
PHYSICAL REVIE%' 8 VOLUME 33, NUMBER 10 15 MAY 1986

Relation between electroabsorption in bulk semiconductors and in quantiun wells:
The quantum-confined Franz-Keldysh effect
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We evaluate the interband optical absorption of a semiconductor quantum well in the presence of
a uniform electric field perpendicular to the layer and neglecting excitonic effects. We show that
this formally becomes the Franz-Keldysh effect in the limit of an infinitely thick layer. When the
potential drop across the layer is small compared to the confinement energy we obtain behavior

qualitatively different from the bulk Franz-Keldysh effect and we explain this in terms of a
quantum-confined Franz-Keldysh effect; with increasing field we demonstrate numerically for a
GaAs-like semiconductor that we recover Franz-Keldysh-like behavior, once the originally "forbid-
den" quantum-we11 transitions become strong. Our discussion gives an alternative physical picture
for the Franz-Keldysh effect, including a simple explanation of the Franz-Keldysh oscillations.

I. INTRODUCTION

Recent studies of electric field dependence of optical
absorptian (electroabsorption) in quantum-well structures
have shown effects qualitatively different from those ob-
served in bulk semiconductors. ' The quantum-well ef-
fects have been successfully explained as a quantum-
confined Stark effect (QCSE).' This effect is so dif-
ferent in character from the effects seen in bulk material
(such as the Franz-Keldysh effect ) that the relation be-
tween the two has not been obvious. In this paper we
demonstrate theoretically that, at least in the simplest ap-
proximation where excitanic effects are neglected, the two
are fundamentally related. This gives an alternative pic-
ture for the Franz-Keldysh effect, and shows that, when
excitons are neglected, the quantum-well effects can also
be viewed as extreme quantization of the Franz-Keldysh
effect

Franz3 and Keldysh independently proposed the ex-
istence of an electric-field-dependent absorption "tail" in
bulk semiconductors, commonly explained as photon-
assisted tunneling of electrons from the valence to the
conduction band. Later workers (see, for example, Dow
and Redfield, and Merkulov and Perel ) noted that any
full description of such an interband optical absorption
should include the effects of the Coulomb interaction of
the electron and hole. This results in exciton resonances
and enhancement of the optical absorption above the opti-
cal band gap with no applied field. With applied field,
the first consequence is a broadening of the exciton ab-
sorption line, together with some small shift of the exci-
ton resonance to lower photon energies. At low fields,
these effects can be viewed, respectively, as lifetime
broadening of the exciton due to field ionization, s and as a
Stark shift of the ground (1S) state of the exciton, con-
sidered as a hydrogenic system, although this latter shift
is relatively small ( & 10% af the exciton binding energy)

before the resanance effectively ceases to exist. 6 At high
fields and at photon energies not too close to the band-gap
energy, the simpler Franz-Keldysh effects are recovered in
the limit. ' This theory provides a relatively com-
plete description of electroabsorption, including excitonic
effects, in a bulk semiconductor.

Investigations of electroabsorption near the optical
band gap of quantum-well structures show qualitatively
different electroabsorptive behavior for fields perpendicu-
lar to the layers. 'z'9 (The behavior for fields in the plane
of the layers is qualitatively similar to that seen with bulk
semiconductors. ) Specifically, in GaAs/Al &,GaAs
quantum wells with layer thicknesses of the order of
100 A, electric fields applied perpendicular to the layers
result in large shifts in the optical absorption to lower
photon energies, with the exciton resonances remaining
well resolved. The shifts in exciton energy can be as
much as 4 times the exciton binding energy, with little or
no broadening so far resolved These e.ffects have been ex-
plained in terms of the Stark shift of a strongly confined
hydrogenic system [QCSE (Refs. 1 and 2)]. The excitons
are not field-ionized because, (1) the electrons and holes
do not tunnel rapidly out of the wells, and (2) even when
the electrons and holes are pulled to opposite sides of the
layers, there is still a strong Coulomb attraction between
them because the layers are so thin. Independent calcula-
tions by Brurn and Bastard' arrived at essentially similar
conclusions. It is important in the calculations in the
qiumtum well case that the confinement is strong, i.e., the
exciton binding energy is small compared to the separa-
tion between the quantum-confined subbands. This
means that the perturbation from the electron-hole
Coulomb attraction on the electron and hole wave func-
tions in the confinement direction can be neglected and
the problem can be separated. ' Because it is difficult to
treat the problem without such a separation, it is not easy
to make the connection between the quantum-confined
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problem and the bulk (unconfined} problem in the general

case with excitonic effects included. However, as we will

demonstrate below, a useful insight into the electroabsorp-
tion in both confined and unconfined cases can be ob-

tained by solving for the quantum-well electroabsorption,
neglecting the Coulomb interaction. Also, it is ~orth not-
ing that the energy shifts in the QCSE are largely dom-
inated by the shifts of the single-particle energies (as
would be obtained by neglecting the Coulomb interaction),
so this approach may be relatively useful in describing the
quantization of the energy spectrum, even if it does not
completely describe the absorption.

In Sec. II of this paper, we will present the formal
theory of electroabsorption in a thin slab, neglecting the
Coulomb interaction, and will demonstrate that in the
limit, as the slab becomes thick, we recover the Franz-
Keldysh absorption. In Sec. III, we will present illustra-
tive numerical results showing the transition between
strongly quantized electroabsorption and the Franz-
Keldysh effect. We will present our conclusions in Sec.
IV.

(Z+ and Z correspond to z;=+L/2 and L—/2,
respectively). Solving Eq. (4) gives the energies E;„. For
each E;„we may deduce

Ai(Z+ )

Bi(Z+ )

Ai(Z )

Bi(Z )

where

L/2 2

en Z hn'Z Z

to solve for the (unnormalized) wave functions.
Given these solutions E~„and P;„,we may now evaluate

the optical absorption or, equivalently, the imaginary part
of the optical susceptibility, ImX, to obtain

ImX =—g 5(E Eg —i}i'—k
~ ~

/2m E,„——Ei,„)I„„,C

k~~, n, n'

II. ELECTROABSORPTION IN A SLAB

where i =e ( electron) or h (hole), m; is the particular ef-
fective mass, F is the electric field, n indexes the nth con-
fined level with energy E~„, and P;„(z;) is the associated
eigen-wave-function. The + and —signs refer to elec-
trons and holes, respectively. We consider a slab of thick-
ness L with infinite potential barriers for electrons and
holes on either side, so we obtain the boundary conditions

L+—=0ln

where we choose the origin in the middle of the slab.
The solutions to Eq. (1) with boundary condition (2) are

Airy functions

P;„(z;)=a;„Ai(Z;„)+b;„Bi(Z;„)

with
' 1/3

2ml
(E;„+eFzg) .

(eAF)

(3)

Applying the boundary conditions gives the determinantal
condition for solutions

Ai(Z+ )Bi(Z )—Ai(Z )Bi(Z+ )=0

If we consider no interaction between electrons and
holes, then the eigenstates for electrons and holes can be
separately determined. We presume that the motion in
the plane of the layers (i.e., perpendicular to the field) is
still described by plane-wave propagation. For simplicity,
we assume isotropic, nondegenerate, and parabolic bands,
and will consider only one type of hole. For the motion
perpendicular to the layers (z direction) we have the
Schrodinger equations in the effective-mass approxima-
tion,

fi d
+eFz; P;„(z;)=E~„P;„(z;),

2m; dz;

X=X(R,R') =X(Ri,Ri,' R(~
—Rt))AX(R —R') .

Effects associated with this nonlocal behavior shall not
concern us here. For a photon wavelength larger than the
layer thickness, we may define a "quantum-well-
averaged" susceptibility

—J d3R I d3R'X(R, R')

which yields exactly expression (6), particularly the over-
lap integral (7).

For the case of a finite thickness of the slab, it will be
useful to rewrite (6}by performing the summation over k~~

to obtain

g «E Ez E.. Ea'}I-— — —CAg2g)

n, n

(8)

2iri% fp,„/ e

Am OE

In (6), E is the photon energy, Ez is the band-gap energy,
and k~~ is the electron-hole relative momentum in the
plane of the layers, 1/m =1/m, + I/mI, . In arriving at
Eq. (6), we make the usual assumptions of direct allowed
transitions with negligible photon momentum, and inter-
band matrix element p~ independent of k. A is the area
of the slab (giving a volume V =AL), and the other sym-
bols have their usual meanings. In what follows, we treat
C as a constant, as the variations in E will be small com-
pared to E.

One additional assumption in Eq. (6) is the neglect of
nonlocal response, an important point for quantuin-well
structures. In general, the optical susceptibility X is deter-
mined by the probability amplitude of finding the electron
and hole at the same (center-of-mass) site R. In layered
systems with no translational invariance perpendicular to
the surfaces,
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where 6 is the Heaviside function, 6(x & 0)= 1,
6(x &0)=0, and g2D ——m/2m1ri . Using (8), we may cal-
culate the absorption spectrum for any finite slab thick-
ness. %e will return to this in Sec. III. However, to es-
tablish the relation with the infinite slab (i.e., the Franz-
Keldysh effect) we will use Eq. (6), saving the sum over

kii for later.
Now, using Eqs. (1)—(7), we will evaluate the limit of

ImX as L~ oo. First we solve (4) in the limit of large L
to deduce E&„as a function of n. Using the asymptotic
expansions for Ai and Bi for large Z, "

so that the energies E~„can be deduced from

' 3/2

n = (2m;eF)'/2 —+ eF

and the density of states in energy becomes

1/2
ni;L

dE; mal eF

(10)

Ai(Z)=, /~exp( ——', Z'/ ) as Z~+ao,
2&~ Z'/' as L ~ oa (Henceforth we drop the index n, writing E;

instead of E;„.) Note that this density of states is constant
in E;. Incidentally, it is worth noting from (5) that the
fraction of the Bi Airy function in the wave function be-
comes vanishingly small in the limit as I.~00,' the wave
function is essentially the Ai Airy function, which satis-
fies the boundary conditions (2) with a node of its oscilla-
tory behavior at +L/2, and the exponentially decaying
behavior giving effectively zero (in the limit of large L) at
+L/2, where the upper (lower) signs refers to the electron
(hole).

Using (11},we may now replace the summations over n

and n' in (6}with inte rais over the ener ies E

81(Z) exp( 3 Z ) as Z~+ ao~~ Z1/4

Ai(Z)=, «sin( —,
'

~Z
~

/+m/4) as Z~ —ao,
m ~Z~'/4

Bi(Z)=,/4 cos( —',
~
Z

~

3/2+ m/4) as Z ~—oo,
i
Z

i

1/4

we obtain from Eq. (4), as L ~ ao,
3/2

sin (2m;eF) —+Le EEN

eF

(13)

g g
I

lim (Imp}=g lim —f dE, f dEg &(E —Ez —&k~~/2ni —E Ea)I.. —Oo aO dn dn' 2 (12)
eFL /2 — eFL /2—

II

The lower limit in the integrals is deduced from (10). Indexing with energies E, and Ez, rather than n and

n ',I„„=I(E„Eq). Therefore, using the constancy of dn IdE;,

dn dn' . 1 xi~+'FL/'
hm (ImX) =C g lim —f dEeI(E„E~~ E,)—

dE, de, L ~L
II

P (E;,z/)=Ai
2m eE E;

' 1/3

(14)

where E~~ E-Ez —1——)i k~~/2ni. The upper limit on the
integral is deduced from the 5-function argument in (12}.

To evaluate I(E„E~~ E, ) for large —L, we first neglect
the Bi function as discussed above, so the (unnormalized)
wave functions become

where we neglect the contribution from 0 to + L/2 as it
decays exponentially (considering explicitly only the elec-
tron signs for simplicity), giving a vanishingly small con-
tribution to the integral for large L. Substituting the
asymptotic expansion for the Ai function of a negative ar-
gument, we may evaluate I;(E;) in the limit of large L,
because those regions where the asymptotic expansion is
invalid make a negligibly small contribution to the in-
tegral. We obtain for large L

where the + ( —) sign refers to the electron (hole). The
normalization integral becomes, in the limit of large L,

I./2
I(Ei)=f

' 2/3
dn

dE; 2m;
(eF)1/2 (16)

' 1/3
0

2 2' I-eE
Ai Z — dZ,

eE
Now we must evaluate the overlap integral

4/2I,s(E„Ei )= P,(E„z)gz(E&,z)d—z

' 1/3
2'~ eF E~ —z Ai

eF

' 1/3
2m' eF EI,

+z dz.
eF (17)
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Using the integral representation of the Airy function, '

Ai(Z)= — cos —+Zt dt,
0

XAi
1t3 '

2@ieF ~e +Eh

fi eF
(18)

where M =m, +ms. This direct mathematical proof is
tedious and not very illuminating.

There is another mathematical proof of (18) that we
will not give in detail here. If we consider the pair of
equations (1) and transform them to relative and center-
of-inass coordinates (as is normally done for the Franz-
Keldysh case ), we then obtain two different solutions of
the same problem. Subjecting both solutions to the same
boundary conditions must give equivalent results. The
linear combination of particular separate electron and hole
solutians to (1) that corresponds to the solution in relative
and center-of-mass coordinates in an infinite medium is
essentially the integral (17), and the equivalence of solu-
tions leads to the result (18).

One important feature of the result (18} is that it de-
pends only on the sum E, +Et, and not independently on
E, and E~. In the solution in relative and center-of-mass
coordinates as I.~ 00, ' the center-of-mass motion is un-
perturbed by the field, and is zero anyway for states excit-
ed optically; only the total relative motion energy E, +Es
is relevant and thus I,s(E„Es)=I,s(E, +Es). In the
solution with individual electron and hole coordinates, as
performed in this paper, we first note an important prop-
erty of the solution (14): changing the energy E; only
translates the solution in the z direction. Therefore, if in
(17) we increase E, and decrease Es by the same amount,
the result is simply to translate both Ai functions laterally
in the same direction by the same amount. Hence there is
no change in the overlap integral (17) when the limits are
infinite. Consequently, again I,s(E„Ei,) depends only on
the sum E, +Es.

Our solution in z, and zs coordinates also gives insight
into the reasons for the existence of the Franz-Keldysh
"ascillations" on absorption (i.e., the "ripple" in absorp-
tion as a function of photon energy) above the band-gap
energy. For photon energies below the band gap, the
overlap of the electron and hole Airy functions (14) is
such that the oscillatory tail of one function overlaps the
exponential tail of the other; as the photon energy (and
hence the sum E,+Et, ) is varied, there is no oscillatory
behavior in the overlap. However, for photon energies
above the b'md gap, E,+Et, is positive and there is a re-
gion of overlap of the oscillatory tails. Varying this over-
lap (by varying photon energy and hence E, +Es ) results
in the Franz-Keldysh oscillations of the total overlap in-
tegral and hence the optical absorption. The characteris-
tic "period" of these oscillations (they are nat strictly

we have been able to evaluate the integral in (17} in the
limit of large I. to obtain

1/3
l

2~ Z2M eF

periodic) corresponds to the energy change b,E in E,+Es
required to move the Airy functions past one another by
one "cycle" [e.g., moving from the ith peak of one func-
tion coinciding with the jth peak of the other to the
(i +1}th peak of one coinciding with the (j+1)th of the
other]. In each case, a period corresponds to a change in
argument of order 1 so the characteristic energy is
6«-Eo =(eF—)i~i(fP/2m)'~ . With increasing photon en-

ergy, the oscillations average out because the Airy func-
tions are not strictly periodic.

Using Eqs. (16) and (18), we can now write Eq. (7) as

I Ict (Ee Es}
I

I,(E, )Ip(Ei) )

1
Ai

E2 dn dn'

dE, dEt,

E, +Eg
(19)

lim (ImX)=CQ Ai
eF

I.-+ co Eo
II

EQ
(20)

Transforming the sum to an integral we obtain

)(m ((mY)=CAg&D f, ,
(A((x)('dx .

L~co
(21)

This integral is evaluated readily using an identity derived
directly from the Airy differential equation~ to obtain, fi-
nally,

r

eF
lim (ImX)=CAgzn Ai

L -+co 0 EO

E
+ Ai'—

Eo

2

(22)

which is identical with the result for the Franz-Keldysh
effect. i Hence we have proved explicitly that the absorp-
tion between confined electron and hole states in a (per-
pendicular) field tends to the Franz-Keldysh effect as the
confined layer becomes thick. The perpendicular-field
elcetroabsorption in the thin slab, in this approximation
where electron-hole interaction is neglected, can therefore
be described as the quantum-confined Franz-Keldysh ef-
fect.

III. NUMERICAL RESULTS

The formal proof in the preceding section that the elec-
troabsorption of a slab of finite thickness tends towards
the Franz-Keldysh effect, in the limit as the slab becomes
very thick, does not indicate how this takes place or how
thick a slab is required for Franz-Keldysh —like behavior,
to some degree of approximation. To provide a qualita-
tive answer and to give a further illustration, we have cal-
culated the absorption directly from Eq. (8) [or from Eq.
(22}, in the case of an infinitely thick slab]. We choose a
nontrivial example, considering a simple but realistic

Now substituting (19} into (13), we note that I is a func-
tian only of E),),, which depends only on constants in-
dependent of E,. Hence we obtain

2
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semiconductor with single (nondegenerate} valence and
conduction bands with infinite confining potential barriers
and with parameters corresponding to heavy holes and
electrons in GaAs (i.e., ms ——0.34mo, rn, =0.0665mo,
where mo is the free-electron mass). This choice gives
some practical feel for the magnitude of the effects, and
the choice of masses that are not equal avoids accidental
coincidences in the transition energies, preserving a
unique energy for each transition. The results presented
here are all calculated for 10s V/cm. All absorptions are
per unit thickness, and neglect excitonic effects.

The calculations are performed by first solving (4) for
the set of energies E; up to some limit E for both elec-
trons and holes, and then deducing the fractions of Bi
Airy function from (5}. Then, the wave functions for
each state are normalized and all the overlap integrals I„„
are evaluated by direct numerical integration. Finally, the
transitions are ordered in energy and the absorption is cal-
culated from (8) up to a photon energy E,„, above the
zero-field bulk band gap. In performing the calculations,
it is natural to use dimensionless units z/L for length,
E/Ei; for energy, where Ei; is the first confined state in
a given band [Ei;——(i}1 /2m; )(n /L) ], and F/Fi; for field,
where eFi; corresponds to a potential drop of E„over the
well width L, i.e., Fi; pA /(2——m;eL ). The solutions
presented for, say, a 100-A slab at 10 V/cm are therefore
equivalent, for example, to those of a 1000-A slab at 100
V/cm, with the energy units reduced by a factor of 100.

In the Franz-Keldysh effect, the phenomenon that re-
ceived most attention is the tail induced in the optical ab-
sorption below the band gap (this was the only aspect con-
sidered in any detail by these original authors3 ). For the
comparison with the quantum-well case, where the optical
absorption even with field is often totally above the zero-
field bulk band gap, the oscillatory structure above the
zero-field bulk band gap is also important (i.e., the
Franz-Keldysh oscillations), and we start by considering
this region in detail.

In Fig. 1 we show the absorption at zero field [Fig. 1(a)J
and 10 V/cm [Fig. 1(b)] of a 100-A slab, a 300-A
slab, and an infinitely thick slab. At zero field, the ab-
sorption shows the simple, quadratically spaced, steplike
structure that results from only "allowed" transitions in a
slab with infinitely high potential walls (b,n =0) (i.e., sub-
band n in the valence band to subband n in the conduc-
tion band). With field, however, we now observe more
transitions„which are, of course, "forbidden" with b,n&0.
The 100-A spectrum shows only a few, and shows the
feature observed experimentally in such thin wells, ' '

namely that the optical absorption shifts to lower photon
energy while retaining a large and abrupt onset, a
phenomenon very different in character from the Franz-
Keldysh effect.

However, by 300 A, the spectrum is much richer, and
closely resembles the Franz-Keldysh spectrum, including
the oscillations, over this energy range. In these and in
other simulations, we find that the thin-slab absorption
starts to resemble the Franz-Keldysh effect above the
band gap once the forbidden transitions become strong, in
which case they are often stronger than the allowed transi
tions. This point is explicitly illustrated in Figs. 2 and 3.
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FIG. 1. Absorption of a 100-A slab (long-dashed lines), a
300-A slab (short-dashed lines), and an infinitely thick slab
(solid lines), (a) at zero field, and (b) at 10' V/cm.

0

Figure 2 shows the calculated absorption of a 150-A well
at 10 V/cm, with the transitions labeled (n„,n, ); n„(n, )

is the number of the confined level in the valence (conduc-
tion) band numbered from the top (bottom). The corre-
sponding energy levels and wave functions are illustrated
in Fig. 3 for each of the levels involved in transitions in
Fig. 2. The first Franz-Keldysh oscillation is just discer-
nible in the 150-A spectnnn of Fig. 2, and some of the
forbidden transitions [e.g., (1,2} and (2,1)] are stronger
than the allowed transitions [e.g., (1,1) and (2,2)] in this
energy region.

Figure 3 also illustrates several other points, especially
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fimtely thick slab (smooth curve) at 10' V/cm The .steps are 1a-

be1ed (n„,n, ), where n„(n, ) is the valence (conduction) subband
number.

FIG. 4. Absorption on a logarithmic scale belo~ the band

gap for a 150-A. slab (dotted-dashed line), a 300-A slab (long-

dashed line), a 500-A slab (short-dashed line), and an infinitely
thick slab (solid line) at 10 V/cm.
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in the valence band, where the effect of field is a stronger
perturbation. It is readily seen, for example, that the den-

sity of levels near the top of the valence band is much
more nearly constant with field than without, as required
in the limit [Eq. (11)]. Also, the first two wave functions
for the hole are dominated by the Ai Airy function whose
exponentially decaying tail effectively satisfies the
boundary condition of zero wave function at the left wall.
The higher levels have more Bi character in order to satis-
fy the boundary conditions, and start to approach

sinusoidal behavior like the zero-field wave functions.
With sufficiently high photon energies, the higher,

nearly sinusoi&a& wave functions start to dominate, with a
consequent return towards the quadratically spaced step
behavior rather than the approximately periodic Franz-
Keldysh oscillations. The higher-lying states also shift
very little with field, and the allowed transitions become
relatively strong again.

Finally, in Fig. 4 we show the comparison at 10 V/cm
between the thin-slab absorption and the Franz-Keldysh
effect in the field-induced absorption "tail" below the
band-gap energy, with absorption plotted on a logarithmic
scale; this is the region normally associated with the
Franz-Keldysh effect. The 150-A slab on this plot does
not closely resemble the Franz-Keldysh tail. However,
the 300-A slab, although showing clear steplike structure,
is starting to mimic the Franz-Keldysh tail over more
than 5 orders of magnitude, while the 500-A slab essen-
tially reproduces the tail over 16 orders of magnitude.
The approach to Franz-Keldysh —like behavior is there-
fore very rapid with increasing slab width. The reason for
this is easily seen from the scaling laws discussed above.
For a given actual field, the dimensionless field scales as
I. with the energy-level structure scaling as 1/L Thus, .
whereas the dimensionless field is 1.77 units and 9.04
units for the electron and hole, respectively, for the 100-A
well at 10 V/cm, it is 221 units and 1130 units, respec-
tively, for the 500-A well.

FIG. 3. Valence and conduction energy levels and normalized
wave functions in a 150-A slab at 0 and 10' V/em, plotted to-
gether mth the net confiniag potential (including the effect of
field).

IV. CONCLUSIONS

We have calculated the optical absorption of a semicon-
ductor slab or quantum well of arbitrary thickness in the
presence of an electric field peiyendicular to the slab,
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neglecting excitonic effects. Because the walls of the well

are presumed to be infinitely high, the problem is well de-

fined and the electron and hole possess true eigenstates.
Unlike some previous approaches to the Franz-Keldysh
effect, the calculation of optical absorption then reduces
to the evaluation of overlap integrals of eigenstates
without any need to consider time-dependent wave func-
tions or tunneling.

As we increase the thickness of the slab at a fixed field,
we see a smooth transition from the strongly quantized
behavior at small thickness that bears little obvious rela-
tion to the Franz-Keldysh effect, to Franz-Keldysh —like
behavior over many orders of magnitude in absorption,
with only small and closely spaced steplike behavior due

to the confinement. We have also proved analytically that
the Franz-Keldysh effect is recovered exactly in the limit

of large thickness.
The transition towards Franz-Keldysh behavior is ac-

companied by the growth of forbidden transitions between

the quantum subbands. The Franz-Keldysh oscillations
can be discerned quite easily in the spectra once the for-
bidden transitions start to dominate. At high photon en-

ergies the quantum-well, quadratically spaced steps dom-

inate again. Incidentally, in this picture, the Franz-
Keldysh oscillations can be explained as being due to the
variations in overlap integral of the valence and conduc-
tion wave functions as their relative displacement is al-

tered. (Note that the wave function of a given particle is
independent of particle energy in the infinite-slab prob-

lem, except for a lateral displacement. )

Finally, we note that the transition from the strongly
quantized behavior to the Franz-Keldysh behavior takes
place over a very small range of thickness at a given field.
For example, in our calculations at 105 lcm for our
two-band GaAs-like semiconductor, at 100 A the absorp-

tion bears no obvious relation to the Franz-Keldysh effect,
whereas by 150 A the Franz-Keldysh oscillations are dis-
cernible, and by 300 A the Franz-Keldysh absorption tail
is already reproduced over 5 orders of magnitude.

The calculations in this paper are not meant to model
any particular experimental conditions and are necessarily
unrealistic in two ways. First, they assuine infinitely high
barriers on either side of the semiconductor layers. This
is not too drastic a restriction in practice when consider-
ing quantum wells, where tunneling between layers is
weak for the lower subbands, although the behavior above
the band gap may be modified by the finite barrier height.
A more serious restriction, which is also inherent in
Franz-Keldysh effect calculations, is the neglect of exci-
tonic effects. This is not likely to be very important for
the positions of the energy levels, the error being restricted
to a term of the order of the exciton binding energy at
zero field, although it is important for the magnitude of
the absorption. However, it is known that the excitonic
resonances in bulk semiconductors are strongly weakened
by fields, ' whereas those in quantum wells can be re-
tained to very high fields [the QCSE (Refs. 1 and 2)].
Hence, including excitonic effects should further enhance
the contrast between the strongly quantum-confined elec-
troabsorption and that in a thick slab. In this regard, it is
interesting to note that for the representative field chosen
here (10 V/cm) for our GaAs-like semiconductor, the
transition range from strongly confined to nearly uncon-
fined electroabsorptive behavior (i.e., 100 A~300
—500 A) is exactly that over which the exciton confine-
ment (and the associated additional exciton enhancement)
disappears (the three-dimensional exci ton diameter is
-300 A in bulk GaAs). Hence, the actual contrast be-
tween quantum-confined electroabsorption and the uncon-
fined case should be even stronger than that shown here.
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