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Disorder effects on spatially extended quasiparticles such as free excitons in semiconductor alloys
cannot be described within the usual single-site approximation [e.g., the coherent-potential approxi-
mation (CPA)]. From an analysis of the relationship between the spatial scale of alloy potential
fluctuations and an alloy effective medium, a new self-consistent approach is derived from a
quasiparticle-dependent alloy disorder representation. This permits identification of an alloy effec-
tive medium whose interaction with a given spatially extended quasiparticle is a function of compo-
sition, alloy scattering strength (U), and the quasiparticle extent (). It is then proved that the ob-
tained self-energy expression reduces to the usual CPA and virtual-crystal approximation, respec-
tively, for site-localized (Frenkel-type) quasiparticles and for infinitely extended (Wannier-type)
quasiparticles. Furthermore, an approximate, closed-form expression for the self-energy as a func-
tion of x, U, and Q is obtained. Applications to the study of disorder effects on free excitons in

semiconductor alloys are also reported.

I. INTRODUCTION

The introduction of the concept of an effective medium
is the basis of most recent progress in the understanding
of equilibrium properties of phonons, electrons, magnons,
and Frenkel excitons in random alloys. This, in turn,
largely rests on the development of single-site approxima-
tions (SSA’s),'~> the self-consistent version of which is
the coherent-potential approximation® (CPA). In these
approximations the alloy disorder state is treated within a
Bragg-Williams—type description,® i.e., based on single-
site (or point-cluster) averaging. In this Bragg-Williams
alloy disorder representation (ADR) only the alloy fluc-
tuations on a given site are considered, this site being as-
sociated with an average Wigner-Seitz volume (2, There-
fore, although they describe bulk alloy properties reason-
ably well throughout the entire composition range, the
single-site approximations do not account for the effects
of clustering on elementary excitations, or for disorder ef-
fects on quasiparticles which are characterized by large
spatial extent Q >>(),, such as free Wannier excitons in
semiconductors. These excitations, however, play a cen-
tral role in the understanding of the optical spectroscopy
of semiconductor alloys, where they act as disorder
probes, i.e.,, the broadening thereby of their associated
spectral line gives a measure of the state of disorder in the
alloy. This failure of single-site approximations appears
to be mainly due to the inadequacy of the alloy disorder
representation (i.e., the Bragg-Williams—type description)
rather than to the techniques and approximations used in
the derivation of a particular alloy effective medium.

Hence an extension of the single-site approximation
which accounts for the spatial properties of excitations is
needed in order to describe the effects of alloy potential
fluctuations (disorder) on the spectral properties of such
excitations. To this end, a theory has recently been report-
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ed® which permits description of disorder effects on exci-
tations as functions of the alloy composition, of the
difference between the chemical potentials of the relevant
atoms (the origin of the alloy potential fluctuations), and
of the spatial characteristics of the excitations themselves.
However, this theory® has been given only in its non-self-
consistent version,! ~* thus corresponding to an extension
of the average—f-matrix approximation (ATA) to the
problem. The purpose of the present paper is to derive
the self-consistent version of this theory, which will then
be compared to the self-consistent single-site approxima-
tion, i.e., to the coherent-potential approximation.

Now, let us introduce formal spatially extended quasi-
particles (SEQ’s) which, insofar as one is concerned with
disorder effects, will be characterized only by their spatial
extent: the volume () over which they experience the al-
loy fluctuations (e.g., the Bohr volume for a free Wannier
exciton). This volume, in turn, is a characteristic of the
strength of the particular interaction which leads to the
quasiparticle formation (e.g., Coulombic interaction for a
free Wannier exciton). From this viewpoint, the main
difference between Frenkel and Wannier excitons, both in-
teracting with a given alloy disorder state, appears to be
their respective spatial extent (Frenkel)=Q(an atomic
volume) and Q(Wannier)=NyQo>>0.% (Here Ny is the
number of Wigner-Seitz cells within €2.) In assuming that
SEQ’s are affected only by the alloy fluctuations within
their spatial extent,’ it is expected that these two quasipar-
ticles are differently affected by the alloy disorder state,
i.e., they average differently the alloy potential fluctua-
tions. This suggests that the usual concept of an alloy ef-
fective medium, which does not account for the spatial
properties of the SEQ, needs to be generalized by intro-
ducing, for these excitations, a representation of the alloy
statistical disorder which accounts for the specific poten-
tial fluctuations which actually affect their spectral prop-
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erties. This representation therefore depends on the extent
of the SEQ. From the viewpoint of statistical mechanics,
it is equivalent to introducing a new statistical ensemble?
over which the ensemble-average properties of alloys are
calculated.

The construction of a quasiparticle extent-dependent al-
loy disorder representation and the averaging technique
used in this work are reported in Sec. II, where the general
expression for the self-consistent self-energy which de-
scribes disorder effects on spatially extended quasiparti-
cles is given. In Sec. II we examine the latter formalism
in the limits of site-localized and infinitely extended
quasiparticles, where comparison is made between the
present theory, the CPA, and the virtual-crystal approxi-
mation (VCA). Applications to the study of disorder ef-
fects on the spectral properties of free Wannier excitons in
semiconductor alloys are discussed in Sec. IV. Con-
clusions are drawn in Sec. V about possible further uses of
the present formalism.

II. ALLOY-DISORDER REPRESENTATION
AND FORMALISM

Consider a binary alloy 4,_,B, and a free SEQ (i.e,
one not bound to impurities or defects in the alloy, nor
trapped by fluctuations®). Let Q be the spatial extent of
this SEQ. As discussed above, we assume that the spec-
tral properties of the SEQ will be affected only by the
fluctuations of the alloy potential within its volume Q
during its motion throughout the alloy.” Therefore, if one
assumes that the mean free path of the SEQ is much
larger than its characteristic dimensions, all permissible
concentrations ¢ of B-type atoms will appear in (2, each
with a given probability, denoted by p(c), which depends
on the nature of the solid solution under consideration.
(This statement is valid for the free SEQ considered here,
for which the disorder-induced spectral line broadening
AE is small compared to the energy scale of their spectra,
i.e., their lifetime #i/AE, which is infinite in pure crystals,
is still large in comparison to a scattering time. However,
it would not apply to the case of fluctuation-localized
quasiparticles which are associated with nonpropagating
states and which have been recently observed in semicon-
ductor alloys.9) For a finite size (), the permissible con-
centrations ¢ in () are discrete and given by
¢=0,1/Ny,...,No/Ny=1, where N, is the number of
lattice sites (or equivalently of Wigner-Seitz cells) in (Q,
No=Q/Q,. Let Rq denote the ensemble of these sites in
Q.

The macroscopically observed disorder effects on the
SEQ spectral properties result from the fluctuations about
the average alloy composition (x) of the concentration
(c5£x) of B-type atoms in its volume Q) during migration
in the alloy. For each position of the SEQ, the alloy po-
tential it experiences can be represented as the superposi-
tion of (i), inside (2, the potential of a uniform medium of
composition ¢ occupying the volume Q, and (ii) outside 2,
that of an embedding medium obtained from averaging
over all the fluctuations outside . Such a system,
formed by a uniform medium of volume € and composi-
tion ¢, embedded in an as yet unknown effective medium,
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will be denoted S,. Its probability of occurrence is the
same as that of ¢ and is given by p(c). Therefore the en-
semble {S,,p(c)} represents all the possible fluctuations
of the alloy potential experienced by the SEQ’s.

The statistical ensemble® over which the alloy potential
fluctuations are averaged will be completely determined
once the Hamiltonian used to describe each S, is speci-
fied. We shall, for convenience of implementation, use a
one-band tight-binding model Hamiltonian,® and write the
Hamiltonian H, for each S, as

H,=3 |ideli|+ 3 |i)ei]

i€Rq i€Rg
+3 > D] - (1)
ij(#D

The first sum in (1) is restricted to sites belonging to Rq
(i.e., within ), at each of which is placed a potential e,
related to the pure 4 and B constituent’s on-site potentials
e, and ep by e, =(1—c)e +ceg. [An assumption which
is implicit in this expression for e, is that the potential in
1 depends only on the composition of the uniform medi-
um in () and not on the particular way the ¢cN, B atoms
and (1—c)N, A atoms are distributed in . The physical
meaning of this latter assumption is that the spectral
properties of the SEQ’s are assumed to be affected only by
the deviation £=c¢ —x of the composition ¢ in € from the
average alloy composition x.]

The second sum in (1) is over all sites outside (2, by our
definition of S, therefore characterized by an effective
medium on-site potential e,=¢+ W, where
e=(1—x)e +xep is the linear interpolation between e,
and ep, i.e., the virtual-crystal-approximation on-site po-
tential, and W is a yet-unknown potential describing the
deviation of the average potential outside () from the
VCA value 2. Because W is an average quantity it is, in
principle, determined only after averaging over all the sys-
tems S,. The best description of the medium outside ()
(the reference medium) is thus obtained only in a self-
consistent way. As previously shown for the case of
single-site approximations,’ the main difference between
the CPA (which is self-consistent) and the ATA (which is
non-self-consistent) arises from the fact that the latter as-
sumes that W is a constant (specifically, W =0) and
therefore the resulting description of disorder effects de-
pends on this choice of W (i.e., this choice for W forces
non-self-consistency), while the former makes no assump-
tions about W (it is an a priori unknown): Having first
averaged over all fluctuations, it is determined from the
condition of vanishing additional disorder scattering due
to fluctuations. This requirement we may call the
coherent-potential condition (CPC). Under the CPC it is
clear that the properties of the alloy effective medium and
related disorder effects (e.g., the self-energy) depend impli-
citly on the fluctuations selected to describe the alloy dis-
order state (i.e., on the alloy disorder representation). One
purpose of the present work is to make explicit this
dependence, in order to characterize the effective medium
in which a spatially extended quasiparticle moves.

The third sum in (1) describes the propagation of the
SEQ. We shall neglect the fluctuations in the transfer in-
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tegral t; which arise from its dependence on the types of
atoms occupying the sites i and j, i.e., we shall neglect
“off-diagonal” disorder,’ which is important only when
the relative widths of the SEQ energy spectra in the pure-
alloy end-point materials are considerably different. In
our case, f;;=t and the bandwidth ¢ will be taken as the
energy unit.

Since fluctuations away from the effective-medium
value are (by the definition of the system S.) confined to
the volume , it is convenient to express the Hamiltonian
H, in S, as the sum of a fluctuation-independent part H,
(evaluated for the reference effective medium, labeled r)
and a fluctuation-dependent part U, which describes the
disorder in S, i.e.,

H.=H,+U, . 2)
Here
H=3|eli|+3 I [iNj]; (3)
i i J (&)

the fluctuation-dependent part U, may be expressed as a
function of the composition deviation £=c —x and the
on-site potential difference U =ep —e, between atoms A
and B as

U, =Px(EU—W). @

To proceed further we have introduced a new operator

P which selects out all fluctuations {S,,p(c)} confined to
Q over which the macroscopic average quantities are to be

calculated. P may be written as
P=3 || ; )

i€Rg

P is a projection operator (P2=P) which does not have
J
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the translational symmetry of the average alloy lattice.
The asterisk in Eq. (4) indicates that, when applied to a
realistic potential, the product is a convolution product.
[In the case of realistic atomic potentials, i.e.,
U(r)=eg(r)—e,(r), P becomes a summation, over those
sites 7 of the average alloy lattice within the volume Q, of
Dirac delta functions 8(r—7;). The operator product
P U then stands for f dr' P(r)U(r—r').] Here the trip-
lets {c}=1{S.,H,,p(c)} constitute the alloy disorder rep-
resentation over which the ensemble-average of the SEQ
properties are calculated. For a given alloy 4,_,B,, they
are determined only by the volume Q of the SEQ under
consideration. The introduction of P ensures that only
the disorder effects arising from the fluctuations within Q
are considered; those from the region outside  are in-
cluded in the effective medium, i.e., in W.

Having specified the statistical ensemble, we now turn
to the averaging procedure used to derive the macroscopic
average effects of the alloy potential fluctuations on the
SEQ spectral properties; these disorder effects may gen-
erally be represented as self-energy effects, related directly
to the alloy coherent potential. To this end we shall use
the exact self-energy expansion technique developed by
Argyres.'® This technique allows the application of the
coherent-potential condition to any alloy disorder repre-
sentation where the fluctuation-dependent Hamiltonian
(such as H_) can be split in the form of Eq. (2). When the
CPC is applied the alloy effective medium, characterized
by S(E)=e+3(E,Ny), is uniquely determined; the pa-
rameter W of Eq. (4), since € is the VCA on-site potential,
is equal to the energy-dependent self-energy contribution
to the alloy potential, 2(E,Ny). In the present case,
W =3(E,N,) depends also on ) (or equivalently on
No=Q/Q,) and is given by the self-consistent equation
(see the Appendix)

3(E,No)= i O(EP*U +EP*U[1—G,(ENQEP+U —PxW)]""|G,(E)Q 'EP*U

m=1

m
3 (="K, [ (No;p)Vm L (E) ,

Ms

m=1L=0
where
Kn(No;p)=0[£(0 €)' )
and
Ve, (E)

=P+ U[G,(E)P* UIL{G,(E)P» W)™ ~LG,(E)Px U ;
(8)

E is the energy of the SEQ. Q and Q '=1 —Q are projec-
tion operators which, respectively, effect the ensemble
average and give the fluctuating part of any fluctuation-
dependent quantity Z, to their right:'°

0Z.=3pc)Z, . 9)
{e}
The chemical factor V,, ;(E) in Eqgs. (6) and (8) describes

(6)

I

the energy-dependent multiple-scattering processes experi-
enced by the SEQ due to the fluctuation within Q. G,(E)
is the free Green function associated with the effective
(reference, r) medium Hamiltonian.

The factorization of each term in the expansion (6) into
the product of a purely statistical factor K,, and a purely
chemical factor V,, ; (E) is the main advantage of the rep-
resentation used here. The statistical factor K,,(Ny;p) de-
pends on the SEQ spatial extent =Ny, and on the
probability distribution p(c) of the fluctuating composi-
tion c¢. It is a sum of products of moments of & with
respect to the probability distribution {p(c)}. Note that
at the present stage no specific assumption concerning
this probability distribution has been made. Therefore,
Eq. (6) provides the basis for calculation of disorder ef-
fects on SEQ in real alloys, where the strictly random
probability distribution used in the derivation of single-
site approximations (CPA or ATA) is not valid, in gen-
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eral. It is worth noting that Eq. (6) is exact, since no ap-
proximation is needed for its derivation once the ADR is
chosen.

III. DERIVATION OF EFFECTIVE MEDIA

A. Limiting cases

We now consider two limiting cases: First, that of in-
finitely extended quasiparticles (IEQ’s), for which Q= oo
(i.e., No— o) and, second, the case of Frenkel (site-
localized) quasiparticles, for which Q=)

(i) In the first case, the only possible composition
within Q is x, i.e., p(c =x)=1; p(cx)=0, following the
strong law of large numbers).!! Therefore all K,,’s vanish
and hence 2(E,Ny= « )=0. The VCA [S(E)=e] is thus
obtained for these IEQ’s.

(ii) For site-localized (Frenke16) quas1part1cles Q=Q,,
ie, No=1, and the projection P becomes P=]0)(0].
Under the random disorder approximation, the respective
probabilities that the only site (0) in £ is occupied by an
A- or B-type atom are given by po(A4)=polc =0)=1—x
and po(B)=po(c =1)=x; the subscript O stands for the
random disorder approximation. The statistical factors
K,, are then given by K,,(1;p¢)=x (1—x)(1—2x)™~2 for
m>2. In this case, the expectation value of
W =3(E,N,) obtained from Eq. (6) is given by

U(E,N():l)
=(0|=(E,No=1)|0)

3 U (1—x)F(E,Ny=1)
" 1—-[U(1—2x)—0(E, Ng=1)]F(E,Ny=1) ’

(10)

where
p(E’)
E —-E—O’(E,No)—‘

F(E,No)=(0|G(E)|0)= [ ~dE’ .

(1

In Eq. (11) p(E) is the density of states, the same in pure
crystals A and B (with neglect of off-diagonal disorder?).
Equation (6), therefore, reduces to the single-site
coherent-potential approximation!? for site-localized
quasiparticles which extend over a single unit cell
(Q=90Qg or Ny=1), i.e., for Frenkel quasiparticles. The
major difference from previous derivations of the CPA is
that in ours it appears as an exact solution of the alloy
effective-medium problem once the local ADR is chosen
(Q=Q). The usual neglect of clustering effects (i.e., the
single-site approximation) required in the former deriva-
tions no longer enters the theory as an approximation, but
rather as a characteristic of the ADR, where the only
fluctuations involved in the scattering processes are select-
ed by P=10)(0| for Q=0

The study of these two limiting cases, the VCA
(=) and the CPA (Q2=$,), shows the deep relation-
ship between the concepts of alloy effective media
[characterized by 2(E,N,)] and alloy disorder representa-
tions (defined by  or Ny=Q/Q). It also proves that
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the present approach reduces to the usual VCA (vanishing
disorder effects) and to the CPA, respectively, in the lim-
its of infinitely extended and of site-localized quasiparti-
cles. It is hence expected that the present theory will offer
a rigorous basis for the description of alloy effective-
medium effects felt by spatially extended quasiparticles
with an intermediate spatial extent Q< < «, as will be
shown in the next subsection.

B. General case

For the general case of a SEQ with finite spatial extent
Q, we now derive a closed-form self-consistent self-energy
expression for the disorder effects as functions of U
(=e4—eg), of composition x, 0 <x <1, and as a function
of Q. Since the CPA (Ny=1) can be obtained when only
multiple scattering from a single site is considered, we will
seek an approximate self-energy expression which ac-
counts for the same scattering process. This approxima-
tion on the V, (E), in turn, forces one, for self-
consistency, to use an equivalent approximation for the
K,,(No;po). In this case, we have shown® that

K,,,(No;po)=x(1—x)(1—2x)N0“"'“” .

We then obtain a closed-form expression for the expecta-
tion value of 2(E,N,),

o(E,No)=(0| Z(E,N,)|0)

_ (U*/Ng)x (1—x)F(E,N,)
" 1—=[(U/No)(1—2x)—0(E,Ny)F(E,Ny)

(12)

Equation (12) reduces to the CPA [Egs. (10) and (11)]
for No=1 and to the VCA [Z(E,Ny)=0] for Ng=. It
therefore generalizes these two approaches, which are
valid in the respective limits of site-localized and infinite-
ly extended quasiparticles. In addition, it offers, for the
first time, a rigorous basis for a self-consistent determina-
tion of the disorder effects “felt” by a given SEQ as func-
tions of x, U, and its extent ().

IV. PHYSICAL APPLICATIONS

Optical characterization of semiconductor alloys has re-
vealed the importance of disorder effects on the spectros-
copy of free and impurity-bound quasiparticles.!* Among
these, free excitons play a central role in the interpretation
of near-band-edge spectra of semiconductors. However,
typical trends in the disorder effects on the spectra of
these spatially extended quasiparticles are not accounted
for by the usual single-site approximations, while they are
well described by Eq. (12). For the sake of illustration,
the present theory has been applied to the calculation of
the absorption spectra of free Wannier excitons in semi-
conductor alloys as functions of their spatial extent Q.!%1°
To this end a hydrogenic exciton model’*~!® has been
used. In this model the spatial extent Q (Q=(r3)) is
given by Q=10ma}, where the Bohr radius ap is of the
order 1/m,, where m, is the reduced effective mass.
From calculations of the absorption spectra for two free
excitons with different spatial extents (=125, and
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10009, i.e., No=125 and 1000, respectively) for x =0.5
and U =0.4 (in units of 1), the trends can be summarized
by the statement that, for decreasing N, or Q, the follow-
ing applies:

(i) the linewidth of the absorption peak associated with
the exciton increases;

(ii) the intensity of the peak decreases; and

(iii) the high-energy absorption tail, generally attributed
to disorder-assisted indirect transitions, increases (see Ref.
15).

From these results it can be inferred that when the exci-
ton spatial extent N, increases, the associated absorption
peak tends to a Dirac-type peak, which is characteristic of
excitons in pure semiconductors or in alloys without
measurable disorder effects. The important result that
can be stated as a rule is that disorder effects on the spec-
tral properties of a spatially extended quasiparticle de-
crease when its spatial extent (1) increases. This con-
clusion, although reasonable on purely intuitive grounds,
has never previously followed from a rigorous calculation
before the introduction of the approach reported in Ref. 5,
whose self-consistent version is given here. Furthermore,
in addition to the study of the limiting cases (Sec. III A) it
follows from this conclusion that for general SEQ’s
(Q#£Q, and Q% ), the CPA (Ny=1) will overestimate
disorder effects while the VCA (Ny= ) will underesti-
mate them.

The knowledge of such a trend in disorder effects on
free excitons in semiconductor alloys also permits an
understanding of the experimentally observed increase in
disorder-induced effects on free Wannier exciton spectra
(e.g., linewidth broadening) in going from direct-gap III-V
alloys to indirect-gap III-V and II-VI alloys. The effec-
tive mass m/? in direct-gap III-V materials is much small-
er than m/ in the indirect-gap material; since in a hydro-
genic model the Bohr radius ap~1/mqy, Qlindirect)
<< Q(direct) so that, following the above-mentioned
rule, smaller disorder effects are expected in the direct-gap
material.

Another important property of these disorder effects as
functions of the composition x of the alloy 4;_,B, is
their asymmetry about x =0.5. This behavior, not ex-
plained by previous alloy theories, follows from Eq. (12)
as a consequence of the difference between the SEQ spa-
tial extents Q(A4) and Q(B) in the pure constituents A and
B, respectively: If Q(A4)> Q(B), i.e., No(A4)> Ny(B), dis-
order effects [2(E,N,)] are weaker in A-rich than in B-
rich alloys, even in the weak-scattering limit (U ~0). In
other words, Nordheim’s “symmetry rule,”! which states
that disorder effects are symmetric with respect to the in-
terchange of A and B atoms, in this limit breaks down.

Finally, note that Eq. (12) yields a good basis for the
study of the “persistence” (in which features of the pure
A and B materials survive in the alloy SEQ spectrum, i.e.,
two modes persist) and “amalgamation” (where only a
single alloy-averaged feature survives in the SEQ spec-
trum) regimes of SEQ spectral properties in alloys as
functions of both alloy properties (x,U) and SEQ spatial
properties (2 or No). However, this extension of the pre-
vious work of Onedera and Toyozawa!’ is beyond the
scope of the present paper.

V. CONCLUSIONS

In summary, we have explored the interconnection be-
tween the concepts of alloy disorder representation and al-
loy effective medium. Through the introduction of the
quasiparticle extent-dependent alloy disorder representa-
tion we have demonstrated that both the virtual-crystal
and the coherent-potential approximations are exact solu-
tions of the alloy effective-medium problem in the respec-
tive limits of infinitely extended (IEQ’s) and site-localized
quasiparticles (SLQ’s). An approximate self-consistent
expression for the coherent potential which yields both
these latter approximations (the VCA and the CPA) in the
respective limits of IEQ and SLQ is obtained. This ex-
pression accounts for some general trends observed for
real disordered alloys in the variation of disorder effects
as functions of x, U, and Q. The results presented here
are therefore expected to bring a new understanding of the
experimentally observed behavior of free spatially extend-
ed quasiparticles in alloys, particularly of free excitons in
semiconductor alloys. Extensions of this approach to the
case of short-range impurity-bound particles are presented
elsewhere.'®
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APPENDIX

The alloy effective medium, characterized by the self-
energy W =2(z,N,), is defined by applying the no-
additional-disorder-scattering condition to the fluctua-
tions ¢ within the SEQ volume , such that the average
Green function G,(z) is given by

G,(2)=0g.(z), z=E +i0* (A1)
where @ is the projection operator introduced by Ar-
gyres,'® which gives the ensemble average of any quantity
on its right. The configuration-dependent Green function
is defined by

g(2)=(z—H,—V,)"!. (A2)
G,(z) can also be written as
G,(z2)=[z—H,—3(z,Ny)]~!, (A3)

where 2(z,N,) is the SEQ-extent-dependent self-energy,
which describes the alloy effective medium “felt” by the
SEQ under consideration and N, is Q/Q, From the
averaging technique developed by Argyres,'°

S(z,Ng)=0o{ V. +V.[z—H,—(Q'V.—R)]™'Q'V,} ,
(A4)

where V, =ﬁ*§U and R =PxW. Equation (A4) can be
written as

S(z,Ng)=0{V.+V,[1—G,(z)(0'V.—R)]™
xG,(z)Q 'V} . (AS)

When the second term on the right-hand site is expanded,
one obtains



6974

[1=G,@(Q V.—R)]"'= 3 [G@Q'V.—R)]I" .
m=0

(A6)

Since G,(z) and R commute with Q '=1 —@ and V_, each
term in Eq. (A6) can be calculated from the usual com-
mutative algebra laws

|

[G,(2(Q V. —R)]"= 3 (—1)"~UPG,(2)P+ UI[G,(2)P+2(z,No)]" ~HQ'€)F .

L =0
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[G,(2)Q'V.—R]"=3 (= )"~ LG, (2)0 V. ]*
L=0

X[G,(z)R]™ L. (A7)

Here (I') has the usual meaning used in combinatorial
analysis. Substituting for ¥, and R we obtain

(A8)

To obtain (A8) we have used the commutativity of Q and Q ’ with any quantity independent of ¢ (or §). Now substitut-

ing (A8) in (A4), we obtain

S(zN)=06P+U 3 3 (— 1" ~HPNQ'OHG, (2P UIH[G,(2)PE(z,No)]" ~L(Q £ G, (2)Px U] ,

m=2L=0

the first term in (A4) being identically zero since 0(£)=0.

(A9)

The expression for 2(z,N,) can be reorganized and written as

3(z,No)= i ﬁ (MO[EQ '€ +1PxU[G,(2)P* UIHG,(2)Px3(2,Ny)]" ~L[G,(2)P U] .

m=0 L=0

From the definition of the statistical factor K, (Ng;p)
used in Ref. 9, i.e.,

Kn(No;p)=0[&Q €)1,

we have

(A1D)

2(2,N0)= 2 2 (—l)m—L(T)KL+2(N0;P0)VL,m(z) ’
m=0L =0

(A12)

where

Vm,1(2)=Px U[G,(2)P* UJH[G,(2)P* Z(z,N,)]" ~ L

XG,(2)PxU . (A13)

(A10)

[

The symbol p in K,,(Ng;p) indicates that K,, depends on
the probability distribution law used in the alloy disorder
representation, from which are calculated the moments of
the fluctuating composition ¢. For a randomly disordered
alloy 4,_,B, (p =po),

No—n

Polc)=po(€)=( YOx"(1—x)N0™" (A14)

where n =cN,. Therefore, as shown in Ref. 9, the
K, (1;py) for No=1 (Frenkel quasiparticles, Q=£,) are
exactly given by
Kn(1;pg)=x(1—x)(1-2x)""2, m>2 (A15)
while for Ny > 2 the K,,(Ny;po) can be approximated by
K (Noipo)=x(1—x)(1—2x)"~"Ngm=V m>2.
(A16)
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