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A theory is presented of the impurity-doping effect on the electronic states in a quasi-one-

dimensional-structure semiconductor using Green s-function formalism. The theory is applied to a
single quantum well made of n-type GaAs. It is shown that the density of states is strongly modu-

lated by the doping as compared with the cases of a quasi-two-dimensional structure and a three-

dimensional structure. A strong dependence of the screening on the free-carrier concentration is the

cause of the strong modulation through rapid shift and broadening of the density of states toward s
higher energy range and a lower energy range, respectively.

I. INTRODUCTION

Recent progress in epitaxial growth techniques has

stimulated the study of quasi-two-dimensional-structure

(Q2DS) semiconductors such as quantum wells and super-

lattices. Especially, the optical properties of Q2DS's have

received much attention in the flelds of fundamental phys-

ics' and device physics ' represented by a quantum-well

laser. Due to a step-function shape of the density of
states (DOS) for an undoped well, laser operations in

QZDS's are known to show excellent characteristics, e.g. ,
low threshold current and weak temperature depen-

dence. This result leads us to the suggestion that a
quasi-one-dimensional structure (Q1DS} is more favorable

for obtaining excellent laser operations.
In practice, intentional or unintentional doping is often

inevitable. Previously, the present author has discussed9

the doping effect on the electronic states in Q2DS's and

has shown that the doping leads to strong modification of
the DOS especially in the intrabtmd region. If a well is

undoped but electrons and holes are injected as in the case
of laser opixations, strong modification may also occur
for the conduction band since the holes may scatter elec-
trons in practically the same way as the donor impurities.
Thus the modification of the DOS is of practical impor-
tance in various cases.

In a Q2DS, the DOS for an undoped well is a step func-
tion, which is modified into a gradual function under dop-
ing. In a three-dimensional structure (3DS), the DOS for
an undoped crystal is a square-root function, whose modi-

ficatio, especially in the intraband states, under doping is

very small as compared with the case of a Q2DS. In a
Q1DS, on the other hand, the DOS for an undoped well is

an inverse square-root function, which is infinite at a sub-

band edge. From the above trend, i.e., 3DS, Q2DS, and

QlDS, it is expected that modification of the DOS in a

Q1DS under doping is stronger than in a Q2DS. The

doping effect of a Q1DS is quite important from both

fundamental physics and device physics viewpoints.
In this paper we derive a method of calculating the

DOS in a Q1DS using Green's function formalism. We
use the Bonch-Bruevich assumption' that the impurity

potential varies slowly; then fluctuations in the state ener-
gies closely mirror those in the potential energies. With
the use of that assumption, the present author has previ-
ously performed calculations based on the diagram tech-
nique for 3DS's." He has recently modified this ap-
proach9 so as to be useful for Q2DS's. In this paper we
extend this approach to include QlDS's. A basic concept
with which the present theory is developed is similar to
that used for the theery of Auger recombination in
Q1DS's by the present author. ' Characteristic features of
Q1DS's with respect to the doping effect are revealed in
comparison with the cases of Q2DS's and 3DS's.

II. THEORY

Considering carrier confinement in the y and z direc-
tions, we define the two-dimensional position vector
r= (y,z) in the confinement directions, the three-
dimensional position vector R=(x,y, z), the two-
dimensional wave vector q =(q„,q, }, and the three-
dimensional wave ve:tor Q=(q„,q~, q, ). Let us consider
the conduction band with the isotropic effective mass m '.
Confinement of a free electron produces subbands. Then
the wave function for the electron is given within the
framework of the effective-mass approach by

1
QIk (R)=, exp(jk x)ui(r),

) i /2 (2.1)

H=H, +H, g+H. . . (2.2}

where L„ is the length of a crystal in the x direction, k„
the wave vector in one dimension, I the subband index,
and ui(r) the wave function describing the bound state.

I,et us consider a single two-dimensional quantum well,
which is bounded by four heterobarriers lying at y =0 and
L» and z =0 and L„' L„and L, are the well widths in the
y and z directions, respectively. It is assumed that hydro-
genic donor impurities are randomly distributed only in
the well and there are no impurities outside. Starting with
Eq. (2.1), we define our model by writing down the Ham-
iltonian
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where H„H, ;, and H, , are the Hanultonians for the un-

perturbed subbands, the electron-impurity interaction, and

the electron-electron interaction, respectively; H, ; and

H, are considered to be perturbations. The explicit
forms of the Hamiltonians are

4n.e
U(Q) =

Q2+g2
(2.11)

respect to the host lattice. From Eqs. (2.9) and (2.10) we
obtain

H, = g EI(k )aik ~g,
Ik„a

(2.3)
1(Q)=U;(Q)&(Q) . (2.12)

1 I (Q)yl r(q)ai k„+s„an,V I Ik„Qa

(2.4)

U;(Q) =ZU(Q), (2.13)

Here U;(Q) is the Fourier transform of the potential
U;(R), i.e.,

1
H, , =

1111
k„k„'oo'Q

U(Q)y. ..,«)»...(-q),t, .„. and we define the phase factor

h(Q) = g exp( —jQ R„) . (2.14)

Ik' — ' l k' ' lk2x 4+ 3x+ 4~ (2.5)

=—Q I (Q)exp(jQ R)1

V
Q

(2.6)

where U;(R—R„) is the potential due to an impurity at
R=R„, N~ the total number of the impurities, and V the
crystal volume defined later. U(Q) is the Fourier
transform of the interaction U(R& —R2) between the elec-
trons at R~ and R2

U(R& —R2) =—g U(Q)exp[jQ (R& —R~)] .
V

Q

(2.7)

Here a~~, as, , and E~(k, ) are the creation operator, the

annihilation operator, and the unperturbed subband ener-

gy, respectively, for the electron with the subband index I,
the one-dimensional wave vector k„, and the spin o.
I (Q) is the Fourier transform of the potential I'(R) due
to all the impurities

NI

1(R)=g U;(R—R„)

60 (Ilt, ro) =
ra E~(k)+j 0—+

Analogously to the case of a 3DS (Ref. 13) we obtain

6 (lk„l'k„' ) =60 (lk, ) b,(1—I')b,(k, —k,')

(2.15)

+g I (k, —q„q)y„-(q)
ItlQ

X G"(I"q„,I'k„'), (2.16)

where we have omitted the parameter co and we define
b,(x)=1 for x =0 and b, (x)=0 otherwise with x as a sca-
lar or a vector. With the use of an expansion

Based on Eqs. (2.3)—(2.5), we consider the retarded
Green's function which is a function of two subband in-

dices I and I', two one-dimensional wave vectors k„and
k„', one energy parameter ro, and the position vectors of
the impurities R&,Rz, . . . , R~.. A diagram representing

the impurity scattering is shown in Fig. 1 with the use of
the free-particle Green's function

yi &(q) is an important parameter representing directly the
effect of the electron confinement on the electron-
impurity interaction and the electron-electron interaction,

6"(I"q„l'k,') = g, (q, —k, )
Om! ' ' k,

G "(I"k„l'k,' ),

(2.17)

y&I(q)= J dru~'(r)exp(jq r)ul(r) . (2.g)
Go (Ekx, u)i

2

U(R) = exp( —A,R ), (2.9)

where e is the electronic charge and eo is the dielectric
constant of the host lattice. Assuming one species of ion-
ic impurities we have

As for the potentials U~(R) and U(R), we assume the
free-carrier screening a priori with the inverse screening
length I,. %e have

X
I

I

I
l

1 (Q)

U;(R) =ZU(R), (2.10) Xk„ ~ k„+ax
where Z is the minus of the valency of the impurity with FIG. 1. Diagram representing the impurity scattering.
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we can rewrite Eq. (2.16}as

6"(Ik„,l'k')=G(lk, ) h, (l —I')blk —k')

+g ~II" J gkIkI Z

Here we define an operator

= f dr~ u[(r)
~

I j,r
x

(2.19)

&& 6"(I"k,I'k' ) . (2.18)
I (j[)/[)k„,r) is obtained from I {R) by replacing
R= (x,r) with (jB/Bk„,r).

Equation (2.18}is easily rewritten for I =I' as

6"(lk„lk,' ) =

where

Go(lk, ) 4(k„—k,')+ g F j;l,l' G"(I'k„lk, )
p[+{[ e)kz

1 —Go(lk, ) I g j +F j;l,l
Z k, ''

(2.20)

8
;l, l' = g I a- j

Z I"{~l,~l')

6[)(lk„)

Z R. 1 Go(l—k»}I [ [- j ak„

I I-r J (2.21)

Note that I'I (jB/Bk, ) with I+I' is an operator represent-

ing the intersubband interaction due to the impurity

scattering. On the other hand, under I+I' we have

GP)(lk, )6"(lk„l'k„')=
1 —Go(lk»)111 j kZ

eo —E[ k +J x
—I g(x)+j0~ f

Gx)lk„lk, )= I d'x exp[j(k„—k„')x]Z& Z

(2.24)

b,(k„—k' )Go (lk, )

+&10- j
I"{~l )

G"(I"k„l'k„' }

(2.22)

Hereafter the discussion is restricted to the case where the

energy difference between neighboring subbands is large
enough to allow the neglect of the intersubband interac-
tion due to the impurity scattering. This corresponds to
assuming that I 0(jB/t)k, ) with I+I' is small enough.
Then 6"(Ik»,I'k» ) with I&I' is of first order in

I'0-(jB/Bk ) with I+I" so that we may consider only
6"(lk,lk' ) given by Eq. (2.20}. Furthermore, since
F(j&/Bk;1,1'} is of second order in I [-[(jB/Bk ) with

I"+I,we obtain

where I'0(x) is obtained from I [i(jB/&k„) by «p»cing
jB/e)k, with x, i.e.,

I'0(x)= f dr~ u[(r) ~'l (R)

=—g I s(q„)exp(jq„x ) (2.25)
q.

with the definition of

I'u(e. }=+rs(q}1'(Q} . (2.26)

After the Bonch-Bruevich approach' for 3DS's, it is
assumed that the variation of I [[(x) with x is slow
enough to allow approximating E[(k„+j[)/Bx) as E[(k„).
%'e obtain

6"(lk„,lk' )

1 Go"(lk )f dx exp[j(k„—k„')x]
Z 1 —Go (lk„)I I[(x}

6"(lk,lk' )=
Ga(lk, )

r

1 —6 (lk)I, j
Z

. I)k(k, —k;) (2.23) =6,"(lk. ) g [G (lk, )]~
~=0

X f dx[10(x)] exp[j{k,—k,')x] .

by neglecting all F's in Eq. (2.20). This equation can be
written in the form (2.27}
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With the use of Eqs. (2.12), (2.25), and (2.26) we have

f dx[l'0(x)] exp[j(k„—k„')x]

'Go (gkx, (d)

j

V Ui(&n) i)= ~, &, --

Rl Rg. . .R~
1)k(qi, +q2„+. . . +q +k —k„')

where

Xg —U, (Q„) (Q„)
n=1

(2.28)

X X
~fyj(t y /II
(

/
t X /

j

X
IA,

I I
I
I
I
I

U (Q)=rii(q) Ui(Q) (2.29)

Now we consider an ensemble average ' of10,13

6"(lk„lk„')over the impurity sites, which is defined as

( 6"(lk,lk,') )

FIG. 2. Diagram representing the impurity scattering, which
is obtained by taking an ensemb1e average over the impurity
sites.

f d dRRp dR~, G "(Ik„lk,)'
(L„LyL, )

' U,"(R)=—g Ui{Q)exp( —jQ R} .
Ve (2.34)

=6"(lk, )lk(k, —k,') . (2.30) Then we obtain

S(mi, mz, . . . , mz)

where

GR I 8

G(lk„) „

Here L„and L, are the well widths in the y and z direc-
tions, respectively, assuming a wire structure with the rec-
tangular cross section and the integrals are taken only
over the layer where the impurities are distributed; in this
paper this layer is considered to be just the well. The last
step of Eq. (2.30) represents the fact that the space unifor-
mity which is lost under the random distribution of the
impurities, is restored under the averaged distribution giv-
ing the momentum conservation k„=kx.

For convenience we define q such that the periodic
boundary condition should be satisfied for a wave
exp(jq. r) at both boundaries of the doped layeri. e,., the
well. Then we have q„=2m n„lL„and q, =2rrnxlLx with
n„and n, as integers. We should take V=L„L„L,and
we obtain

—f dR, exp(jQ, .R„)=(d},(Q, )
1

V
(2.31)

for Q, which is a sum of an arbitrary combination of Q's
picked out from Q[,Qz, . . . , Q . After taking the en-
semble average by noting h(Q} in Eq. (2.14), 6"(lkx,ai) is
given as a sum of all the diagrams whose typical example
is shown in Fig. 2. The diagram in this figure represents
a term

Hm=—1
(2.35)

and the final expression for S is

S(m [,m z, . . . , mi) )

fj f dR[Uf(R)Gg(lk, )]
Go(lkx) )k=i

(2.36)

r' uI r' U; x,r—r' (2.37)

This result evidently means that Ui'(R) is the potential at
an impurity position R due to an electron in the we11.
Equation {2.37) in combination with Eq. (2.36} is of cen-
tral importance in all the discussions above.

As for the electron-electron interaction we consider the
Coulomb term. The self-energy as shown in Fig. 3 is con-
sidered and we obtain, as is done in Ref. 11 for 3DS's,

2 Are , rii(q. }}'ii( q.}-
iq eo(q +

where ni is the impurity concentration n;=¹lV On th. e
other hand we have

1
Ui'(R) =—g yii(q) Ui(Q)exp( —jQ R)

V q

=—g f dr'
~
ui(r'}

~
2U;(Q)

V q

Xexp[ —jq x —jq (r—r')]

RRp - .R

JN

&(Q, +Q,+ -+Q ) g —U, (Q„) .
V

(2.33)

X f d l doGm(l'nq„co)O( ),do

(2.38)

Let us define where 8(do) is the Fermi-Dirac distribution function at an
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U (Q)

z A,
2

IzI g q2+ 2 11

4n.n;y— 3

(2.47)

(2.48)

FIG. 3. Diagram representing the Coulomb term of the
electron-electron interaction.

The integral of Eq. (2.45} comes from the integral

~

~

~

~ ~

dR . , which is transformed into Ai,fdt, fdt
with dt=dt»dt, . We have defined t »=& and t=A.r.
h(t„t) comes from Eq. (2.37) and is the potential at an
impurity. The integral over t, i.e., r, in g(g) means
averaging the contribution of this potential over the iin-

purity site. It can be shown that we have ImG "(Q)
%0 only in the range Q & y. From Eq. (2.43) we obtain

~ ~ ~

~

~ ~

~

~

dQImG "(Q)=—m. which is used for correcting
numerical error in a practical calculation.

The inverse screening length is calculated approximate-
ly by assuming that the screened potential of a point
charge in a well is spherically symmetric. This is a good
approximation under A,

' «L» and L,. Actually, this in-

equality holds only roughly in some cases of practical in-
terest but an estimation shows that the above approxima-
tion is good. We use the Thomas-Fermi approach, giving

energy ai. On the other hand, the DOS p(ai) is given by
f dtop(a)) 8(to),4me d

&p dc'
(2.49)

p(to) = — g ImG "(1'q„,to) .
nV t,

Then we obtain"

—Znt ——f drop(to)e(co) .

(2.39)

(2.40)

Restricting the discussion hereafter to the cases of suffi-
ciently low temperature where almost all the electrons are
in the lowest subband, we obtain

4ire2Zn;
',

I 7'lil, (q) I

'
z eo{q +A2}

where I i denotes the lowest subband.
For facility of the numerical calculation, we neglect the

exchange energy. In fact, an estimation shows that the ef-
fect of this energy is significant but not so important.

With the use of Eqs. (2.36), (2.37) and (2.41), the calcu-
lation of 6"(lk»~) is performed in perfectly the satne
way as in Ref. 11. We finally obtain

(m'a )' (L„L,) n; )1. (2.50)

This shows that the present approach is useful for a
light-mass band under heavy doping.

For practical calculations in Sec. III, we assume a sim-
ple model that we have

where p(c0) is calculated from Eq. {2.39). In practice, Eq.
(2.49) is solved for A. noting that p(t0} depends on A, .

Now the criterion for the applicability of the present
approach is discussed. We have used the assumption that
the potential change within one wavelength of a quantum
particle should be sufficiently small, i.e., 2n.A/

I k„ I
«1.

As for k„we take a typical value k» giving the Fertni
level in the unperturbed band. Actually, the requirement
2nAI

I
k,

I
«1 seems to be too strong and we may use

2n A/(4kF ) «, 1 instead. Considering degenerate statistics
and the unperturbed subband, we approximately have
A, =4/[ttatt(L»L, ) nt] with att as the Bohr radius
ii) eo/(nt 'e ). We also use kF —L»L, nt. The cr—iterion is

6"(lk,a)) = 2 6 "(Q),
Iz Ie2A,

6 "(Q)=—.f dgexp[jgQ+yg(p],

(2.42)

(2.43)

may ml z
ut(r)=, sin " sin (2.51)

for 0&y &L„and 0 &z &L, and ut(r} =0 otherwise with
energy

(2.44) m'l» m'I

Et(k )=, k2+
2m' "

Ly
(2.52)

as measured from the unperturbed band edge. Here 1„
and l, are integers larger than zero. The above model is
applicable to the case where the well depth is infinite.
With the use of Eq. (2.52), we ex;unine a criterion under
which the intersubband interaction is negligible. A spatial
average of the impurity potential (A, I ) is given by

(2.45)

(2.46}

EpQ= [co Et(k»)], —
Iz Ie2A,

g(g)= f dt f dt (exp[ —jgh(t„t)] —1I jga, —
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trl»n.l»
Irll(q)l'= ~(e») —

2
~ tl»+ L

+~ e»
—

L

Ze A,y/eo. The absolute magnitude of this value must be
much smaller than at least the energy difference between
the edges of the subbands with (l», l, ) =(1,1) and (1,2) for
the lowest and the first excited subbands, respectively, as-
suming L» =L, for simplicity.

With the use of A, =4/[maa(L»L, ) n;] we obtain the
criterion

~

Z
r n; (L»L, ) ((6 and we tentatively give

r
Z

~
n;(L»Lg) (1 . (2.53)

The relations (2.50) and (2.53) give the range of n; and
L„L, where the present approach is useful.

From Eq. (2.51) and the restriction of q imposed just
above Eq. (2.31), we obtain

0
E
O

QlDS
GaAs
0 K

ni =4xlo' cm
/ r

rl

r

I

1 trl,
X 4(q) ——b q + (2.54)

0
0.4 0.3 0.2 O. I

1 A,c=1+
2

+ +
'2

1

+4
A, + +

L» Lg

From this relation, a in Eq. (2.47) is calculated to be

(2.55)

(eV )

FIG. 4. DOS's for the unperturbed (dotted line) and the per-
turbed (solid line) lowest subband as functions of energy mea-
sured from the unperturbed subband edge under L
(=I.~=I.,)=60 A; nI ——4X10"cm ' is used for the perturbed
subband.

(dashed lines) and the perturbed (solid lines) band are plot-
ted for n;=4X10' cm . Especially for the Q2DS we
have considered the lowest subband under the well width
60 A. It is seen that the modification is stronger in a
lower dimensional structure. One reason is that the im-
purity scattering effect is larger on a lower energy particle

III. RESULTS AND DISCUSSIONS

The theory in Sec. II is applied to a single quantum well
made of n-type GaAs at 0 K, whose conduction band is
considered. Material parameters used are the effective
mass 0.067 in unit of the electron mass in vacuo and
eo 13.18. We con——sider hydrogenic donor impurities with
Z= —1 doped in a well region. The impurity concentra-
tion satisfying the criteria given in the preceding six:tion
should fall in a range 67(L„L,) +(n;((L»L, )
with L„and L, given in cm. However, for the sake of
qualitative understanding the following calculations also
include the cases of n; outside the above range. All the
calculations hereafter are done for the case of L„=L,
( =L ) only and for the lowest subband only.

Figure 4 shows the DOS's for the unperturbed (dashed
line) and the perturbed (solid line) lowest subband
(l» =l, = 1) under L =60 A as functions of energy oi mea-
sured from the unperturbed subband edge. The calcula-
tion for the perturbed subband has been done for
n; =4&10' cm . It is seen that the impurity doping
not only gives rise to the band tail at the lower energy side
of the peak but also pushes the peak up toward a higher
energy. The modifications of the intraband states are seen
also in the cases of a Q2DS and a 3DS, as shown in Figs.
5 and 6, respectively. Here the DOS's for the unperturbed

I

4
IF

3

Q2 DS

GoAs

0 K

x)O'ecrn'

0
O. l 0.05 -0.050

(eV)
FIG. 5. DOS's for the unperturbed (dotted line) and the per-

turbed (solid line) lowest subband in a Q2DS as functions of en-

ergy measured from the unperturbed subband edge under the
well width 60 A; n;=4X10' cm is used for the perturbed
subband.
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QUADS

GaAs
0 K

Q/DS
Go As 0 K

L= 60 A

n = Nx lO' cm ~

0
0. I 0 05 0 -0.05 -0.I

ti) (eY)
FIG. 6. DOS's for the unperturbed (dotted 1jne} and the per

turbed (soM Hne} band in a 3DS as functions of energy mea-

sured from the unperturbed band edge; n~
——4X 10' cm is

used for the perturbed band. 0
0.4 0.3 0.2

and the DOS at the edge of the unperturbed band is larger

in a lower dimension structure, i.e., zero for a 3DS, finite

far a Q2DS, and infinite for a QlDS. Another reason is

that the screening is weaker in a lower dimension struc-

ture for the cases as considered in Figs. 4—6, i.e., a given

carrier concentration and a given well width. In fact, the

inverse screening length A, is calculated to be 1.54X 10,
and 2.41 X 10s, and 2.50X 10s cm ' for the cases of Fig. 4

(Q1DS), 5 (Q2DS), and 6 (3DS), respectively.

In the following we consider only the perturbed band

for Q1DS's. Figure 7 shaws the DOS for the lawest sub-

band as a functian of energy measured from the unper-

turbed subband edge with n& as a parameter for L =60 A.
With increasing impurity concentration the peak of the

DOS shifts toward a higher energy very rapidly together

with the reduced height and the broadened width. The ra-

pid shift of the peak is due largely to the rapid decrease of
the inverse screening length A, with increasing n;. In fact
we have A, =2.16X10 and 1.38X10 cm ' far

n; =2X10" and 5 X 10"cm-', respectively. The shift of
the DOS peak corresponds to that of the peak of
—ImG "(0) as shown in Fig. 8. It can be shown" that
—Im6 "(0) is cut off at 0=y (=4mn;/A—) The pe, ak. of
—lmG "(0) is located a httle below this value and the

DOS peak is nearly at co =( —Ze A, /eo)y (Z = —1 here) as
measured from the unperturbed subband edge. It should

be noted that Zeik, /coy is just the spatially averaged

electron-impurity interaction which is equal to the minus

of the spatially averaged electron-electron interaction.
The electron-impurity interaction pushes the DOS peak

up toward a higher energy and broadens the width of the

peak toward a lower energy region, as is seen in Figs. 7
and 8.

Figure 9 shows the DOS for the lowest subband as a
function of energy measured from the unperturbed sub-

b:md edge mth I. as a parameter under n;=4&(10'
cm . It is seen that the DOS approaches that for the un-

4J (eY)

FIG. 7. DOS for the lowest subband as a function of energy

measured from the unperturbed subband edge with n; as a pa-

rameter under L {=L„=L,) =60 A.

pe«rbed subband as the well width is dix;reased.
~easo~ is that for a smaller well width the electran-
electron and electron-impurity interactions become small
with decreasing width due to increased A, . In fact, we
have A, = 1.13X 10 and 3.47 X 10s cm ' far 1.=70 and 4()
A, respectively.

The relative impartance of the DOS shift with respect
to the growth of the band tail increases for a lower dimen-
sion structure, as is seen by comparing Figs. 4, 5, and 6.
For example, in a 3DS only a small modification of the
intraband DOS is observed with clear appearance of the
band tail, as is in contrast with the cases of a Q1DS and a

N& 3

Q/DS
6aAs 0 K

L=GOA
n~= NxiO crn

l5 20 30

FIG. 8. —Im 6 "{0}for the lowest subband as a function of
Q with n; as a parameter under L ( =L~ =L, )=60 A.
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n =4x lO'8cm'
I

I
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0
0.4 0.2 O. I

(d (eV )

FIG. 9. DOS for the lowest subband as a function of energy

measured from the unperturbed subband edge with L

(=L~=L, ) as a parameter under n;=4)(10"cm '.

1
P' '=2

L,,L„
(3.1}

I

On the other hand the Fermi level roF at 0 K is

Q2DS. A rapid shift of the DOS peak with variation of
n; or L in a Q1DS is ascribed to the strong dependence of
the inverse screening length A, on these parameters. Since

the Fermi level roF is at a high energy for n; under con-

sideration, roF and A, are found to be given nearly the same

values as those for the unperturbed band. In this approxi-

mation, the DOS at an energy ro measured from the un-

perturbed subband edge is given for sufficiently large to by
' 1/2

2m 1

~to

we then have

2

rratt(LyLs} nt
(3.4)

From the above equations we notice the remarkable facts
that X decreases with increasing Fermi level or increasing

doping level and that A, is a rapidly decreasing function of
the well width. The value of ( —Ze A/eo)y, which is a
measure of pushing the DOS up toward a higher-energy

region, is proportional to n;(LyL, } for a Q1DS, to n;L
(L being the well width) for a Q2DS, and to n /3 for a
3DS. Thus the dependence of the shift on the impurity
concentration and the well width becomes important for a
structure of lower dimension.

Because of the strong dependence of the peak height

and position of the DOS on n;, large elevation of the Fer-
mi level is caused by the doping in a Q1DS. For example,
the Fermi levels for n;=4X 10's cm are calculated on

the perturbed band and the unperturbed band to be 0.3
and 0.12 eV, respectively, as measured from the lowest

subband edge. On the other hand, the Fermi levels are
nearly the same for both bands in a 3DS.

The situations discussed above, under the impurity dop-
ing may be nearly the same as those under high injection
of electrons and holes since the holes are considered to
scatter electrons in nearly the same way as the ionized im-
purities. A typical example is a wire structure laser. In
addition to a well-known expectation that this laser can be
operated under low threshold current with small sensitivi-
ty to temperature variation, a short-lasing-wavelength
operation is expected under high injection and/or high
doping due to large elevation of the Fermi level as dis-
cussed above. Strong dependence of the emission wave-
length of a light-emitting diode on the injection level and
the doping level is also expected. In those light-emittin~
devices above, carrier concentrations around 10' cm
under the well widths from 50 to 100 A may be typical
operation conditions. These conditions almost satisfy the
criteria (2.50) and (2.53) under which the present theory is
useful. The Q1DS devices are attractive for both practical
and academic purposes. Unfortunately, however, there
seem to be few attempts's to fabricate such structure at
the present stage.

toF ——,(nLyLsn; )
2@2

With the use of

p(toF )
4me

t-'o

(3.2)

(3.3)
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