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The Coppersmith-Varma model [Phys. Rev. 8 30, 3566 (1984)] has been solved for arbitrary 1st-

tice distortions to calculate the shift in sound velocity due to sliding charge-density waves. If the

coupling strength go is large enough, it is found that the sound velocity goes to zero in the one-

dimensional case. A table of these results is presented. The flexure-wave sound velocity c~ in a thin

plate is also derived from this model in the weak-couphng limit go «» 1. The relative shift h,c~/c~ is

orders of magnitude smaller that the few percent found experimentally by Brill and Roark [Phys.
Rev. Lett. 53, 846 (1984)] for thin crystals af TaSi.

I. INTRODUCTION II. DERIVATION OF THE CV MODEL

Sliding charge-density waves (CDW's) strongly affect
electronic properties. When electric fields larger than a
threshold field, ET, are applied, CDW's become depinned
and carry current (cf. Monceau et al. ' and Fleming
et al 2). Rec.ent experiments by Brill and Roark (BR)
and Brill show that Young's modulus for TaSi decreases
by a few percent when fields above threshold are applied.
Coppersmith and Varma (CV) have solved a one-
dimensional model in the double limit of weak distortion
of the lattice and no distortion of the CDW. They find
that bulk acoustic phonons have a small decrease in velo-
city, c, proportional to the CDW drift velocity, u, for
fields above threshold. CV find hc/c ——10 5. The
measurements of BR were done with a vibrating-reed ap-
paratus in which changes in the resonant frequency of a
thin crystal (3 pm) are measured. Since the speed of
propagation of a flexural vibration, c~, is much less than
the speed of a bulk acoustic phonon, cii (cF-aqui, where
a and q are sample thickness and wave vector, respective-
ly}, it is not clear how the CV result would be modified
for flexure waves. Consequently, in this paper we refor-
mulate the CV work into a continuum model with boun-
dary conditions appropriate to the vibrating-reed experi-
ment of BR. Important reviews of CDW's relevant to
this work have been presented by Toombss and Gruner
and Zettl.

A derivation of the CV model is presented in Sec. II
and a complete discussion of the one-dimensional continu-
um version of this model is presented in Sec. DI for arbi-
trary coupling strengths between the CD% and atomic
displacements. If the coupling is strong enough the sound
velocity can go to zero in this model.

In Sec. IV flexure waves in a thin-plate geometry and
Rayleigh waves in a thick-plate geometry are investigated
using our continuum approximation to the CV model in
the weak-coupling limit.

In Sec. V the predictions of our CV-model calculation
of Sec. IV in the weak-couphng limit are compared with
the experimental results of BR.

The CV model is based on the work of Fukuyama and
Lee (FU and Lee and Rice. Other papers relevant to
this FL model are those of Sneddon et al. ,

' Sneddon, "
and Fisher. 'i

Using FL, one can write an equation of motion for the
nth ion of mass M„ located at R„(t), t being the time, as

d R
M, =F +e I d rpcDw(r t)(r 'Rn)—/l r —Rn

It2

where the phase 4(r, t) satisfies

Ao ——DV 4+ g V~(r)pusin(Q r+4)+e'E, .
dt

(3)

In Eq. (2), Q describes the CDW direction,
~ Q ~

=2kF,
k~ being the Fermi wave vector. In Eq. (3},the Q param-
eter is a damping parameter, D is a diffusion coefficient,
V~ denotes a pinning potential due to an impurity at R„,
e' is an effective charge of the CDW, and E, is the elec-
tric field strength.

The zeroth-order solution to Eq. (3) for 4 is given by

4(r, t)= iu„t, (4)

where

iu„=e'E, /Q=Qu, (5)

where u is the CDW drift velocity.
The discussion in this paper is limited to the zeroth-

order solution for 4 which is valid for large u. Hence, the
substitution of Eq. (4) into Eq. (2) leads to the
Coppersmith-Varma model

The term F„ describes the restoring force in the absence
of a CDW, while the last term is the restoring force asso-
ciated with a CDW and e is the electronic charge. The
COW charge density, p~ow, obeys

pcDw(r; t) pecos(Q r+4),
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d'R„M„=P„+VpQ sin{Q.R„+w„t),
t2

where the potential-energy parameter Vo is given by

Vo =epo/Q' . (6)

as was done in our numerical calculations. Our machine
calculations show numerically that Eq. (12) is a solution
of Eq. (10) which is periodic in 8 as required.

As a further check, one should note that the proper
solution of h, correct to terms linear in g i, is

It appears that 4 in Eqs. (2) and (3) may depend upon
the CDW velocity u in a rapidly varying fashion when u

approaches threshold. This is quite apparent in a recently
investigated model calculation presented by Sneddon. '

III. ONE-DIMENSIONAL CV MODEL

In the long-wavelength limit, Eq. (1') for a one-
dimensional sample with a sliding CDW in the z direction
is

8'u(z;t), a'u(z;t) VoQ .
=ct, 2' + sin[Q(z+u)+w, t], (7)

Bt Bz

where cL is the longitudinal sound velocity and u(z;t)
denotes the displacement of an ion mass M located at the
point z at time t.

Following CV's analysis, let u =up+ui, where uo is
the dynamic equilibrium solution to Eq. (7) and ui de-
scribes the excitation spectrum about the dynamic equiii
brium uo.

A. Dynamic equi»brium solution so

h —=4qosin(8) =—gisin(8), (14)

which agrees with CV's analysis for small gi in the long-
wavelength limit.

8 u) 28 ui Vpg
=cL2 + cos(8+h)ui,

Bt Bz
(15)

with 8 and h (8) given by Eqs. (8) and (12), respectively.
In order to solve Eq. (15) for the excitation spectrum

for arbitrary values of the coupling parameter, Vp/McL, ,
we need to find a Fourier series representation for
cos(8+h). WW in their chapter on Jacobian elliptic func-
tions provide us with just such an expansion, first derived
by Jacobi himself. Since the connection is a bit obtuse,
one must first note that

B. Vibrational spect~~

Expanding u(z;t) about up gives a linear wave equa-
tion for ui, the vibrational amplitude for the excitation
spectrum of our one-dimensional system. One easily finds
that

8= Qz +wyt .

Setting

Quo(z;t) =h (8),
one finds that

(8)

The dynamic equilibrium solution, up(z;t), is obviously
a periodic solution of Eq. (7) with respect to the variable

cos(8+h) =1—2[sn(E8/n )]

=Co+ g D„cos(n8),
n=i

Cp ——1 —g D„, D„=4nqo/[g)(1 —qo")] .
n=1

(17)

(18)

h "(8)= —gisin(h + 8},
where

gi ——Vp/[M(cLz —ui)] .

(10)

h(8)=4 g qpsin(n8)/[n(1+qp")] .
n=1

(In TaS3, u -10 cm/sec so u «cL and gi -=go
= Vp/Mct. ) From Whittaker and Watson' (WW), one
finds that the solution to Eq. (10) can be expressed in
terms of elliptic functions. Moreover, from WW's
analysis, one readily finds that

The parameter qo as mentioned before is related to gi by
Eq. (13). EC and sn in Eq. (16) are standard WW symbols
for an elliptic integral and function, respectively. Our
machine calculations verify directly the remarkable rela-
tionship between Eqs. (16) and (17) using the Fourier
series for h (8), Eq. (12).

To get the excitation spectrum from Eq. (15), one can
follow CV and expand u i in a double Fourier integral

u, (z;t)= I dw I dq exp(iqz —iwt)A(q, w) (19)

using Eq. {17)for cos(8+h). Noting that Do 0 if n=0-—
is included in its definition, one gets

[(cL,q) —w —Vpg Co/M]A (q, w)

(The notation qo is used rather than the customary q to
avoid confusion with our use of q as a wave vector later
on.} The parameter qo is related to our coupling constant

g1 in a simple manner, i.e., where

=(VoQ~Co/2M) g D
~ „~A„(qiw), (20)

qn{n+1)
n=0

4

(13)

for any 0 & qo & l. A Newton-Raphson procedure allows
one to obtain qp quite simply for a fixed g, from Eq. (13)

A„(q, w) =A (q +nQ, w nw, ) . —
Using the definition of A„, one can get a set of equations
which fix w(q} from Eq. (20). Now,

A„(q+ng, w n„w=}—A+„( , q)w,
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so that, after a shift of index in the sum generated from
Eqs. (20) and (21), one can write

[cL(q +ng)' —(u —n(u„)2 —V()Q2/C0M]A„

=(Vpg /2M) g Din n i
2n, (22)

for all integer n.
To solve Eq. (22) for } q ~

& Q/2 and (u ~ (u„/2, set

Our machine solutions of Eq. (30) for B„show that Eq.
(31}is satisfied nuinerically if enough terms are included.
Numerical computations include the range 0 ~ g0= VplMcL & 5. When gp

——5, one must include about 40
terms in Eqs. (30) and (31) for convergence, i.e., one part
in 10' .

%hen g0 &&1, C0 ———2q0, and only 81 and 8 1 need
be retained. A short computation shows that

An =(gp/2)A06nBn, n+0 (23)
cjcL ——1 —go(1+2u/cL )+O(q/Q) (32)

where

G„=[(n +q/Q)2 —(qclg nv—)2/cL gp—C0]

is a Green's function and

gp
——V()/McL

is gi when the CDW drift velocity u is zero.
Next, let

w=qc ~

(24)

(25}

(26)

which is essentially the result obtained by CV for
q/Q « l.

For larger values of the coupling constant gp, one must
solve Eq. (28} for the B„'s and substitute them into Eq.
(27) to get c(q) as a function of q. From a computational
standpoint, one would like to rewrite Eqs. (27) and (28) so
that the factor ( Q/q)2 preceding the term in large
parentheses in Eq. (27) cancels out as it must. This can be
done by rewriting 6„ in three parts as

6„=G„+(q/Q)6,'"+(q /Q)'6„'", (33}

where c is the sound velocity. When Eqs. (23)—(25) are
substituted into Eq. (22), one finds that the sound velocity
c (q) is fixed by setting the coefficient of Ap equal to zero.
This results in the following equation:

where G„ is given by Eq. (29) and is independent of q.
6„'2' as well as G„are symmetric to the interchange of n
and —n On the. other hand, 6„'" is antisymmetric when
n is replaced by —n After . a bit of algebra, one finds that

(c/cL )'=1—gp(Q/q)' 6„"'= 2n (1+—vc lcL ) W„ (34)

X C()+(gp/4) g D~„)G„B„
@+0

(27)
6„' '= —G„W„([(q/Q) RL —Z„]RL—F„}, (35)

Bn (go/2) y D~n —n'(Gn'Bn'=D(n
(

~

a'+0
(28)

The term n=O is obviously excluded from Eq. (28).
When q=O, 6„=60,where

The coefficients B„ in Eq. (27} now satisfy a set of linear
Quat1ons;

where

RL ——1 —(c/cL ), Z„=(6„)
1'„=4n (1+uc/cL)

Wn = I [Z„+(q lg) RL ] —(q/Q) Fn } (37)

6'= [n'(1 —u'/cL ) goco]

and B„=B0=B0„satisfies

B'—(go/2) g (D ~n-'(+Dn+n )GnBn =D.

(29)

(30)

When Eq. (30) is substituted into Eqs. (27) and (28), one
can factor out a term proportional to Eq. (31) which uan
isjies After a. bit of algebra, one finds that the equation
for the sound velocity c given by Eq. (27) can be written

for n =1,2, . . . . The quantity in the large parenthesis of
Eq. (27) must vanish for q=0, so that

(c/cL )2 = 1 —(g2/2) g D (6(2)B0+6(1)B())+GeB(2)}

C.+(g.») g D„60B0=0.
n=1

(31)
where

(38)

' -(g /» X [Di -'i+(-1)'D.+']6:B"'-(go/2)(q jg)"'-" y [D, ~+(-1)'D„,„.]6())B(3-k)
n'=1 n'=1

=go g [D ~, ,
~

+(—1) D„+„]6„'"'Bo, (39)
n'=1

6'=6 +(q/Q)'6"' (40)
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and @= 1 or 2. 8„ is given by solving Eq. (30).
Sound velocities for our one-dimensional CV model are

given in Table I as a function of q/Q and U/cL, for vari-
ous values of go

——Vo/McL, . One should note that the
sound velocity c decreases as the coupling parameter in-
creases, going to zero if go is large enough. go-0. 1 is
CV's estimate. Larger values of go ( —1) might be
relevant for commensurate systems (polyacetylene) or
elastically softer CDW materials.

IV. FLEXURE AND RAYLEIGH WAVES
IN PLATE GEOMETRY

The work reported in thi.s section extends the work of
Sec. III in order to treat flexure waves in thin slnples of
TaSi used by BR to investigate the dependence of the elas-
tic modulus on an applied electric field.

The mathematical treatment of flexure, Rayleigh-, and
longitudinal-wave propagation in thin samples is similar
in nature. However, it has not been possible to extend the
analysis of Sec. III to these problems beyond second order
in the coupling coefficient go= Vp/Mcj. In view of the
fact that c/cL in the bulk one-dimensional case actually
can go to zero if go is large enough, one might expect
similar behavior in three-dimensional finite geometries.

There is, however, a distinct difference between longitu-
dinal and flexure waves which motivates this derivation;
for fiexural waves the frequency is quadratic in wave
number q. For simplicity, we have treated the geometry
in a thin infinite plate, rather than the rod geometry ex-
perimentally used by BR; since flexural waves in both
cases have w-q, this should not qualitatively alter the
results. Modification of our results to consider rodlike
geometries will be discussed later.

An excellent discussion of these problems when CDW
waves are absent is given by Landau and Lifshitz' (LL)
(cf. Sec. 25}.

l. Boundary conditions for thin plate -geometry

Our plate occupies the space —a &x &a, —oo &y,z
& oo. The boundary conditions for our free plate are the

stress-free conditions given by (cf. LL, Ref. 15, Chap. III)

au„au, au„au,
(43)x z z x

at the bounding surface x =+a. The parameter g is given
by

(44)

with

b =(cT/ci ) (45)

The parameter b occurs in many different places in the
reinainder of this paper.

2. Dynamic equilibrium displacement ue

where the sliding CDW is restricted to the z direction, e,
being a unit vector in the z direction. In Eq. (41), cT is
the transverse sound velocity (assuming isotropy in the
x-y plane) and cL is the longitudinal velocity. In an iso-
tropic material, they can be expressed in terms of Young's
modulus E and Poisson's ratio cr. From I.l., one has

cr ——
I E/[2(1+ a )p] }

'~

(42)

ci ——IE(1—o )/[(1+a)(1—2tr)p] I
'/z,

where p is the sample density. Lear et al. ' estimate
an average value of cr-0.3 for NbSei, presumably similar
to TaS&, so cT

-=cL/2. The displacement vector
u=(u„, ur, u, ) will be restricted to motion in the x-z plane
so that u„=0 hereafter.

A. Elastic equations for plate geometry In the weak-coupling case, the dynamic equilibrium dis-
placement vector uo ——(u„,0,u, ). It is convenient to use

Equation (1') of Sec. III is easily generalized to treat vi-
brations in a plate gtximetry. One has

u=CTV ll+(ci —CT )V(V il)

8= Q(z+vt},

Qu = Y„cos(8), Qus= Yrsin(8), (46)

+e,(QVO/M)sin[Q(z+Ut+u, )] (41) and

TABLE I. Sound velocity as a function of (q, u, gp) for one-dimensional continuum CV model.

0
0.1

0.2

U /Cg gp
——0.1

0.9901
0.9897
0.9883

gp ——0.5

0.8040
0.7985
0.7S04

C /CL

go= 1

0.5152
0.5085
0.4879

gp= 3

0.0942
0.0927
0.0882

go=5

0.0250
0.0246
0.0234

0
0.1

0.2

0.01
0.01
0.01

0.9899
0.9895
0.9880

0.8004
0.7947
0.7760

0.5077
0.5008
0.479&

0.0840
0.0825
0.0780

0.0143
0.0139
0.0126

0
0.1

0.2

0.02
0.02
0.02

0.9897
0.9893
0.9877

0.7966
0.7907
0.7714

0.4999
0.4929
0.4715

0.0733
0.071&
0.0672

0.001 95
0.001 50
0.000 16
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D=
dx

so that

D' bK—T Q (1 b—)D Y, 0
—Q(1 —b)D bD K—L Yg Q go

where go is defined by Eq. (25). The parameters

Ki.,T=Q[1—(U/ci. ,T) ]

(48)

(49)

results of surface-sensitive experiments such as electron
diffraction.

B. Equations for the vibrational spectrum

The vibrational amplitude ui for plate geemetry is ob-

tained from Eq. (41) when u is expanded about the
dynamic equilibrium amplitude uo. One finds that

ui/cL=V ui+(1 —b)V(V ui)+e,f .

DY, +(DQY, =DY, —QY,
' =0 at x =a .

The following abbreviations will be used:

dL, T ——cosh(KL Ta}, tL T ——tanh(EL Ta) .

(50)

(51)

The general solution of Eq. (48}which satisfies Eq. (50} is

are characteristic wave vectors for transverse- and
longitudinal-wave propagation associated with the homo-

geneous part of Eq. (48). The boundary conditions, Eq.
(43), become

where

f =Q (gol2)[2cos(8) —go Y»(x)]ui»,

8=Q(z+Ut), and sin (8)=[1—cos(28)]/2 has been re-

placed by —,'. The analysis of Sec. III shows that the

cos(28) term leads to higher-order corrections, namely go
terms.

To obtain the vibrational spectrum from Eq. (59), one
can expand ui in double Fourier integral

'1

h, (x;q, w)

Y» =KLsinh(KLx)AL/dL —Q sinh(KTx)3T/dr,

1;=gi —Q cosh(KLx)&L/dL+KTcosh(KTx)AT/dT,

(52) u~ —— q wexp i qs —wi

ih, (x;q,—w)

(53)

where g, =go/[1 —(U/cL) ] as defined by Eq. (11). The
coefficients A L T are given by

AT ——2QKLtLAL/[(Q +KT }tT], (54)

AL ———Qgi(Q +KT)(cL/cT) /Do, (55)

with

Do=[KT+Q ] —4Q KTKL(ti. ltT) (56)

3. Dynamic equilibrium displacement when v=o

When U g&cL, which is usually the case, one can get a
good idea about the behavior of uo from Y„and Y, at
U=O given by

When x is close to either surface x = —a or + a, the

dynamic equilibrium displacement amplitudes vary rapid-

ly as one goes toward the center of the plate brause
Qa =2kpa &&1, even for samples a few micrometers thick
as is the case in the BR s'unples.

+h, (x;q —Q, w+w„)

+ h»(x;q +Q, w —w~ )] (63)

pL, T(q. w) =[q' —(w/cL, T)']'"
are the characteristic wave vectors associated with the
homogeneous part of Eq. (62).

The boundary conditions for Eq. (62) are

Dh, (x;q, w)+gqh, (x;q, w)

=Dh, (x;q, w) —qh, (x;q, w) =0 (65)

The functions h, and h, are real with the inclusion of the
imaginary coefficient in Eq. (61) and satisfy

D bpz (1——b)qD h 0
—(1 b)qD bD— pi h,2 2 (62)

where

I" =Q (go/2)[ go Y,—(x)h, (x;q, w)

Y„=(ging/2)exp[ —Q (a —x))

X [(1—b)Q (x —a) —1]/[b (1—b)], (57)

at the boundaries x = —a and + a.
One can show, by direct substitution, that a particular

solution of Eq. (62} is

Y, =go {1 —(g/2)exp[ —Q (a —x)]

X[(1—b)Q(x a}+b]l[b(1——b)]I . (58)
h~ =(cL/w) qD[ Y(x,pT) —Y(x,pL)],

(cL/w) [ pTY(xtipT)+q Y(x~pL)] ~

(66a)

(66b}

The magnitude of the dynamic equihbrium surface dis-
placement u„ is

~
Y„~ /Q and at x =a it is

gp(g/2)/[b ( 1 —b)Q]. Coppersmith and Varma estimate

go =-0.1, and if b=0.25 the dynamic equilibrium displace-
ment near the surface could amount to 0.16 A. This u,
displacement varies rapidly near the surface and ap-
proaches zero as one goes toward the sample center, in a
distance of the order of 1/kF =10A. This may affect the

with D =dldx, and

Y"(x,p) pY (x,p—)= F(x;q, w) . — (67)

The left-hand side of Eq. (67) is simply the scalar wave

equation for transverse or longitudinal waves when p =p T
or p„. Since pT~pL ——q when w=0, h,&

and h~ are fi-
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nite as w~0. Eqllation (67) is satisfied by the particular
solution

The Green's function

(76)

Y(x,p) = J dx' Ui(x „p)Ut,(x „p)F(x',q, w),

w'here

U, (x,p) =sinh[p(a —x)]/[sinh(pa)]

R1ld

Uz(x,p) =sinh[p (a +x)]/[2p cosh(pa)]

(68)

(70)

G ~(x,x';q, w) =L~(q, w) Y~(x;q, w) Y~(x',q, w)

With

Yp(x;q, w)=(ci /w) [—2q UF(x jpL)

+{pT+q'»F{x'pT }I

(77)

(78)

are regular functions of p. In Eq. (68) the symbols x&
and x & have their customary meaning, iiamely x & means
x «x', etc.

The choice of Ui and Ut is dictated by symmetry re-
quirements. If F( x)=+—F(x), Y( —x)=+Y(x) and
Y'( —x}=+Y'(x). This means that Eq. (68} can be used
for both transverse, h, ( —x)= —h, (x), and longitudinal,
h, ( —x)=h, (x), excitations.

L~(q, w) =(w/ci ) pTtanh(pTa)/DF

with

DF(q, w)=4pTq (TT/TL) (pT+q )

(79)

(80)

C. Plexure modes

The vibrational spectrum for flexure modes can be
determined from Eqs. {65), (66), and (68) requiring
h„(x)=h, ( —x) and hg(x)= —hg( —x). This last condi-
tion requires that F(x)= F(—x) a—lso. Hence, the gen-
eral solution of Eq. (62) for flexures modes in a plate is

TT L ——tanh(p T i.a)/(p T La) .

The function U~ in Eq. (68) is given by

Uz(x;p) =sinh(px) /sinh(pa ) .

Finally,

(81)

(82)

h, =h,~+qAi. cosh(pi, x)/cosh(pt, a)

—qA Tcosh(p Tx) /cosh(p Ta ),
hg ——h~ —q'Ai sinh(pt, x)/cosh(pi. a)

+pTATsinh(pTx)/cosh(pTa) . (72)

Since h, (x)=—h, {—x}, F(x)= —F(—x) and the boun-

dary conditions at x = —a will automatically be satisfied
if they are satisfied at x =a. This is consistent with the
appearance of only two constants AT and A 1, in Eqs. (71)
and (72). h~ and h+ are defined by Eq. (68) and can now
be calculated using the symmetry properties of Eq. (68)
for the half-space 0& x &a. For convenience, this solu-
tion will be labeled Yz are shown below:

YF(x,p) = J dx'g(x, x',p)F(x'), (73)

where

g (X,X;p) =S11lh[p (a —x)]slIgl(px )/[p siilh(pa)] (74)

for x &x'. For x &x', interchange x and x' in Eq. (74).
For brevity, only h, (x;q, w) will be given in this paper.

It completely fixes the vibrational spectrum since F(x}
depends on h, and not h„. Using Eqs. (73}, (65), and the
boundary conditions at x =a, the coefficients Ai and AT
are fixed. One finds, after much algebra, that

h, (x;q, w)= J dx'G~(x, x',q, w)F(x';q, w), (75)

a
h, (x;q, w) = dx'KF(x, x',q, w)h, (x';q, w),

0

where

(84)

with

G~'(x, x';q, w)=(ci /w) [q g(x,x',pL) —pTg(x, x',pT)],
(83)

where g(x,x';p) is defined by Eq. (74).
The Green's function G~(x,x', q, w) is made up of

terms, each of which is an analytic function of q and w.
In particular, the functions which contain p, pT, or p„
have power-series expansions that are euen functions of p,
pT, or Pi so no branch cut appeirs in any of the func-
tions. For small values of q and w, Lz(q, w) has a pole at
the fiexure-mode resonance frequency wF(q) given by the
zero in DF for small values of q and w.

As mentioned previously, h„and h, obey the boundary
conditions for arbitrary F(x;q, w). Hence, one can use the
integral equation for h, (x;q, w) to construct solutions
for h, (x;q+Q, w —w„), which involve h, (x',q+2Q,
w —2w„) and h, (x', q, w). The terms involving
(q —Q, w +w„} give new terms involving (q, w) and
(q —2Q, w +2w„). If one repeats these processes, an in-
tegral equation is obtained for k, (x;q, w) which depends
upon a new iterated Green's function called KF{x,x', q, w)
which is correct to g0. Our new integra1 equation be-

K~ ' ———Q (go/2)G~~'(x, x',q, w) Y,(x'}+(Q go/2)z g f dx" G~ '(x,x";q,w)G (x",x';q', w'),
g, W

where the summation contains t~o terms:

(86)



6952 G. %'. I.EHMAN 33

(q', w')=(q+Q, w —w„) and (q —Q, w+w„) . (87)

The pole in G, coming from DF(q, w), for small (q, w), dominates the behavior of the flexure kernel KF(x,x';q, w).
Since G~ ' is separable, one can write Eq. (85) as

h, (x)=LFY~(x)&F+ J' dx'KF '(x,x',q, w)h, (x'), (88)

where the constant AF is fixed by

2 2 2 2
0

Ar —— dx —Q (gp/2)Y, (x')YF(x';q, w)+(Q gp/2) g dx" Yr(x";q, w)G~(x",x';q', w') h, (x', q, w) .
q, N

(89)

h, (x;q, w) =LF(q, w)AFb, (x;q, w), (90)

and then

The method used to obtain the vibrational spectrum
from Eqs. (88) and (89) is analogous to that used in Sec.
III for the one-dimensional problem. There, one set
A„=(gp/2}ApG 8 for n+0 and obtained an equation
for Ap. Setting the coefficient of Ap equal to zero fixed
w (q). Here, one can set

bg(x;q, w)= YF(x;q, w)+ dx'Kr '(x,x';q, w}bz(x', q, w) .
0

(91)
Equation (91) can now be solved as a completely deter-

mined function of x, q, and w for small (q, w) to get the
flexure modes. [Of course, LF(q, w) possesses higher-
order poles corresponding to higher-frequency vibrations,
but we are not interested in these in this paper. ) When h,
from Eq. (90) is substituted into Eq. (89), one obtains an
equation for the vibrational spectrum since the coefficient
of Ar must vanish The.result corrmt to gp terms, is ob-
tained by dropping the last term in Eq. (91}, i.e., take
b, = YF so that

1=LE(q,w)(Qgp/2) f dx —2Y,(x)YF(x;q, w)+Q g I dx' YF(x';q, w)G (x,x',q', w') YF(x;q, w) .
q', u'

(92)

The integrals in this equation can all be evaluated analyti-
cally. However, for small q and w it is necessary to make
power-series expansions of rather involved functions. In
particular, for small ( q, iv },

Lr(q, w)= (cTpT) ab—/[w [wF(q)] j—,

where

wF(q) =2qcT(qa) [(1—b)/3]'

(93)

(94)

is the well-known fiexure-mode frequency [cf. LL, Ref.
15, Sec. 25] for an infinite plate of thickness 2a.

For samples whose length l is a few millimeters, only
modes whose wave vectors q are greater than 2n/l can be
excited. This is the case with the TaS3 experiments of BR
and Brill. In this situation, one obtains from Eq. (92)

The presence of the qa factor in Eq. (97) comes from the
term vc/ci. in Eq. (96), which dramatically reduces
b,wF/ws as a function of the CDW drift velocity v.

Equation (32) shows that (hc/cL)b„&k is orders of magni
rude larger than that for flexure waves

D. Rayleigh-mode frequencies

The procedures discussed in the precahng subsection
can be extended to examine Rayleigh modes near the sur-
face of a thick plate. In the absence of CDW coupling,
one can read LL (cf. Sec. 24). The functions Lr, YF, and
G~ must be changed, of course, with the poles of the ap-
propriate L function fixing iv(q). For brevity, the details
will be omitted and some of the results reported. One
finds

where

(95) Ewe /wa =- —0.2gp(v/cT)

for the case (cT/ci ) &~1.

(98)

(c/c T )'=(qa) [4(1—b)/3 —(gp/6b)(3+ 8vc/c L )], V. DISCUSSION

6wr/wr —gp(qa)(v /c——r )/[3(1 —b))' (97)

provided Qa &&1.
In the weak-coupling limit, go ~&1, the change in the

flexure-mode frequency due to the CDW in the presence
of an electric field can be expressed, using Eqs. (94)—(96),

The Coppersmith-Varma model has been generalized
to treat the influence of a s1iding CD%' at long wave-
lengths for arbitrary lattice distortions leaving the CD%'
undistorted.

A derivation of the CV model was given in Sec. II
based on the FL model and applied to the one-
dimensional problem in Sec. III for an arbitrary coupling
gp ——Vp/McL. It was noted that the sound velocity c in
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5w / w= dg o ( Uc /c t, ), (99)

where d is a constant of the order of unity.
For a thin rod, the unperturbed frequencies are given by

wF ——2q a (E/12p)'/, (100)

which in comparing Eqs. (94), (42), and (45) corresponds
to

this one-dimensional CV model can become arbt«artiy
small if go is large enough. The results are summarized
in Table I.

In Sec. IV the vibrational spectrum for plate geometry
was investigated for flexure modes in considerable detail
for a sample of thickness 2a. An equation determining
the flexure-mode frequency was derived and analyzed for
the case ga »1, qa &gl in the weak-coupling limit

go &&1.
As Coppersmith and Varma note in their paper, it ap-

pears that the CV model in the weak-coupling limit leads
to hw/w changes described by

BR noted 1% changes in the flexural resonant frequency
of TaS3 samples of length 1-3 mm for electric fields
above threshold. CV estimate go-=0. 1. Taking q —10
cm ' and u/cL —10, the CV result would give, for bulk
acoustic phonons, b,w/w —10 7. The results for flexural
waves in the CV model is even smaller, as shown by Eq.
(97'), by qa —10 with a —= 1 p,m.

One must conclude that the weak cou-pling CV model
cannot explain the BR flexure-mode data. This observa-
tion does not rule out a modified CV approach being ap-
propriate. As noted in our derivation of the CV model in
Sec. II, one should definitely use a more realistic phase
function 4(r, t), especially for small U near threshold.
Moreover, if go is not small one cannot use perturbation
theory to solve for either uo, the dynamic equilibrium dis-
placement vector, or ui, needed to derive the flexure-
mode spectrum for small q and w.
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