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In this paper, we examine a series of solid wave functions for electrons moving in two dimensions

under a magnetic field, with all of them staying in the lowest Landau orbital. We discover that
whereas the direct energy of the system is almost optimized by the correlated motion of electrons as
in the magnetophonons, the effect of exchange is to soften the transverse branch, allowing larger
fluctuations of the electrons from their lattice sites. These fluctuations are large enough to destroy
the true translational long-range order of the solid and change it into mere algebraic long-range or-
der. Thus our phonons possess a gap without violating Goldstone's theorem. This gap is of the
same order of magnitude as that exhibited by Laughlin s fluid wave function, but the ground-state

energy for the algebraic solid turns out to be slightly lower. Finally, we suggest a plausible connec-

tion between the odd-denominator rule and fractional statistics, which does not require long-range
positional order and is applicable both to the solid and the fluid.

I. INTRODUCTION

Pi ——g(z; —zj) exp —gr; l4 (la)

with probability density

Wagner first pointed out that electrons would crystallize
into a solid at low densities, contrary to the behavior of
most other materials. ' This is due to the predominance of
the Coulomb potential energy over kinetic energy when
the average distance between electrons is large. However,
in the presence of an extremely strong magnetic field, all
the electrons would be coerced into having the same kinet-
ic energy of zero-point motion, and only the Coulomb en-

ergy would remain effective in governing their distribu-
tion in space. The electrons would then assume a configu-
ration that would minimize the mutual repulsion, presum-
ably a regular lattice. A strong magnetic field could,
therefore, be expected to facilitate the formation of a
crystal from an electron fluid.

Recently, experiments corresponding to these condi-
tions were carried out. z Two new phenomena, the integral
and the fractional quantized Hall effects (QHE), were
discovered. Much interesting work has been done on the
former so that it now seems fairly well understood. Here,
we are mainly interested in the latter.

To explain the fractional quantized Hall effect (FQHE)
Laughlin proposed that the electrons form a fluid. He
wrote down a trial wave function

energy as well as the magnitude of the gap. Here

(ij) (i,j) +V (ij). (lc)

r; is the distance of the point (x;,y; ) from some origin of
coordinates, and r;J is the distance between the points
(x;,y;) and (xl,yj).

In this paper we shall study the effect of exchange and
correlations by exploring a series of possible solid wave
functions. Solids and charge-density waves were among
the first ideas examined as a plausible explanation, but
were found insufficient in the absence of a sizable com-
mensuration energy, at rational filling factors, in the
Hartree-Fock approximation, and their ground-state en-

ergy estimates were soon superseded by the fluid wave
function mentioned above. The next improvement is to
introduce correlations. In the harmonic approximation,
this yields the magnetophonon solid wave function that
we will be discussing in more detail later. It has also been
discussed long ago. One can improve upon this by going
to self-consistent magnetophonons, but a glaring defect
remains in that exchange effects have not yet been includ-
ed. At this stage, if we try to increase the correlation be-
tween the motion of the electrons in some direction, they
would tend to correlate less in the other direction. Let us
take the liberty of quoting wave functions that we will in-
troduce later, to illustrate this point. For example, we
have looked at wave functions

I P ) of the form

IP)=exp g~»»- I4'HF).

I Pi I
=exp 2m g lnr; —g r; l2

i)J i

(lb)

which provided good estimates of both the ground-state

Here z =x +Iy, 6z& is the Fourier component of the dis-
placements from lattice positions with wave vector q and

I PHF) is the Hartree-Fock ground state to be defined in
detail in Eqs. (2) in the next section. We have assumed
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that the electrons lie in the lowest Landau level, so that
functions of z only, and not of its complex conjugate, can
appear in the first factor. This ensures that the wave func-
tion so constructed lies in the lowest Landau level. As a
consequence, 5z&5z z

——
) xz (

—
~ ys ( plus purely imagi-

nary terms.
~

x& )
and

~ yz (
occur with opposite signs!

Hence no optimum correlations can be introduced in both
directions simultaneously. However, exchange effects
come in to counteract this and keep the electrons apart
from each other. In other words, if we are going to in-
crease correlation of electron motion in one direction, the
electrons would then come closer together on the average
due to decreased correlation in the other direction, and
would be able to lower their energy from exchange. The
direct Coulomb energy would suffer only a relatively
small increase, since the correlations were first optimized
with respect to this aspect. This effect, we think, is the
reason why fluctuations are so large here. In this sense our
solid wave function is very similar to the Laughlin wave
function. However, by looking at systematic trends, we
are able to gain a deeper understanding of the nature of
the ground state. Indeed we have found a trial quasi
solid wave function which has a slightly lower energy
( —0.412) (Ref. 7) than that of Laughlin's {—0.410).' The
probability density of this wave function looks like the
partition function of a two-dimensional (2D) solid at a fi-
nite temperature. It only possesses "algebraic" long-range
translational order, and therefore is not subject to the dic-
tates of Goldstone's theorem. In fact, the phonons of this
wave function exhibit a gap of the same magnitude (0.076)
as that of the Laughlin-type wave function (0.106).9 Our
wave function brings up two interesting points which have
not been appreciated previously. First, it provides an in-
teresting example of evading Goldstone's theorem while
retaining a solid like behavior which is a peculiar feature
in 2D. It brings back all the interesting questions of long-
range order versus rigidity and melting in that case.
Secondly, it demonstrates that the solid energy may not be
that different from the fluid energy when correlation ef-
fects are introduced. The fact that we can lower the sohd
energy to one comparable to Laughlin's seetns to suggest
that there is a lot of similarity between the two. On the
other hand, we can also compare our wave function with
the magnetophonon solid wave function which still has
true translational long-range order. Our wave function is
stabilized with respect to it by benefiting from a much
larger exchange while retaining a comparable direct ener-

gy. This effect is purely of quantum-mechanical origin
and, to the best of our knowledge, has not beta observed
in other quantum solids such as the rare-gas crystals.
Presumably the difference lies in the absence of a hard
core in the present case.

of Ho with all particles in the lowest Landau level. To
achieve this, the electrons have to be kept apart as much
as possible. The Laughlin fluid constitutes one way of do-
ing this. Alternatively, one can start out with the idea of
the Wigner solid that we mentioned. There are two com-
plementary ways of describing the Wigner solid, either via
the charge-density-wave (CDW) formalism, ' or by using
a non-orthogonal basis set."We have chosen the latter be-
cause it is physically more direct and transparent, and
also includes higher order harmonics not considered in

CDW's. Specifically, we take Landau orbitals gR(r) lo-

cated at the sites R given by

gR(r) =exp{—
I
r—R

I
'/4+in «r/2), (2a)

where n is a unit vector in the direction of the magnetic
fiel, ' and construct a Wigner-solid wave function Pin;
as

$HF ——det(M)

where M is a matrix with components

Mtj =gR, (rg)

(2b)

(2c)

with the R; forming a triangular Wigner lattice. The
variational energy per particle of this wave function can
be easily calculated. ' For filling factors of —,

'
and —,', the

energy is dominated by the Hartree term and one obtains
the same result (—0.389, —0.322} as the CDW calculation
to within the significant figures quoted. '

It is now possible to combine the Wigner-solid wave
function with correlations. The wave function pR given by

g( —1) (z —z J) gg .(r )
P i&j

(3)

PHMc= g( —1}f(rt )
P

(4a}

f(r)=exp —0.5m g 5z;J2(d2lnz; /gz;2J), zIJ lJl)J

(4b)

is still an eigenfunction of Ho. However, the first factors
have introduced a correlation by attempting to force the
electrons apart. This same type of correlation was also
used by Laughlin. This wave function is discussed in de-
tail in Appendix A. We found that it may produce a
smooth interpolation from Laughlin's fluid wave function
to one representing a solid, by varying the lattice spacing.
To further simplify matters we shall here only consider
these correlations up to harmonic terms only. Let us de-
fine the wave function PHMc by

II. CHOICE OF WAVE FUNCTION

Let us motivate how we pick our wave function. The
Hamiltonian, H, of the system can be written as
H =Ho+ g, e /re. , where Ho is the free-electron
Hamiltonian in a magnetic field. In the large-field limit,
one tries to minimize the Coulomb energy with a linear
combination of the infinitely many degenerate eigenstates

Here Z; =X;+iY~, (X~, Y;)=R; are the lattice positions;
r stands collectively for the set of variables and parame-
ters (...,r;, ...;...,R;,... ) and rr stands for the permuted
set (...,tv, ...', ...,R&, ... ). We sum over all possible per-
mutations P. 5z; =z; —Z; corresponds to the displacement
from the lattice positions. PHMc can be obtained from PL
by writing {zt—zj ) as an exponential and expanding the
exponent about the lattice points, keeping only terms that
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are second order in 5z;.
f belongs to a general class of functions fo given by

fo(r, h}=exp —g hq; ( 5rq;
~

q1
—

qZ ~qt I"—q, 2 (5a}

III. EXCITED STATES

We next discuss the excited states of our trial wave
functions. The one-phonon states gq can be easily con-
structed as

(8)
with

1h„+hq2= T . (5b)

P= g( —1) fo(rp).
P

(Sc)

q} is the most general wave function that (a) is translation-
ally invariant, (b) contains only quadratic terms in the ex-
ponent, and {c)belongs to the lowest Landau level. To ob-
tain f we set hq, ——roq2, /2. r0«comes from the Fourier
transform of the exponent in (4} and corresponds to the
harmonic phonon frequencies of a one-component plasma
in a solid phase.

The magnetophonon (Mp) wave functions are also very
similar to (3). These are eigenstates of the Hamiltonian
HMp which is obtained from the full Hamiltonian H by
treating its Coulomb interaction term in the harinonic ap-
proximation. The spectrum of HMP was first derived by
Chaplik. By using different elliptical gauges at different
values of q, his results can be simplified quite a bit alge-
braically. This is discussed in detail in Appendix B, where
the full SU(2) symmetry of the problem is displayed. We
found the magnetophonon frequencies

where E+ ——Eo+E), E =E —E„
Eo——0.5[(coi+roi) +r0, ] ' is the zero-point energy;
Ei 0.5[(roi ——&02) +co,—] ;coi 2 are 'the phonon frequen-
cies of the Wigner solid in the absence of a magnetic field,
and ei, is the cyclotron frequency. It is straightforward to
work out the corresponding wave function P„ in the
high-field limit and we found

f~ = g fo[rp, vs/2(vqi+vqi}] ~ (7)
P

vs are the phonon frequencies of the 1lr potential. In
this case, fo can also be written more explicitly as

fo ——exp —+5ri /4+inXR; r;/2+ g VJ5z;5zj
l QJ

where VJ has the same behavior as the second derivative

of ln
~
R,J ~

as R;1~ oo. This wave function has been de-

rived by Lam and Girvin' via a different method. Note
that the exponent contains a correlation {lnr) that has a
longer range than the interaction potential (1lr) between

the particles. Furthermore, the coefficient of this term is
exactly the same as that obtained from a Taylor expan-
sion of the exponent in (lb). This long-range correlation is
also present in the Laughlin fluid wave function. It is a
common feature among all the wave functions considered
here, whether solid or fiuid. It is actually independent of
the details of the potential one starts off with. It basically
comes from the Anderson-Higgs idea's if we demand the
presence of a gap (%co, ) at zero wave vector.

We have neglected the exchange contribution to the exci-
tation. Let us use the symbols fq and P to represent the
normalized wave functions from this point onwards. The
integral (gq (

1I ( R,i+5r;1 ~ ~ gq ) =Iq can be evaluated in
an analogous manner as the direct integral by expressing
the Coulomb potential in its Fourier representation as

Iq= exp & R,J —
p

a,p

It is straightforward to show that

&gq ~5rij~5rjp~ gq&=&Pq ~5') 5',p~g&+A~p,

where

A;1 = pcs;ei [1 cos(q—R)]Ibsen
l

N g(2hIq)

We note that A is of the order of 1/N; hence

exp gk kp(fq ~5r,J 5r,jp~ gq)/2
a,p

1 —0.5 gk~k pA ~p
a, p

Xexp gk kp($~5r, j 5r,jp~g)/2
a,p

Substituting this back into equation (8a), we finally obtain

~, =0.5 g A.pa, a,,&y~ il ~R,,+5r,, ~ ~y&.
R,a, p

Recalling the definition of A, we find

~q = X [(v'}iqlhi'q l

Here

v'=o. 5 g ei«ei„.[1—cos(q. R)]ha a~
I

a P

&«y[1/[R,,+5r,, ~ ~y)

where P is the generic wave function defmed in Eqs. (5).
This wave function lies in the lowest Landau level and is
orthogonal to the ground state. For P=P„, defined in
Eqs. (7), gq is the exact one-magnetophonon state in the
high-field limit. For a general P defined in Eqs. (3) and
(5), the excitation energy hq can be evaluated as follows:

~q = g (~q I
1/

I R~J+5r'J I I @q ) l(kq I
'{i'q )

/, J
—&411/ I Rij+5r) I 14 &/&414& (8a)
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is a "finite temperature" phonon frequency for the 1/r potential. At a small wave vector q, b,» is proportional to vq, /hq, .
For the MP, h« is proportional to q'/ . Since vq„ the transverse-phonon frequency of the 1/r potential, is proportional
to q, b»=q, as is well known. For PHMC, h«-q . Hence bq remains finite as q~O. From this the phonon gap quoted
above for PHMz can be obtained.

IU. NUMERICAL CALCULATION

We now turn our attention to the evaluation of the Coulomb energy of the {()'s. First the direct integral I,J ——(e /r, j ).
As the wave function is quadratic in the exponent, the energy can be reduced to a sum of two-dimensional integrals,
which can then be calculated numerically. Specifically, we write r J in terms of the equilibrium spacing R,J and the devi-
ation Sr&J from these positions, viz. , r,j——R,J+5r,j Th.e deviation 5r,j is then written in terms of the phonon coordinates
Srq . The integral I& can be written as

I&i
——f Qd Srq ~R,i+Sr,j ~

'exp —+2hq ~Srq
q, a

)( Tq~exp — 2 q~ pq~
q, a qa

After the Gaussian integration over 5rq has been carried out, we obtain
r

IJ ——[(2ir)2~a
~ ] '/2 f d25r& ~RJ+Srj

~

'exp —+0.55rj Srjpa p'

a, P

(9a)

(9b)

Here

a~)r = g fdq [1 exp(iq—R)]e~~e~ii/2h~ (9c).

~a~ is the determinant of the matrix a. The same calcula-
tion occurs in the self-consistent phonon calculation for

I

quantum crystals. We have converted such a program by
Glyde' from three to two dimensions, and included the
effect of the magnetic field as well.

One can show that 1/R;, —(1/rj)=Eid;J goes as
lnR/R as R approaches 00. We have evaluated this
difference up to the 20th shell. The details of this for
m =3 are shown in Table I. In this table lnR/R is also

TABLE I. Details of the calculation of the direct Coulomb energy for —,-filled, m = 3.
0.5 g {( 1/r ) —1/R ) =0.0729 759 0; energy equals —0.3773 240.

1

1.7321
2
2.6458
2.6458
3
3.4641
3.6055
3.6055

4.3589
4.3589
4.5826
4.5826
5
5.1962
5.2915
5.2915
5.5678
5.5678
6
6.0828
6.0828
6.245
6.245
6.5574
6.5574

0.2225
0.1285
0.1091
0.0824
0.0824
0.0722
0.0626
0.06
0.06
0.054
0.0496
0.0496
0.0471
0.0471
0.0431
0.0415
0.0407
0.0407
0.0387
0.0387
0.0359
0.0354
0.0354
0.0345
0.0345
0.0328
0.0328

g (1/r)

1.335
2.106
2.7606
3.255
3.7494
4.1826
4.5582
4.9182
5.2782
5.6022
5.8998
6.1974
6.48
6.7626
7.0212
7.2702
7.5144
7.7586
7.9908
8.223
8.4384
8.6508
8.8632
9.0702
9.2772
9.474
9.6708

( I /r ) —1/R

8.14X 10-'
4.74 X 10-'
1.92 X 10-'
1.38X10 '
1.38 X 10-'
7.46X 10-4
7.19X 10-'
5.46X 10-'
5.46X 10-'
4.09X 10
4.22 X 10-4
4.22X 10-'
3.23 X 10-4
3.23 X 10-4
2.28 X 10-'
2.46 X 10-'
1.89X 10-'
1.89X 10-'
2.00' 10-'
2.00X 10-'
1.73 X 10-4
1.59 X 10-'
1.59 X 10-'
1.75 X 10
1.75 X 10-4
1.10X 10-'
1.10X 10-4

21n E./R 3

0.00
2.08 X 10
1.71 X 10
1.03 X 10-'
1.03 X 10
8.02X 10-'
5.89 X 10-4
5.39X 10-4
5.39X 10-4
4.27X 10-'
3.50X10-4
3.50X 10-4
3.12X 10-'
3.12X 10-4
2.54X 10-4
2.31 X 10-4
2.22 X 10
2.22 X 10-'
1.96X 10
1.96X 10-4
1.63 X 10
1.58 X 10-4
1.58 X 10-4
1.48 X 10-4
1.48 X 10-4
1.31X10-4
1.31 X 10-4
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displays. As can b smn, this asymptotic b havior is ap-

proximately followed. The total direct energy E~ is given

by Eg =0.5 g, 1 Ei~ iJ +ED, where Eo 0——5.+;z 1/R z
is

the energy of the undistorted Wigner lattice. This is equal

to —0.78vo. for a triangular lattice. (v is the filling factor
from this point on. ) In evaluating the matrix a in Eq. (9c),
we have experimented with mesh sizes AqR = 0.174,
0.348, 0.87 and found no difference for our final result to
within the significant figures quoted. For the integral over

5r,j we have used a mesh size such that the error is less

than 10 . Table II shows the contributions from the
various shells for different values of m.

We next looked at the exchange energy (P i
1/r

~
Py).

This can be written as an infinite series involving increas-

ing numbers of "linked" exchange particles. In fact, a
linked-cluster expansion can be developed for this in-

tegral. The lowest-order term involves two-particle ex-

changes. We have evaluated this two-particle exchange in-

tegral for the three nearest neighbors as well as the three-

particle exchange integral in the same way that we

evaluated the direct integrals. We found the three-particle
exchange to be much smaller. This is discussed in detail in

Appendix C. We summarize our results here. Both the
normalization integral I, =(/~ay) and the exchange

Is =(P
~

1/r
~ Pp) can be evaluated in the same fashion

and we find

TABLE III. Two-particle exchange integrals up to third-
nearest neighbor for various values of m.

First
Second
Third

Total

0.0082
0.0014
0.000061

0.0097

0.0036
0.000 83
0.000022

0.0045

0.0287
0.0051
0.0002

0.034

I,= f 1 u exp(X)/2n(a~a )05,

uexpX 2 u g~ ~ o. s

where

& = —&„'(1—1/a )/2 —u,'(1 —1/a )/2

+ & (Ry ug /ayy —R~ Qy /a~ )

—Ry /2a~ —R~i/2a~.

The integration over k in I. can b earn& out analytic'
ly and we have

I~ =exp[ —Ry/2(a~ —1)+R„/2(a~ —1)]

X [(a~ —1)(a~ —1)]

1.0000
1.7321
2.0000
2.6458
2.6458
3.0000
3.4641
3.6055
3.6055
4.0000
4.3589
4.3589
4.5826
4.5826
5.0000
5.1962
5.2915
5.2915
5.5678
5.5678
6.0000
6.0828
6.0828
6.2450
6.2450
6.5574
6.5574

0.1241
m=0

0.0135
0.0020
0.0013
0.0006
0.0006
0.0004
0.0002
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1069
m=1

0.0106
0.0020
0.0013
0.0006
0.0006
0.0004
0.0003
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1052
m=2

0.0089
0.0024
0.0015
0.0007
0.0007
0.0005
0.0003
0.0003
0.0003
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0003
0.0003

0.146
m =3

0.0082
0.0048
0.0019
0.0014
0.0014
0.0008
0.0007
0.0006
0.0006
0.0004
0.0004
0.0004
0.0003
0.0003
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0001
0.0001

TABLE II. The direct Coulomb energy for different values of
m. Values for different shells are displayed.

TABLE IV. Three-particle exchange integrals for m = 1, 2

and 3.

0.00001
0.000 79
&10

0.000018
0.000008 3

(10

The two-particle exchange for m =3 for the three nearest
neighbors are shown in Table III. As can be seen, the
third is much smaller than the first two. The three-
particle exchange contribution for different values of m is
shown in Table IV. As we have mentioned, it is much
larger for m =3.

Our estimates for the ground-state energy of some of
the trial wave functions are shown in Table V. We found
the exchange energy for PHMc ( —0.034) to be lower than
that for P„(—0.0031) for v= —,'. This happens probably
because the mean-square vibration is larger for PHMc and
the overlap is increasaL The direct energy is not strongly
affected since part of the time the particles move further
apart and this compensates for the energy loss when they
get closer together.

The total energy for PHMc is now —0.412. This is
slightly lower than that of the fiuid (—0.410).s Our result
does not show conclusively that a solid phase is more
stable since there may be other fiuid wave functions of
lower energy. However it demands further research into
this problem.
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TABLE V. Table of the direct energy of different variational wave functions for a filling factor of
i. Variational energies (e /l).

%ave function

Total energy
Exchange

Fluid

0.41

CD%

0.390
0.001

0.399
0.001

P, (m)
tie =2

0.400
0.001

0.412
0.034

0.397
0.0031

V. THE QUESTION OF T

Let us now briefly address the question of "why —,." It
has been pointed out that an n-particle exchange leads to
a phase change of

inn�/v

(Ref. 17) and hence may lead to
a commensuration energy. Unfortunately, the energy in-

volved in such a process in the Hartree-Fock approxima-
tion is so small that, at first sight, it is not very helpful
since it would not be able to account for the gap. Howev-

er, our phonons are not gapless! Our present picture is
that these terms do indeed stabilize the solid at —,'-filled;
but the gap is not caused by these n-particle exchanges
alone. This explanation of the "—,' " for the solid is very

similar to that based on the fluid recently discussed by
Tao who focused on the question of fractional statistics
and found a similar phase factor for the interchange of
clusters. It is quite likely that the explanation of the
odd-denominator rule is independent of the quasi long-
range order of the system but is only an effect of fraction-
al statistics.

For vrn =1, our formula makes sense only if R, =0. In
that case, PR reduces to (()L. However, as one goes away
from the commensurate situation by decreasing vm, PR
provides a smooth interpolation away from a fiuid wave
function to one describing a solid lattice.

Better still, the condition imposed by Eq. (A2) can be
circumvented. As we mentioned PHMc is obtained from
PR by expanding the exponent in Eq. (Al) about the lat-
tice points, keeping only terms that are second order in
Sz;. Because the linear terms are also discarded, the condi-
tion (A2) no longer applies.

APPENDIX 8

In this appendix, we will present our derivation of the
magnetophonon spectrum and the corresponding wave
functions for a two-dimensional solid composed of identi-
cal charged particles, in terms of its plasmon spectrum in
the absence of a magnetic field.

The Hamiltonian that we have to solve is

VI. CONCLUSION
H= g [p; —eA;(r;)/c] /2m+ fez/r&. (Bl)

In conclusion, we have found a solid wave function,
describing electrons moving in a plane under a magnetic
field, that is competitive with fluid ones in energy, for the
interesting case of a filling factor of —,'. The phonons of
this wave function exhibit a gap of the magnitude
—0.072. Our wave function only has algebraic long-range
order; hence Goldstone's theorem is not violated.

It is also possible to calculate the shear modulus of this
wavefunction. We found a value of 0.061 e2/l~
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APPENDIX A

The probability density
~ PR ~

can also be written in
the form of a partition function if the exchange terms are
neglected as

If we expand this expression in small displacements, x;,
from lattice points in the usual manner of harmonic ap-
proximations, we would get the magnetophonon Hamil-
tonian

HMp ——g[p; —eA;(x;)/c] /2m+ QVJx; xi, (B2)

where VJ are the appropriate second derivatives of the
Coulomb interaction about the equilibrium lattice config-
uration.

I.et us split HMp into a part, Ha, that depends on the
magnetic field and a part, Hc, that does not. Explicitly,

HMP ——Hg+Hg,

where

Hc ——Qp,'. /2m+ g VJ x,"x,,

Ha ——g[e A;(x;)/c

=exp 2m g lnr;~+ —g ~
r; —R;

~
/2 (Al) —p; eA;(x;)/c —eA;(x;) p;/c]/2m.

R; =R;/(1 —vm). (A2)

If we look at the classical statistical mechanics problem
that this describes as a partition function, we find that, in
general, the equilibrium positions of the particle R; will
notbeat R;, butat

On applying the canonical transformation

x; =X ' gxkexp(ik R;),
k

p; =N ' gpkexp( —ik R;),
k
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H~ separates into phonon modes in the normal way, as

Hc=N 'QI pkpk/2m
k

+m [jo«)'xkjxtd +t0to«)'xktxkt ]/2)I.

Here xkI and xk, are, respectively, the longitudinal and
transverse components of xk, with respect to the wave
vector k; toto(k), cotO(k) are the corresponding frequencies
of the vibrating modes, assumed to be known henceforth;
and N is the total number of particles comprising the
solid. Following x; and p;, if we write

A;(x;)=N 'QAkexp(ik R;)
k

as well, we would also get

Hpt Ng——(e AkAklc —pk eAk/c —eAk pk/c)/2m.
—1 2 f 2

Now that the magnetophonon Hamiltonian has been ex-
plicitly separated in k space, let us denote each separated
piece with an additional subscript of k. The following
serves to establish the notation:

HMP N gh MP k~
k

Hc=N +he ~

k

Ha N'

shak-

—„,
k

hMpk
——bc„+hiik,

hc& =pkpk /2™+m [lo(k) xklxkl +0tt0(k) xktxkt ]/22 2

hs„(e AkA——k/c pk eAk—/c eAk pk—/c)/2m

Our next chore is to pick a gauge. It turns out that we
cannot settle on one, but have to deal with a whole class.
With a coordinate system oriented so that k=(k, 0), let us
consider

A; =B(fy;,gx; )

with g f= 1, so as to—yield the required magnitude of
the imposed magnetic field, but otherwise arbitrary. It is
also clear that, with any of these choices, we are free to
permute p's and A's in their scalar products, whether
they are subscripted i or k. Thus,

p; Ag ——A;p;
and

pk. Ak=Ak pk.

Now we can proceed to diagonalize h Mpk with this broad
choice of vector potentials. Once again, we partition hMpk
into an anisotropic two dimensional harmonic oscillator,
and an interaction between the orbit and the magnetic
field, as follows:

~ MP k ~0k+ ~uk ~

~ok=~c +8 AI AI /PPPgQ

h ttk =e Ak pk /mc.

Next we define the usual ladder operators

ukj xkj /xkjo Wkj /jjkjo

Qkj =xkj /xkj0+ tPkj /PkjO

with

xkjo= [2k'/m0~j(k)]'~,

pk, o
——[2Am 0)j(k) ]'~,

where j can be either 1 or t
Here, Otj, for j=I or t, are the longitudinal and trans-

verse frequencies for the harmonic oscillator Hamiltonian
hok:

2 2 2 2
NI =Q)~o+g N,

~2 ~2 +f2~2

where to, is the cyclotron frequency

Ot, =eBlmc.

The corresponding nuinber operators are

~kJ ~kJ ~kJ

With the reality condition implying

Zk Z—k

where Z can be A, x, or p, we have

jikj tPkjO(tikj —kj)/2,

xkj =xkj 0(t2kj +t2 —kj )/2

I.et us introduce the average of quantities over k and —k,
and denote this by an underscore, thus, for instance

hOk = (hok+ho k)/2.

It is a familiar result that

hOk =(ti kt+ 1/29k)j+(tl kt+ 1/2)~t

Furthermore, if we set

Gk (tel /tOt ) f (t0t /0tl )

Lk = (t2kt tiki t2klt2kt ) /i

Rk (~klt2 kl uktti —kl )/—t

we would have

h„k =GkL k+FkR k fico, /2

At this stage, we can eliminate the averaging of operators
by writing

MP N gh Mpk~
k

~ Mp k =~Ok+~.'k,

hOk (tiki+ q )t)ttOt+(ttkt+—z )fkOt,

h'k =«kLk+FkRk)iitto, /2.
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Let us now define the formal angular momentum opera-
tors

coI/cot =colo/coto

Jlk= (aktakl +aklakt )/2

J2k=Lk/»

J3k (nkl nkt ) /2

obeying

Vik JI'k l =le'jk Jkk.

It is straightforward to verify that all of these operators
commute with the total number operator

+k =~kl+~kt~

[Jk Nk]=o

and in fact

Jk =(Nk/2+1)Nk/2.

In terms of these operators,

hok =(Nk + 1)A'(col +cot )+J3kA(coI —cot )

httk =(GkJ2k++k~k/2)~t.

We can bring the terms with the J operators together by
the following rotation about the 1 axis,

Jik=&ik

J2k Jikcos8 J3k»n8

J3k =J3kcos8+ J2k»n8,

where

cos8=trl(col —co, )/ilk,

Sine =Gkeo, /uk,

ak = Il(~l ~t ) +~eGkl

All we said about J is still true of J', but we now have

hMPk (Nk+1)+col+~t)/2+J3kuk++k~k~c/2

Thus, provided that Fk =0, h Mpk is diagonalized, since

[J3k»k l =o

However, this last condition requires that f/g = —co, /col.
Bearing in mind that all frequencies must be positive, this
then fixes the values off and g to be

f ~to/(~lo+ ~to)

g =COI0/(COI0+ COt 0)

As a consequence of this, we find

~j =~jo~ 1+~'/(~io+~to)'],2 —2

~here j=l or t.

Gk 2(~locoto) /(colo+coto)»

and since

Gk = —2(COICOt ) /(COI +COt )

also. To exhibit the energy spectrum more succinctly, we
use the number operators

nk+ =J3k+Nk /2

Ilk-=J3k —Nl /2

to rewrite hMpk as

hMPk @~l+COt)/2+Itk+Ek++Iik Ek ——
with

Ek+ =@COI +COt )+ [(COI COt )—'+4CO'COICOt /(COI +COt )')'

In terms of the plasma frequencies in the absence of the
external magnetic field, this becomes

Ek+ —~l( clo+0~t )0+~t] —l(lo ~to) +~A

Note that this never vanishes, unless one or both the plas-
ma frequencies themselves vanish; and when one of them
does vanish, only E vanishes. E+ is always positive and
non-zero. Only when both modes in the plasma have zero
frequency will an external magnetic field create a stable
oscillation, but it has no effect on stability otherwise. If
we square our expression for Ek+, we get

(Ek+/h) =(COI+CO, +cO, )/2+S,

where

4S = (COI —COt ) +COt +2COt, ( COI +COt ).

This is identical with previous results.
To calculate the eigenfunctions of h Mpk, let us go back

to the rotation that transformed J to J'. The correspond-
ing transformation on the spinor operators al and a, that
accomplished this is

akl =akl cos( 8/2) + I'akt sin(8/2),

akt =ak, cos( 8/2) +Iaki sin(8/2).

The eigenfunctions are, in a straightforward manner,

I nkl nkt ~ ( lIlk)(Itkt )'
)((a ~t)~kl(a ~t) kt

~

() )

where
~
0) is the ground state of hok, which is also the

ground state of hMpk .
However, we have still not, at this stage, diagonalized

HMP itself. We have diagonalized every one of its Fourier
components hMpk, but with a different choice of the
gauge for each. To make this legitimate, we would have
to perform a gauge transformation for each hMPk to a
common vector potential, which we would choose to be
that given by the circular gauge, with f= ——,',g= —, .
This gauge has the advantage of being invariant under ro-
tation, so that all the vector potentials used in diagonaliz-
lilg h Mp k are now the same irrespective of the direction of
k. The energy spectra remain unchanged, of course; and
the eigenfunctions all acquire an extra phase factor, thus
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I nklnk &o

=exp[ —i (oiio oi o)xkjxk /2(oiio+~to)b ] I nklnkt &

where b is the magnetic length

b =Pi/mao, .

In summary, the eigenstates of HMp ai'e

~kl~kt 0
k

with energies

g nkl@k++ nkt+k
k

APPENDIX C

In this appendix the evaluation of the exchange integral
will be discussed. The integral we are interested in is

I = g( —I)'&0
I
I/r 14, & g( —I)'(((t

P P

A linked cluster expansion can be developed for the in-

tegrals in increasing number of exchanged particles. Let
us illustrate this for the normalization integral
I, = (P I Pp ). We first define the two-particle and three-

particle exchange integrals J; as

where I'; corresponds to an i-particle exchange. Our aim
is to write I, as an infinite series of the J s, viz. ,

I= 1+ g JInI
1=2

Here N is the total number of particles, nI is the number
of bonds per particle. This factor comes from a counting
of the multiplicity of the exchange terms. For example,
for a hexagonal lattice n2 ——3. Comparing Eq. (C2) with
the definition of I, it is now possible to define all the
higher order integrals recursively in terms of the lower or-
der integrals. For example

J~=dp, &4 I Np & N(N —1)ni(&(()
I Pp, ))'.

Our trial wave function P can be written as

y=exp —pro, I5x I
+co2 I5yq I

+i(co,q co2 )5x—q5y ql2 i grj—XRi"z/2
q

(C3)

where coiq+co2q = l.2 2

We have looked at both the two- and the three-particle
exchange integrals in detail and found the three-particle
exchange to be much smaller; let us illustrate our calcula-
tion with the two-particle exchange and quote the corre-
sponding result for the three-particle exchange at the end.

Both the normalization integral I, = ((()
I Pp & as well as

the exchange Is ——(P I
1/r

I ((tp ) can be expressed in terms
of the function A (u) defined by 5rq =cq+5rq. (C5)

with the set [ r'] corresponding to the permuted coordi-
nates. Its Fourier transform can be written in terms of
the unpermuted coordinates as

5rq ——ri2[exp( —iq R2) —exp( iq R, )]/N ' +—5rq.

Define c by

A (u) = (Pp I
5(ri2 —u)

I P)

k p exp i R(2+ r)2 —u

(C4)

where we have represented the delta function in exponen-
tial form:

Then

cq ——u[exp( —iq.R2) —exp( —iq Ri)]/N '.
Substituting (C5) and (C3) into (C4), we find that

A = f d2k exp( —8+C+ik Rip)/(2n)

where

(C6)

&=—»((1 Xgp)

t 2coJ( I Re5rjq I + I Im5rlq
I

)+2cojq[Re(5rlq)Re(cjq)+Im(5r)Im(c)]
Jq &o

—i (cubi a)2)[Re(5rjq—)Re(ci 1 q)+Im(5r)Irn(c)]+coj~
I cjq I j

—i (coi co2)[Re(c~—)Re(c~ )+1m(c~ )Im(c~ )]—F. (C7)

F comes from the phase factors and is given by

F=i g (rp~ —rj ) X RJ"z/2=i(ri2X Rii).z/2.
J

(C8)
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C comes from the delta function and is given by

C =ik 5r)2

=2i g lt [cos(qR&) —cos(qR2)]Re(5rq) —[sin(qR&) —sin(qR2)]1m(5r). (C9)

On completing squares in this exponent, one finds that

B —C+I' = g +2coJq[Re(5rJq)+D) +G,
qx&0 J

G = —2gJ2qD2+a)J2Re(cJ ) —2i (~o) —a)2)[c ) (q)c2( —q)],

where D is given by

D =Re(c. )/2 ) (~f ~2)Re(c, , )/4' q
—ikJ[cos(qR, }—cos(qR2)]/2~Jq

+corresponding imaginary part.

(C10)

(Cl 1)

(C12)

The integration over 5rq can now be carried out. The final result is then proportional to exp(G). To facilitate the remain-
ing integration over k and u, we now rewrite 6 by grouping 2ro2D into terms involving c (At), k (B&), and ck
(C~,D~). We find that there is a cancellation of the cross product of the first two terms of D and
i(co[—ro2)[Re(c~)Re(c2) + imaginary roman parts] in calculating A&. More precisely, G =A&+B&+C&+D~+Ii where

2 t
——g [(0.5 —1)roJ —(co]—co2) /Sco3 Jq]Re ~ cJq ~

+corresponding imaginary part
qx &o

Q Q.~gl J l J& (C13)

gi&(»= g eqlfeqlJ [1—cos(q'R)1/(S~oq 3 JN),
ql

Bt ——— g kJ[cos(qR~ ) cos(qR—q)] /2coJqN
J'.q„&0

=—0.5 $k;kJa; J (C14)

where a was defined in Eq. (9c) as

az(R)= geq~;eq~~[1 —cos(q.R)]/(roqlN),
ql

C& —— i g —Re(cJ )k,J [cos(qR ~ }—cos(qR2)]+corresponding imaginary part
i q„&o

= iu-k. (C15)

This is canceled out by an identical term already present in the exponent;

D1 = —g (&}—&2) g Re(c3 J)kJ[cos(qr& )—cos(qr2)]/2cozz +corresponding imaginary part

gag Jkg QJ (C16}

where

'V(R) = Xeql eq, 3 i'd[1 «s(q R})(~f—~—z)/(2~q21N).
ql
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Note that, slee e2„———
e/yp and

City e/zp

gyx=gxy= —axy /8 g~=ayy /8 gyy=a~ /8»

tzz =
~yy =azy ~2=ayz ~2

ty„=ayy l2 l, t„y =——a l2+ 1.

For example

t~ = g eq»eq jy [1—cos(q R) ](co2t —co22)(coq &2+ coq 22) l(2N)

= g [1 cos(q —R)](eq~, eq~ycoq& +eq2, eq2yt»3q2 )I(2N)=a,y/2
e

where we have used cof+toz ——1. To summarize, we have

dzk
A = f 2 exp —$ (g;iu;uj —t; Jk;uj+0 5k;.kja; J)+ik R~2 iu—XR~2/2

f j
On carrying out the k integration, we get

I —— u exp X 2m a~ayy

Ib —— uexpX 2 u m a a~

where

X = —uy(1 —1 ja~ )/2 u„(1——1 jayy ) /2+i (Ry ux /a~ R,u„l—a ) Ry /2a~ —R2/2a~-.

Note that gq &0——0.5 g . The k integration for I, can be carried out analytically and we have

I, =exp[ —Ry/2(a~ —1)+R„/2(a~ —1)]/[(a~ —1)(a~ —1)] '.

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

Let u =r3], ug ——r)2, then —u, —ug ——r23 and

We now quote the corresponding formulas for the three-particle exchange. Assume P 1 =3, P2=1, P3 =2, A is now
given by

5(r3i u )5(ri2 ut )1»I))—

= f d'k. d'kb(QP1expi[k (R31+5r31 u )+kb(R12+5r12 ub}]14)j(2~)'.

cq=[u, exp( —iq R~)+ubexp( —iq R2) —(u, +ub)exp( iq R3)—]/N.

The exponent of A is now given by —8 +C+i kR,3~+i kb R~2.

F =i(u XR)3+ub XR23) z/2,

C =2i g k, [cos(qR3) —cos(qR ~ )]Re(5rq ) —[sin(qR3) —sin(qR, )]Im(5r)+corresponding kb term,
&x &0

D =Re(cjq)/2 i (co] 03&)—Re(c3 —
1 q)/4cojq

—ik,j[cos(qR3) cos(qR &

—)]+kb& [cos(qR & ) —cos(qR2)]/2t»3jq+corresponding imaginary part,

6 = — g (f~k;uj+h~ik;kj+b, j.u;ui)+iH(u, k),
ij =1,2

lH(u, k) =l (k~ R3]+kb R]2+up X R]3 /2+ub XR23/2),

where the buu terms comes from 3„hkk, from 8„fku, from D, ;

buu = g g; J(13)u, »u, J+g; J(23)ub»ub J+[g; f(23)+g;~(13)—g»i(12)]u, ;ubi»
l,J =Z,y

hkk = g 0.5a; J (13}k„.k,j +0.5a; J (12)kb;k»J +0 5[a;J (23}. a; J (12)——a; J(31)]k„k»J,
lj=Zy

fuk = g —tt J(13)k,»u,j+0 5[t; q(12) —t; J(13.} tt~(23)]kx;ub/—
E,J =Z,y

+0 5[t», (13)+t;, (1.2)—t;, (23)]kb;u„+0.5[t;,(13)—t;-, (23}—t;;(12)]k»;ub,

+ l (kb Ub +kb'ux —kz ub )/2.

(C23)

(C24}

(C25)

(C26}

(C27)

(C28}

(C29)

(C30}

(C31}
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The integral for the three particle exchange can be evaluated as follows. We defined a vector v by U =(u„us,k„ks ),
then 6 can be written as 6 = g, z (i,j)u (i)u (j) where the matrix z =z 1+iz 2, z 1 is given by

2$13

$13 +$23 $12

—26013

$13 +$23 $12

~12—~13—23

~12+~13—23

12 ~13 23 ~13 ~12 23

V23 —U 12
—U31

~12+ 013 23 13 ~12 23 U23 U 12 U31 2V12

where s =0.5g, co =0.25t, u =0.25a, a bar denotes the transpose of the matrix. z 2 is given by

0 0 0 —025
0 0 0.25 —0.25

0 025 0 0
—0.25 —0.25 0 0

Similarly H can be written as H = g Ii (i)U (i). The overlap integral is then equal to

exp( fiz 'ii/—4)/[16det(z)'~ j.

We have evaluated the two-particle exchange up to the
third neighbor; the result is shown in Table III. As can be
seen, the third-neighbor exchange is already quite small.
We have also evaluated the three-particle exchange and
found that it is an order of magnitude smaller.

To include the two-particle exchange in the total ener-

gy, we note that the exchange energy E,„per particle is

(C32)

I

given by

E,„=n[—($ ~
1/r (Pp)

+ (P ( P ) (P [ (1/» —Uo)
~
P) ].

Here n is the average number of bonds and Uo denotes
the contribution to the potential due to the background.
For a hexagonal lattice it is 3.
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