result because the assump-
tion of an infinite Brillouin zone overemphasizes the con-
tribution from large k values, compensating for the error
due to the model band structure. In view of these com-
ments, we have made no attempt to estimate a Curie-
Weiss temperature from our results for the model band
structure. There is an obvious need for calculations based
on real bands and wave functions. The advantage of the
numerical scheme is that these extensions can be readily
incorporated, and it is expected that future work will in-
clude a detailed investigation of semiconductors using
realistic bands for the first time.

From the above results, the indirect-exchange interac-
tion in semiconductors may well alternate in sign as the
distance between the localized moments is increased, as in
the case of localized moments in metals. Therefore the
spin-glass phase observed in dilute magnetic semiconduc-
tors'* may not be a result of the frustration mechanism'’
in the fcc lattice alone, but may also involve an alterna-
tion in sign of the exchange interaction which is the basis
for the spin-glass phase in metals.
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