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Theory of the lateral surface magnetoplasmon in a semiconductor superlattice

Ji-Wei Wu, P. Hawrylak, Gunnar Eliasson, and J. J. Quinn
Brown University, Providence, Rhode Island 02912

{Received 9 December 1985)

%e study in detail the properties of the recently predicted magnetoplasmon excitations localized
near the lateral surface of a semi-infinite superlattice. The dispersion relation of these surface
modes is obtained both by a simple approximate method and by a numerical technique capable of
arbitrary precision. Possible experimental observation of the surface excitation spectrum is dis-
cussed.

I. INTRODUCTION

During the past few years the spectrum of the collective
excitations of semiconductor superlattices has received a
considerable amount of attention both from a theoretical
as well as from an experimental point of view. ' ' Both
intra- and intersubband excitations of infinite superlattices
have been investigated. For the former, the superlattice
can be treated as a periodic array of two-dimensional
electron-gas (2DEG) layers. For the latter, the subband
energies and wave functions of the multiple-quantum-well
structure must be accounted for. Theoretical predictions
on the intrasubband bulk excitation spectrum have
been confirmed by the inelastic light scattering experi-
ment of Olego et al. A new type of intrasubband surface
mode, with the remarkable property of freedom from
Landau damping, has been proposed by Giuliani and
Quinn for a surface parallel to the layers of a semi-infinite
superlattice.

In a recent report, '5 we analyzed intrasubband surface
modes of the lateral surfaces (i.e., the surfaces perpendicu-
lar to the layers of the superlattice) of such a system. The
surface collective excitations associated with these sur-
faces (coupled edge plasmons of constituent two-
dimensional electron layers) were predicted and their
dispersion was determined approximately. The dispersion
of these edge plasma modes (and magnetoplasma modes)
depends on the components of the wave vector in the two
principal directions of propagation parallel to the lateral
surface plane, q along the edges of the conducting planes
and p along the superlattice axis, and normal to the con-
ducting planes. For fixed p, these edge modes display
linear behavior as a function of q in the long-wavelength
limit. The Bloch condition in the direction parallel to the
superlattice axis gives rise to a band of excitation spec-
trum for all possible values of 0&Ji &irld. Imposing a
static magnetic field parallel to the surface has the effect
of separating the surface excitation spectrum from the
bulk spectrum. This property should be very helpful in
identifying these surface modes experimentally.

In this paper we provide a detailed discussion of these
lateral surface magnetoplasmon excitations. Besides the
approximate solution we developed earlier, a numerically
exact solution is obtained by expanding the potential in
terms of a complete set of orthogonal functions and

II. POTENTIAL EQUATION OF THE SYSTEM
OF A LATERAL SEMI-INFINITE SUPERLAl I ICE

In our model of a semi-infinite superlattice the space
x &0 is occupied by a semiconductor of background
dielectric constant e„while the space x & 0 is filled by an
insulator of dielectric constant eo. The semiconductor
contains an infinite array of conducting planes at z=na
with n =0, +1, . . . . Each plane contains n, electrons per
unit area of mass m, and the entire semiconductor con-
tains a uniform neutralizing positive charge background.
%e restrict our consideration to the electrostatic limit
where the velocity of light can be taken to be infinite, and
the electric field E=—VP can be expressed as the gra-
dient of a potential. We consider the equilibrium charge
density +n5(z —la )8( —x) to be perturbed by a fluctua-
tion 5n(r, t). The system is shown schematically in Fig. l.
The 2DEG layers are parallel to the xy plane. A static
magnetic field B is in the z direction. For waves localized
near the surface x =0, the density fluctuation and the cor-
responding ac potential are of the form

5n(r, t)=g ni(x)5(z la)e p(iqxy —icot), —
l

P(r, t) =P(x,z)exp(iqy idiot) . —

(2.1)

(2 2)

transforming the integral equation into a matrix equation
of infinite order. This method, when combined with the
mirror-image technique, can be used to solve the problem
in the more general and realistic situation in which the
background dielectric constants on the opposite sides of
the surface are different.

The remainder of this paper is organized as follows. In
Sec. II we present the derivation of an integral equation
for the electrostatic potential of the systein. In Sec. III we
review the approximate solution to the integral equation.
In Sec. IV the integral equation is transformed into a ma-
trix equation and the dispersion relation is obtained by
solving the secular equation numerically. In Sec. V we
generalize the solution to the problem in which different
background dielectric constants are present on opposite
sides of the interface by employing the mirror-image tech-
nique. A discussion on the results and possible experi-
ments is given in Sec. VI.
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and Kp ls the modified Bessel function.
For a superlattice with periodicity a in the z direction,

the density fluctuation on the 1th layer can be related to
that on the zeroth 1syer by the 81och condition,

n, (x)=e'&"np(x) . (2.9)

O / /// ///
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// / / / /

FIG. 1. Schematic drawing of a semi-infinite superlattice
with background dielectric constant e, occupying the region
x &0. 2DEG layers are parallel to the xy plane with equal
space a. Each layer has an equilibrium charge distribution n,
per unit area. A static magnetic field lies along the s direction
which is parallel to the interface and normal to the 2DEG
1ayers.

In this section we derive an integral equation for P(x,z),
which is solved in subsequent sections. The dispersion re-
lation is determined from the conditions for the existence
of a nontrivial self-consistent solution.

We start from the following three basic equations in
electrodynamics. They are Poisson's equation,

(2.10)

In the first term on the right-hand side, the kernel inside
the integral is

Lq(x)= g et' Iq(x, la)
I=- ao

x 2+F2 —1/2z q2+ 2 1/2
p

(2.11)

The vector notation q means (q,p) in our discussion, and

sinh(qa )

cosh(qa) —cos(pa)

is the structure factor. In the limit of qa ~ oo, we have

(2.12)

Lq(x)=Kp(q ~x
~

)/2n, . (2.13)

The entire spectrum of dispersion is defined by values of p
satisfying 0&p &m/a. Setting z =0 and using the nota-
tion of P(x) =P(x,z =0) allows Eq. (2.7) to be expressed
in the form

e(x)P(x) =4ir f '
dx'Lq(x —x')np(x')

+(e, ep) — f dz'Iq(x, z')P(O, z') .

V [e(r)E(r)]=4n5n(r) .

the equation of continuity,

V J=ipi5n(r};

and the constitutive equation,

jt(x)=FE(x) .

(2.3)

(2.4)

(2.5)

which gives the correct form for the single-layer prob-
lem. "

Equations (2.3) and (2.4) relate the density fluctuation
n p(x} to P(x}by the equation

n p(x) =8(—x )(tr /i co) q2 — P(x)

Here we have written the current density as 1
jp (x =0 )5(x) .

lN
(2.14)

J(r, t) =g Jt(x)5(z —la)exp(tqy —icot ) .
I

ops�}is the local conductivity tensor of the 2D EG, Et(x)
is the electric field at z =la, and the background dielectric
function is

Here we have written explicitly the two terms in np(x);
the first term is the regular contribution from x & 0, while
the 5-function term indicates the singularity of charge
density at x =0 due to the discontinuity of the current.
The integrs1 equation becomes

e(x)=e, +(ep —e, )8(x) . (2.6)
4m'~

e(x)P(x) = . f dx'Lq(x —x') qz
82

P(x')
Bx

4v .
jp,,(0 )Lq(x)

167

CO

+(e,—ep) dz Iq(x, z)P(O,z) . (2.15)
(2.7)

The equation for P(x,z) is obtained by taking the
Fourier transform of Eq. (2.3) and using (2.2),

0 ao

e(x)P(x,z) =4m f dx' f dz'Iq(x x', z z')5n(x—',z')—

+(e, —ep) f dz'Iq(x, z z')P(x'O, z'), —

where we have defined the function

Iq(x,z)=Kp(q(x +z )'~ }/2n (2.&)

The conductivity tensor is determined from the simple
Drude model; by combining the equation of motion for an
electron
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dv 8
m =eE+—v XB

c

with the expression for current

j0(x)=e( —x )en, v(x),

it is straightforward to show that

lns8 Q)
0'~(CO) =

ni (co —co~ )

(2.16)

(2.17)

(2.18)

qa~ 00, Eq. (3.2} reduces to the approximate kernel used
by Mast et al. ' for the single-layer problem. Our solu-
tion reduces to their approximate result in this limit. In
the opposite limit qa~O and pa=0, we would have
a= 1/v 2 and Ls(x)= —,

' e & ~ ~. The integral equation
(3.1) can be solved by using the Wiener-Hopf technique
the solution in the region x g0 turns out to be

y(x (0)=—,'y(0 ) 1 —(l/2+bi)
y.

a)c

N

where

+ 1+(~2+b )& e'y. (3.4)

CO

j0,,(0 )=tr P'(0 ) qg-(0 )
N

(2.19)
y=q(2+b, }' ', b= W2+ b, ,

where t0, =e8/mc is the cyclotron frequency, and

y (0-}=['ay(x)/ax]
In the remainder of this paper we solve the potential

equation (2.15) by different methods. The dispersion rela-
tion of edge plasmon modes is obtained from the require-
ment for the existence of a nontrivial surface wave solu-
tion. To make the formalism simple, we first give the
derivation under the assumption of e0 e, in——Secs. III and
IV, while the general situation of sovt=e, is treated in Sec.
V.

III. SIMPLE APPROXIMATE SOLUTION

4n'
j0„(0 )Lq(x) .

l Q)ES
(3.1)

We choose the approximate kernel Lq(x) in Eq. (3.1) to
be of the form

+(q} —~2aq ~x (qx=~8
where the parameter a is

(3.2)

a(q)= 1— qa 1 —cosh(qa)cos(pa)
sinh(qa) cosh(qa) —cos(pa)

(3.3)

This choice makes Lz(x) have the same area and second
moment as the exact kernel in Eq. (2.11). In the limit of

In this section we solve the potential equation by using
an approximate kernel Lz(x) instead of the exact one
Lq(x) in Eq. (2.11). A numerically exact solution will be
given in the next section. The reason for doing this is that
the approximation gives qualitatively correct results in a
simple way, and the dispersion relation can be easily com-
puted for given parameters. This should be useful in
searching for the collective modes predicted in this paper.

Under the assumption e0——e, the last term on the
right-hand side of Eq. (2.1S) vanishes. The potential satis-
fies the approximate equation

4~cr o
P(x)= J dx'Lz(x —x') q — P(x')

l NE'g Bx

c0(to+ai, ) =Q~2/2e, , (3.6)

which is the well-known dispersion relation of a surface
magnetoplasmon of a homogeneous medium of the same
average electmn density. 's This indicates that our ap-
proximate dispersion relation would reach the exact solu-
tion for small values of qa. For qa~ oo, the dispersion
relation reduces to

3' +2l/ 2cocoq —2cop =0, (3.7)

where to~ =2mn, e q lm is the square of the frequency of a
two-dimensional plasmon of wave vector q. Equation
(3.7) was first derived by Mast et al. ' in order to explain
their experimental data on the resonances of a single-layer
classical two-dimensional electron gas at a liquid-helium
surface.

Figure 2 gives a plot of ce versus qa for the dispersion
relation in the absence of a magnetic field [co,=0 in Eq.
(3.S)]. The waves propagating in opposite y directions are
degenerate. For each value of p&0, the dispersion is
linear for qa && 1. The acoustical nature of these surface
waves might be useful for surface wave devices. Figure 3
gives a plot of the dispersion for co, =2Q~/(e, )'~ . There

bi=2co&/(co—co~ —c0&) .

The condition for a surface wave is that the coefficient of
the exponentially growing term must vanish. This gives
the dispersion relation of the edge magnetoplasmon

(2a +1)ai +2@2acoco, —a SqaQ&/e, =0, (3.5)

where Q&i urn, ——e /nia is the three-dimensional plasmon
frequency of a system with electron density n, /a. The
plus and minus signs in the equation correspond to waves
pmpagating to the right- or left-hand side (in the + y or
—y direction).

In the absence of the static magnetic field, the modes
propagating in opposite directions are degenerate for
given q and p. In the general case where ai, +0, the re-
sulting degeneracy is removed by the presence of a mag-
netic field.

In the limit qa ~0 and pa =0, Eq. (3.5) reduces to
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FIG. 2. Dispersion of lateral surface plasmon modes in the
absence of a static magnetic field. %'aves propagating toward

plus and minus y directions are degenerate. The background
dielectric constants on both sides of the surface are assumed to
be the same.

FIG. 3. Dispersion of lateral surface plasmon modes in a su-

perlattice with a static magnetic field pointing in the z direction.
The corresponding cyclotron frequency is N 20p/(E' ) The
upper band indicates waves propagating toward plus y direction,
while the lower band indicates waves toward minus y direction.

v, (p)= lim c0(q,p)/q .
qu ~0

(3.8)

The minimum speed is determined by taking pg=~.
Equation (3 5) gives f'or tile minimum phase velocity of
the edge plasmons,

are two bands of surface modes corresponding to opposite
directions of propagation along the y axis. The band
propagating toward the positive y direction [minus sign in

Eq. (3.5)] extends above co„while the other one is pressed
much lower than Qp/(e, )i/2. For Mch Ydue of p. the
phase velocity of the wave propagating in the y direction
(along the layer) is defined by

IV. NUMERICAL SOLUTION
OP THE DISPERSION RELATION

4s'cT~ 0
d(x)= . f dx'L, (x —x') q'—

E NGg
x

B(x')~

j~(0 )Ls(x) .
E CO@'g

(4.1)

In the region of x &0, we expand both sides of the equa-
tion in terms of Laguerre polynomials of the following

By keeping the exact kernel Ls(x) in the integral equa-
tion (3.1), the potential equation is

& (q,pu =n') =—[+~3dv, +(3', +9Q&~/e, )'/2] .g (3.9)
P(x &0)=exp(qx) g L„(—2qx)a„. (4.2)

If we take Qp/(e, )1/2= loi3 s~-i, md a=500 A, the
phase velocity could be as high as 4X10 cm/sec in the
absence of a magnetic field. However, this qiuuitity
would be reduced by a factor of 10 or more by the intro-
duction of a inagnetic field with co, &Q~/(e, )'~. The
magnetic field also has the effect of separating the lower
band in Fig. 3 from the spectrum of bulk excitations. It is
much more favorable to perform experiments in the pres-
ence of a magnetic field which can be varied over a broad
range of values.

Because of the orthonormality of this expansion,

a„=2q I dx exp(qx)L„( —2qx)(t}(x) .

Equation (4.1) is readily transformed into a matrix equa-
tion for the expansion coefficients

4lTO ~a„= g a„[J„„+(2n'+1+ay, /ap}I„], (4.4)
COES 5'=0

where we have defined two integrals
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0
=2q jl dx exp(qx)L„( —2qx) f dx'Le(x —x') q

L

2
[exp(qx')L„( —2qx')]

a(x )' (4.5)

I„=2q f dx exp(qx)L„( —2qx)L~(x) .

Notice that we have used the identities

(4.6)

and

())(x=O )= g a„
n=0

(4.7)

P'(x =0 )= g a„(2n + 1)
n=0

(4.8)

from the definition of Eq. (4.2).
The integrals J„„and I„can be evaluated in closed

form for L~(x) given in Eq. (2.11). The matrix equation
(4.4) can be written

r0, =2Q~/(e, )'~, Eq. (4.14) gives two bands correspond-
ing to propagation of waves in the + y or —y direction.
The lower band exhibits acoustical behavior in the long-
wavelength limit for pa&0, while the upper band is above
co, . This shows that the approximate solution is qualita-
tively correct only for the lower band. Notice that both
Eqs. (4.5) and (4.14) approach the exact result of
co(co+co, )=Q&/2e, in the limit of qa~0 and pa=0.
This can also be seen from the expansion in Eq. (4.2),
since the only nonvanishing term in this limit is the n =0
term.

So far we have restricted our attention to the case
eo ——e, . In the next section we apply the well-known
mirror-image method to study the more general problem
when the insulator dielectric constant eo takes on an arbi-
trary value.

a„=D g a„[S„„+(1+co,/a))F„],
n'=0

S„„.= g

where the symbols D, S~, and F„are given by

4rra~ QpD=
l roEqrr ('r0 —r0 )e

' ]n —n') Il

y —1 y —1

y+1 y+1

(4.9)

(4.10)

(4.1 1)

V. GENERAL INTERFACE

When the background dielectric constant of the insula-
tor in the space x &0 is different than that of the super-
lattice, we must solve the complete potential equation
(2.10). The term proportional to E—sp

' is complicated be-
cause it is difficult to solve for the potential P(x =O,z) at
the interface. We transform this equation into an equa-
tion for (I)(x &0) by using the mirror-image technique.

F
„y(y+ 1)"+'

In these equations y(rn) stands for
2 1/2

+ prr +2ni 5'

qa

(4.12)

(4.13)

The series S„„and F„converge rapidly for fmite qa and
0&pa &rr The disper.sion relation of the lateral surface
magnetoplasmon is determined from the zero of the fol-
lowing determinant of infinite order:

i.0

O=det[5„„—D{S„„+(1+co,/ra)F„)] . (4.14)

We have computed this determinant by truncating the
expansion at a finite order N, and found that its roots
converge rapidly with increasing X toward their N = ao

limits. Within the range of our computation, the error is
negligible for N & 10. Therefore, Eq. (4.14) gives an accu-
rate solution te the dispersion.

Figures 4 and 5 plot the dispersion relation from the
numerical solution of Eq. (4.14) for the same parameters
as in Figs. 2 and 3. Comparing Fig. 4 to Fig. 2, we see
that solution Eq. (3.5) gives a good approximation to the
dispersion at r0, =0 for values of qa not too large. In the
region of qa »1 the approximation becomes worse and
incorrectly predicts the crossing of the two lines of
cos(p(z)=+1. In the presence of a magnetic field with

0.5

0.0
0.0

cI0

FIG. 4. Numerical dispersion relation computed from Eq.
(4.14) with the same parameters as those in Fig. 2. The matrix
is truncated to an order of X =9.
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I.O—

0 Es

~c = ~~p~+s

The effect of different dielectric constants across the in-
terface is equivalent to placing charge Q' at (xp, 0,0}with

&s —&o

s+so

This should be true for an arbitrary change distribution
from the principle of superposition.

In the 1=0 layer of the superlattice, the charge distri-
bution in the region of x &0 is given in Eq. (2.14). The
mirror-image charge distribution in x & 0 is

Eg —E'o

np(x &0}= '
np( —x}

E'g +6o

es ep Oxx 2 8
q —

2 P( —x)
ez +e'p i rp

j,(0 )5(x)
1

lN
(5.1)

0.0
0

The potential at x &0 is then determined from the follow-
ing integral equation:

0
P(x & 0) =4m. f dx'L~(x —x')np(x')

FIG. 5. Dispersion relation from numerical computation of
Eq. (4.14} for the same parameters as in Fig. 3. The magnetic
field is chosen such that co, =20&/(e, )'

As is well known from classical electrostatics, the po-
tential in the region x &0 due to a point charge g located
at the coordinate (x = —xp & O,y =O,z =0) in the presence
of an interface at x =0 can be written

r

P(x,y,z)= [(x+xp) +y +z ]
Eg

[( }2+y2+ 2] i/2

&s+ &o

+ xLqx —x Prox (5.2)

This is the eigenfunction for P(x & 0) and can be
transformed into a matrix equation by the expansion in
Eq. (4.2). This leads to a generalization of Eq. (4.4):

4770'~ &s —&o
tzg . y re' Jnn'+ I{'nn'

'=o E'g +6o

2E'g

+ (2n'+ 1+rp, /rp)I„
Es+Eo

(5 3)

where J„„and I„are defined in Eqs. (4.5) and (4.6). E„„
is defined by the relation

o OO

E„„=2q dx exp(qx )L„(—2qx ) dx'Lq(x —x') q

The magnetoplasmon dispersion is determined from the equation

[exp( —qx')L„(2qx')] .
a(» )' (5.4)

&s —&o 2&sdet'5„„—D S~+ T„„+
Es+Eo 6s+Eo

1+ F„
CO

(5.5)

with the notation being defined in Eqs. (4.10)—(4.13) and
' n+n'+ [

(5.6)
1

y

Equation (5.5} is a generalization of Eq. (4.14).
The dispersion relation of the magnetoplasmon is com-

puted for a system consisting of a GaAs-AloaAs super-

lattice with its lateral surface exposed in vacuum. We
choose e, =13.6 and eo——1. The results are plotted in
Figs. 6 and 7 for ~, =0 and ~, =2Qp/(e, ) i/2, rmpmtively.
Comparing to the dispersion relations for eo ——e, in Figs. 4
and 5, we observe that for fixed wave vector, the plasma
frequency is higher for op&a„and should be lower for
eo&e, . This can be seen in the analytic expression
co(pi+co, )=Q~/(ep+e, ) in the limit of qa~O and pa =0.
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2.0—
+0 =1

ws = l5.6

(u = 2Q /jc

I,O

0.0
0

0.0
0

qa

FIG. 6. Lateral surface plasma dispersion for a system of
general interface in the absence of a static magnetic field. The
two different background dielectric constants are e, =13.6 and
6'0= 1.

FIG. 7. Lateral surface magnetoplasma dispersion with a
static magnetic field in the z direction such that
r0, =20~I(e, )'~'. The background dielectric constants are eo 1——
and e, =13.6.

VI. CONCLUSION AND DISCUSSION

We have predicted a new type of surface magneto-
plasmons which occurs on the lateral surfaces of a setni-
conductor superlattice. The dispersion relation of these
edge collective modes has been studied when a static mag-
netic field of arbitrary magnitude is applied parallel to the
surface. The surface excitations have several remarkable
properties which might be of experimental interest. These
collective excitations are free from Landau ~mping, since
the band of excitation spectrum is well above the single-
particle continuum. For small values of q and for Ji+0,
the modes are acoustic in nature, and the spectrum ex-
tends to arbitrarily small values of qa. This means that
no minimum in-plane momentum transfer is required in
the experiment. The presence of a magnetic field parallel
to the interface would favor possible observation of these

surface modes in the experiment because the phase veloci-
ty of the waves in the long-wavelength limit can be great-
ly reduced and the energy spectrum is well separated from
that of the bulk excitations. The optimal choice is
ro, & Q~l(e, )'~ . For a GaAs-(A1Ga)As superlattice, typi-
cal parameters are e, =13, nt0.067 „ntn, =10" cm
and a =500 A. These conditions lead to
&&I(&, )' =8.5 X 10' sec ', which corresponds to a
magnetic field of 3300 G. Possible methods of observing
these excitations could be attenuated total reflection,
resonant Raman and Brillouin scattering, or electron-
energy-loss spectroscopy.
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