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by use of an anisotropic model potential

S. Saito
Fundamental Research Laboratories, XEC Corporation, Miyazaki, Miyamae-ku, Kauesaki, Kanagaue 213, Japan

and Institute for Solid State Physics, Uniuersity of Tokyo, Roppongi, Minato ku-, Tokyo 106, Japan

S. Ohnishi
Fundamenta/ Research Laboratories, NEC Corporation, Miyazaki, Miyamae-ku, Kawasaki, Kanagama 213, Japan

S. Sugano
Institute for Solid State Physics, Uniuersity of Tokyo, Roppongi, Minato ku, To-kyo 106, Japan

(Received 13 December 1985)

A new nonspherical symmetrized potential model for the study of the cohesive properties of co-
valent systems is presented. The model suitable for microclusters of the sp3 atoms is applied to
determine the stable structures of group-IV microclusters of 2 to 20 atoms. The resulting structures

are classified into two groups: crystalline and amorphous types. The crystalline-type structure has

six-membered rings and the amorphous-type structure four- and five-membered rings. The pair
distribution functions of the crystalline and the amorphous types correspond to the radial distribu-

tion function of the crystalline and amorphous germanium, respectively. From the binding energies

per atom, magic numbers of the crystalline-type group are found to be 6, 10, 14, and 18, while those

of amorphous-type group are 5, 10, 12, 16, 18, and 20.

I. INTRODUCTION

Recent experiments of time-of-fiight mass spectra of
microclusters have revealed the presence of magic num-

bers of the cluster size. ' s It is of great interest to under-
stand the origin of the magic numbers from the analysis
of the binding properties of microclusters.

Stable structures of model clusters such as those com-
posed of atoms interacting by a two-body central force,
for example, the Lennard-Jones force, have been well stud-
ied. 6 The calculated structures and binding energies have
betm applied successfully for rare-gas clusters. However,
covalent clusters have scarcely been studied in this way
because of the complicated nature of covalent bonds.

In this paper, we report a new model-potential study of
the covalent microclusters, which are composed of the
sp -hybridized atoms. In our model, each atom has four
attractive centers which form a regular tetrahedron. Our
potential is so constructed that the interaction energy de-
pends upon the relative orientation of the anisotropy axes
of two atoms. Our potential is, however, unable to take
into account a deviation from the sp bonding which may
be caused, for instance, by the interaction between the
d'mgling bonds. Hence, our model is expected to express
the properties of the silicon and germanium clusters rath-
er than carbon clusters, which can have sp - and sp-
hybridization characters as well as sp . It will be dis-
cussed that the model potential is useful in finding the
stable structure of the first approximation.

To find the stable structure, we minimize the total ener-

gy by rotating and translating atoms according to quasi-
Newton ntthod. The calculated stable structures being

found tend to have four-, five-, and six-membered rings.
We have classified them into two types, according to a
characteristic feature of the pair distribution functions,
which may be compared with the radial distribution func-
tions of a crystalline and an amorphous germanium.

The magic numbers of our model clusters have been de-
rived from the plot of the binding energy per atom against
the number of atoms. The calculated magic numbers
resemble those of Si„+and Ge„+clusters determined ex-
perimentally. "'

II. MODEL POTENTIAL

To express the tetrahedral-coordination property of the
covalent interaction between sp -hybridized atoms, we in-
troduce the following model system. In our model, each
atom is not a material point, but has a certain structure.
The four "attractive centers, " which constitute a regular
tetrahedron, are located around each atom (Fig. I). The
attractive center of one atom tends to attract other atoms.
This tendency, combined with short-range repulsive force,
is not, however, a sufficient condition for atoms to have
tetrahedral coordination. It is desirable that when the ith
atom sits on one of the attractive centers of the jth atom,
the jth atom also sits on one of the attractive centers of
the ith atom. This restriction excludes the possibility for
atoms to have coordination numbers more than four.
This corresponds to the situation of the ith and the jth
atoms sharing a covalent bond.

These desired charactetx of the atoms can be realized by
the following model potential for the interaction, which is
divided into two terms, namely, the attractive one and the
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FIG. 1. Potential-energy curves of the dimer as a function of
interatomic distance r when p=0. 8, a =0.7, and b =0.5. The
two large circles are atoms and the eight small circles are their
attractive centers. Curve (a) is for the case when the attractive
centers of both atoms are directed to each other, while (b) is for
when they are directed opposite to the other atom.

repulsive one. The attractive part of the interaction bears
the nonspherical part of the model atoms:

U„~(r)=e "Ji'/r, (2.5}

where r is the interatomic distance and p is the parameter
representing the range of the repulsive potential. The
numerator of U„p(r) has the Born-Mayer form, and the
denominator makes U,~(r) infinite at r ~0.

Finally, the total energy of the system is given as
nE„=g U(rz, a;,aj), (2.6)

The scale of length of our model system is given by

~ d,z ~

=@3, which is to be interpreted as the covalent
bond length, for example, 4.4. a.u. for silicon clusters, in
considering the real system. It can be seen from (2.3}that
the value (IJ/a) gives approximately the energy gain in
making a bond, while O'J gives the effective range of

The repulsive part of the interaction mainly comes
froin the overlap of the core-electron clouds, and the
Born-Mayer potential is often used to represent it. The
Born-Mayer potential, however, is unfavorable for the
structural simulation, as it remains finite when the inter-
atomic distance close to zero. Hence, for the repulsive
part of the model potential we adopt the Yukawa poten-
tial:

URTT(rgJ a;,aj )= Fij(r J,a;—)FJ;(r,;,a~ ) g 1} where n is the number of the atoms and

where rij is the position vector directed from the ith atom
to the jth atom and a; are Euler's angles, representing the
rotation of the attractive centers of the ith atom. The
value Fij depends on the distances from the jth atom to
four tetrahedral attractive centers of the ith atom,

Fg, «IJ o}=f (
I rgi di i I

—}+f( I rij —dg z I
}

+f(
I rgj dg3 I

}+—f( l «J —di41}

where

f(r) =

b/(ran+a),

and

(2.2)

(2.3)

d;i ——(1,1,1),
d;z ——(1,—1,—1),
dg3 ——( —1, 1, —1),
dg4

——( —1,—1, 1) .

(2.4)

Vectors d;~'s (p =1,2, 3,4} for a;=0 represent the posi-
tions of four attractive centers associated with the ith
atom at the origin. These centers are rotated around the
origin by angle a; for u;&0. When the jth atom sits on
one of the four attractive centers of the ith atom, the cor-
responding f of four f's in (2.2), then FJ takes the largest
value. Hence, U,«, the product of I';. and F;, becomes
largest only when both the ith and the jth atoms sit on
one of the attractive centers of the other. Therefore, the
desired situation is energetically preferable in the sym-
metrized product form (2.1). On the other hand, when
rJ »1, U,« is proportional to r&, analogously to the
dispersion force.

U(rij, a;gaj)= «g( gjg i j}+UTBp( ij} (2.7)

IH. STRUCTURE OF THE CLUSTERS

The stable structure of our model at T =0 K can be
found when the total energy takes the minimum value.
To find it numerically, we have adopted the quasi-Newton
method and calculated the stable structures of clusters for
2&n &20. In the actual calculation, n —1 atoms are
translated and rotated so as to minimize the total energy
and the position and the direction of the remaining one
atoin are fixed throughout the calculation, corresponding
to the exclusion of the translation and the rotation of the
whole system.

We have examined two different sets of parameters:
one set is that p=0.8, a =0.7, and b =0.S, and the other
is that p=0.8, a =0.3, and IJ=0.45. The potential-
energy curve, using the former set, is smooth from the
repulsive to the attractive regions (Fig. 1), while the at-
tractive region of the potential-energy curve with the
latter parameter set becomes narrower, and the curve
slightly uneven in comparison with Fig. 1(a). However,
the results obtained by two different parameter sets are al-
most the same. The reason for this is that only the static
stable structures are considered in our calculation. The
dynamical properties, for example, frequencies of the lat-
tice dynamics, melting temperature, etc., may be very sen-
sitive to the parameter values. Here we present the results
with p=0. 8, a =0.7, and b =0.5.

Depending on the initial configuration, the different
stable structures for the same n are found when n &5.
The calculated structures tend to have four-, five-, and
six-membered rings. The clusters with only six-membered
rings are found for n =6, 7, 8, 10, 11, 14, 1S, 18, and 19,
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FIG. 4. Absolute values of the total energy vs the number of
bonds. Plotted values are the total energies divided by Eq,
%vhich is —0.542.

and have structures similar to partial frameworks of the
diamond lattice. Including the clusters of n =2, 3, 4, and
5, the structures of this series are shown in Fig. 2. The
pair distribution functions (PDF's) of this series coincide
well with the radial distribution function (RDF) of the di-
amond lattice (Fig. 3). PDF of the n =19 cluster in Fig.
2 has peaks at exactly the same positions as those of the
experimental RDF peaks of crystalline germanium. So,
we call this series the "crystalline series. " The total ener-

gy of this series is plotted against the number of the bonds
in Fig. 4. The total energy is almost proportional to the
number of the bonds. Hence, our tetrahedral potential
madel is consistent with the bond-energy concept, which
is known to be applicable to the covalent bonds to the first
approximation.

The other series, clusters with mainly four- and five-
membered rings, have the structures resembhng partial
frameworks of the stable structure of the cluster with 20
atoms, which is a regular dodecahedron (Fig. 5). When
n (20, the lack of one atam from five-membered rings
gives rise to four-membered rings. PDF's of the clusters
af Fig. 5 are shown in Fig. 6. On the other hand, the
RDF of amorphous Ge has the peaks at 1.0, 1.6, and 2.45
(shown together with the PDF of n =20 at Fig. 6). The
characteristic feature of the RDF's of amorphous Si and
Ge is the absence of the third peak of the crystalline phase
(the peak at 1.9). As the PDF of a dodecahedron ( n =20)
clearly shows, PDF's in Fig. 6 alsa lack this peak. So, we
call these clusters the "amorphous series. " The bond an-
gle of the regular dodecahedron is 108', which is nearly
the same value as the crystalline ane, i.e., 109'. We have
found that the energy loss of the distortion to make five-
membered rings is very small if we use our parameter
values far p, a, and b. On the other hand, the number of
the rings of the amorphous series is the same or more
than that of the crystalline series of the same size n. This
makes the total energy of the amorphous series lower than
that of the crystalline series.

In the ainorphous series, the competition between the

energy loss by the distortion and the energy gain due to
the increase of the number of the rings depends upon the
values of the potential parameters. We have investigated
such a competition and found that the crystalline series is
more stable when b is very small, for example, b =10
while b/a =1. This comes from the fact that the parame-
ter b determines the range of the attractive part and the
energy loss of the distortion of the bond angle fram 109'
to 108' is large for the potential with a sharp minimum.

e„=)E„)/n, (4.1)

against n for both crystalline and amorphous series in Fig.
7.

In the amorphous series, the value of e& is almost the
same as that of s6 but greater than s4. Also, cia, siq, ei6,
sis, and s20 are local peaks. Hence, the magic numbers of
this series are 5, 10, 12, 16, 18, and 20. In the same way,
those of crystalline series are found to be 6, 10, 14, and 18.

V. DISCUSSION

The calculated stable structures have a tendency to
form connected rings. As mentianed before, our
tetrahedral model potential is based on the bond-energy
concept. Therefore, the cyclic structure having an addi-
tional bond, as compared with the chain structure, turns
out to be more stable.

The correspandence between the PDF of a regular
dodecahedron and the RDF of an amorphous Ge is
noteworthy. When the structure of the amorphous Ge (or
Si) is considered as that obtained by rearranging the pair
bonds of the diamond structure, s seven-membered rings,
as well as five-membered rings, are expected to appear.
However, aur results suggest that the five-membered ring
is the main local structure of the amorphaus Ge, and
especially of the hydrogenated amorphous Ge. It can be
seen from the plot of e„in Fig. 7 that the structures with
five-membered rings are more stable than those with six-
membered rings, although the former cannot farm long-
range order. Hence, the amorphous Ge, which has only
short-range order, is likely to include the five-membered
rings.

According to the appearance of two series of stable
structures, the amorphous and the crystalline series, the
magic numbers of our model are obtained for each series.
In the amorphous series as shown in Fig. 5, the number 5
corresponds to a regular pentagon, while 10 and 20 corre-
spond to half of and the whole of a regular dodecahedron,
respectively. The structure of n =12 has four loops as

&. MAGIC NUMBERS

The cluster sizes, n, corresponding to the peaks of
time-of-flight mass spectra, are called magic numbers.
The corresponding clusters are thought to have relatively
large binding energy per atom. To find the magic num-
bers of our model, we plot the binding energy per atom
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FIG. 5. Calculated structures of the clusters consisting of mainly five-membered rings.
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does that of n =13. The other peaks, 16 and 18, come
from the mixing of four-membered rings. In the crystal-
line series, the magic numbers are 6, 10, 14, and 18, which
have period 4. When the pyramidal cluster consisting of
four atoms sits on an equilateral triangle of the atoms of
the (111)surface of diamond structure, as seen in the for-
mation of n =10 (adamantene structure) from n =6 (cy-
clohexane structure) of Fig. 2, the number of rings in-
creases by three and, the number of bonds by six. The
period of magic numbers, 4, comes from this large in-
crease in the number of bonds. It is interesting to note
that the pyramidal cluster of four atoms is the same as
that found in the reconstruction model of the Si(111)7X 7
surface

In our model calculation, we have used the potential-
parameter values which are not specified for any element
of group IU. Our results on the structure and the magic
numbers would be applicable to any sp3 microclusters as
far as the bond-energy concept is valid. One experiment
on C„+clusters" has shown that the magic numbers are
3, 5, 7, 10, 14, 18, and 22, and another experiment, 3, 11,
15, 19, and 23. Our result of the crystalline series is closer
to the former. The period of 4 of our magic numbers is
found in both experiments. Some disagreements might be
attributed to a deviation from the sp bond.

The experiment on Si„+clusters has also been done
and the magic numbers obtained are 6, 10, and 16, which
are also close to those of our crystalline series. The magic
numbers of Ge„+have been found to be 6, 10, 14, 15, 18,
and 22. This also supports the crystalline series of our
model. The difference between C and Si (Ge) clusters
may come from the sp o-bond and the m-bond properties
of C atoms as found in graphite. It is reasonable that the
calculation by the use of our model potential better simu-
lates the properties of Si and Ge clusters.

The magic numbers of the amorphous series, 10 and 16,
are also observed in Si„+clusters. However, the impor-
tant peaks of 5 and 20 are missing in the experiment. The
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absence of the amorphous series in the experiment might
be due to the experimental condition for creating the ini-
tial clusters. It would be interesting to examine the
change of the magic numbers by changing the conditions
for creating initial clusters, for example, by using amor-
phous silicon.

The dangling bonds of the n =5 cluster of the amor-
phous series are directed outward from the cluster and
will have weak interaction between them, on the other
hand, the n =6 cluster of the crystalline series has two
sets of three dangling bonds parallel to each other, i.e., the
dangling bonds of the (111)surface of the diamond struc-
ture. These d~agling bonds will interact with each other
strongly and the equilateral triangle of the (111)-surface
atoms contracts to attain a larger n-bond stabilization. '~

Then, the cluster can achieve relatively large energy gain
by the reconstruction. This reconstruction mechanism
might make the crystalline series more stable, as shown
experimentally.

Our tetrahedral model potential, taking into account

the main characteristics of the sp bonds, is very powerful
in presuming the stable structures and the total energies of
microclusters because of its simplicity. However, the
model takes no account of a deviation from the sp bond
which may be caused by the interaction between the dan-
gling bonds. Such a deviation has been shown to play an
important role in giving the actual structure of Si micro-
clusters. ' Even in this case, the structure can be under-
stcxxl as a reconstructed form of the initial sp structure,
which can be calculated by using the model potential
presented in this paper.
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