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Inversion electrons on narrow-band-gap semiconductors in crossed electric and magnetic fields
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Electrons in inversion layers of narrow-band-gap semiconductors in the presence of an external

magnetic field parallel to the interface (crossed-field configuration} are considered theoretically. A
three-level model of the a"P theory is used to describe electrons in external electric and magnetic
fields, taking into account the main features of the band structure in InSb-type semiconductors: a
small energy gap and a strong spin-orbit interaction. The electric potential is taken to be in the form
of a triangular well and the presence of the interface is accounted for by appropriate boundary con-
ditions for the wave function. An analytic description of the eigenenergies is obtained for arbitrary
intensities of the homogeneous electric and magnetic fields, from magnetic surface levels (vanishing

electric field) to purely electric subbands (vanishing magnetic field). Experimental data an electron
cyclatron resonance in InSb in the presence of crossed fields (the bulk limit) are theoretically
described and interpreted using an analogy between electrons in narrow-gap semiconductors and rel-

ativistic electrons in vacuum. The influence of a transverse magnetic field on the energies of inter-

subband resonances in metal-oxide-semiconductor structures is discussed. The relation of the
theoretical results obtained to existing and possible experiments is emphasized throughout.

I. INTRODUCTION

Investigations of electrons in semiconductors in the
presence of crossed magnetic and electric fields offer in-
teresting physical possibilities, both experimental and
theoretical. ' The crossed-field configuration is fundamen-
tal for classical and quantum transport phenomena in
solids and it has attracted a renewed interest in connection
with the discovery of the quantum-Hall effect in two-
dimensional systems. It has been predicted that in
narrow-band-gap semiconductors the crossed-field case
could serve as an example of a "semirelativistic" electron
behavior, governed by the energy-momentum relation
analogous to that for free electrons in vacuum.

Optical investigations of bulk semiconductors in
crossed magnetic and electric fields began with a theoreti-
cal work of Hensel and Peter, who indicated that an in-
fiuence of electric field on Landau levels should lead to
olxiervable effects in cyclotron resonance transitions in de-
generate valence bands of I's symmetry, and with the
work of Aronov, s who pointed out that electric field ef-
fects should be visible in interband magneto-optical tran-
sitions. This was followed by the pioneering experimental
work of Vrehen et al. ,

6 who used germaniuin p-n junc-
tions in order to apply electric fields up to SX10 V/cm
in interband magneto-optical investigations. It was ob-
served that at low E/B values, one deals with magnetic-
type electron and hole behavior, leading to oscillatory
magnetoabsorption and dispersion effects, whereas at
large E/8 ratios, one deals with nonquantized electric-
type behavior, leading to nonoscillatory Franz-Keldysh ef-
fect. This behavior was not understood in the framework
of one-band effective-mass approximation (EMA), which
predicted magnetic-type behavior for all E/B ratios, as
long as electron scattering was negligible. The puzzle was
resolved by Zak and Zawadzki, who showed that the va-

lidity itself of the one-band EMA implies that the E/B
ratio is not too large. Then the two-band EMA descrip-
tion for crossed fields was developed, which correctly
predicted both types of behavior. ' New intraband
magneto-optical transitions in crossed fields were
described for nonparabolic bands of narrow-band-gap
semiconductors.

However, the experimental work performed with the
use of crossed fields has, until present, been limited to ger-
manium, which is not a narrow-band-gap semiconductor,
and to interband experiments, whose interpretation has
been obscured by the degenerate character of the valence
band in this material. Only recently has it become possi-
ble to apply high electric fields to narrow-gap semicon-
ductors, owing to advanced technology of metal-oxide-
semiconductor (MOS) structures. ' The surface electric
field in a MOS structure (as well as in a semiconductor
heterojunction) is transverse to the interface, so that
directing an external magnetic field parallel to the inter-
face one creates a crossed-field configuration for the in-
version charge carriers. An important feature, which con-
siderably simplifies interpretation of intraband optical ex-
periments is an absence of the plasma shift in such a
structure. ' '

When working with MOS or heterojunction structures
one must take into account the presence of an interface.
This aspect of the problem is related to investigations of
magnetic surface levels in metals and semimetals, in
which one studies electron orbits near the metal surface in
the presence of a magnetic field. As the electromagnetic
radiation may not penetrate the metal bulk, one is able to
observe exclusively the surface states within the skin-
depth layer near the surface. Since in metals and
semimetals the Fermi energy is high in the band and
many Landau levels are populated, one deals with high
quantum numbers and the semiclassical quantization pro-
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cedure is applicable. ' '
The spacing of levels due to magnetic quantization is

proportional to 1/m', while the spacing due to quantiza-
tion in a constant electric field (triangular potential} is
proportional to (1/m')'~ . Hence, in semiconductors with
large effective masses (like Si or GaAs), one may treat the
effect of a magnetic field parallel to the interface as small
and use a perturbation procedure for its description
However, in narrow-gap semiconductors with small effec-
tive masses of charge carriers, the magnetic and electric
effects are comparable in magnitude, the perturbation
procedure is not applicable, and one must find a descrip-
tion of electron motion in the presence of crossed fields
and a barrier treating both fields on an equal basis. This
is the purpose of the present paper.

Since we are interested in narrow-gap semiconductors
of InSb type, the description must take into account the
real band structure of these materials, i.e., a small energy

gap (leading to a strong interband k p coupling and re-
sulting in the band s nonparabolicity) and a strong spin-
orbit interaction (resulting in a large spin-sphtting Lande
factor). The simplest description accounting for these
features is provided by a three-level model of band struc-
ture, which we use throughout. The model also has the
important property of describing both magnetic type and
electric type of motion, depending on relative intensities
of the two fields. However, as will be seen from the fol-
lowing considerations, the presence of a barrier tends to
make the electron motion more "electric,"so that the dis-
tinction between both types of behavior is not as dramatic
as in the purely three-dimensional case. The main simph-
fication of our description is related to a triangular elec-
tric potential, i.e., to the assumption that an electric field
confining electrons in an inversion layer is constant in
space. We do not attempt self-consistent calculations of
the potential, which, for the realistic band structure and in
the presence of an external magnetic field, would
represent a formidable numerical problem. As shown
below, for homogeneous electric and magnetic fields per-
pendicular to each other we can obtain analytical eigenen-
ergies for arbitrary field intensities from the magnetic sur-
face states (8+0, E=O) to the purely electric subbands
(8=0, E+0). The simplicity of the results allows us a
clear physical interpretation.

In the second section we present the ir P theory for
electrons in magnetic and electric fields and specify the
three-level model of band structure. In the third section,
the eigenenergies for the magnetic type of motion are ob-
tained and a bulk limit of the magnetic ease is considered.
Magnetic surface states are described (E =0 case). Fur-
ther, the electric type of motion is treated and the eigenen-
ergies are obtained using semiclassical quantization. This

section contains also description of electric subbands
(8=0) in narrow-gap semiconductors. In Sec. IV we dis-
cuss the preceding results using mostly the above-
mentioned analogy between electrons in narrow-gap semi-
conductors and relativistic electrons in vacuum. Section
V contains a brief summary.

II. a-P THEORY

A. General theory

In this section we describe the k p theory for conduc-
tion electrons in small-gap semiconductors in the presence
of crossed electric and magnetic fields.

The initial Hamiltonian for our problem reads

H = P + U(r)+ Vo(r)
1

2mp

+ i z(crXVVO) P+ps. B rr, .fi
(1)

4m pc

where P=p+e A is the kinetic momentum. A is the vec-
tor potential of the magnetic field B, e is the absolute
value of the electron charge, mo is the free electron mass,

pq is the Bohr magneton, and o are the Pauli spin opera-
tors. Vo(r} denotes the periodic potential energy of the
lattice and U(r) is the slowly varying electric potential
energy due to external electric field. The spin-orbit in-
teraction and the Pauli term are written in the standard
form. We shall present here a derivation of the ir P
theory without going to the k space. The derivation is
valid as long as the vector and the scalar potentials are
slowly varying functions over a unit cell.

We look for the solution of the eigenvalue problem

H% =~% (2)

in the form

(4)

ei denote the band-edge energies at the point I'. Func-
tions ui(r) are orthonormal: (I/&)(ui

~
ui ) =50 where

the integral is carried over the volume of the unit cell Q.
On the other hand, the envelope functions fi(r) are slowly
varying over the unit cell. Inserting Eq. (3) into Eqs. (2)
and (1},we obtain

+(r)= g fi(r)ui(r), (3)
I

where the summation is over the energy bands. ui(r) are
the periodic parts of Bloch functions taken at k=O (the
Luttinger-Kohn-amplitudes), satisfying the eigenvalue
problem

r

1 P + Vo(r)+
& z (oX VVo) p ui(r)=ennui(r) .

fi

2mp 4m pc

e fg+ ui~'+ Uui+ Vous+» (~X&VO).(pu~)+
2mp 4mpc 4m pc

i 2 uI(aXV Vo) eA+piiB cr.u& f&(r)=.eg f~(r)u& .
4m pc I

(I ul }+ (pui} p+ uip + (pui). A+ ui(p. A)+ A.(pui)+ ui(A. p)
I 2 l l e 8 8

2mp mp 2mp 2mp 2mp 2mp 2mp

i ui(o XV Vo).p
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In Eq. (5) we have neglected VU compared to much larger
VVO. We multiply both sides of Eq. (5) from the left by
(1/Q)ui', and integrate over the unit cell. Since A(r),
U(r), and f~(r) are slowly varying, they may be taken out
of the integral sign. Making use of Eq. (4) and of the
orthonormality of ur, the initial eigenvalue problem takes
the form

1 2P +si+ U —s 5i i+iri i P
2@ip

eluding the spin-orbit interaction to the first order of per-
turbation theory. The zero of energy is at the
conduction-band edge:

Q) =ES), 6)=0;
Q2 =lS), 82=0;

Q3 =R+ f, E3= —Fg

Q4 =8 $, c4= —Fg

+i a& ~n fI{r}=0

where

l
& &I I p+, (o x V vo)

I » &

4m pC
{7)

B. Three-level model

We consider a three-level model of the band structure at
k=O (the I point). The I'6 level (s type symmetry) is
separated by the energy gap es from the two-fold degen-
erate I s level (p type), which is in turn split off by the
spin-orbit interaction 5 from the I 7 level (p type). In the
following, we neglect the small spin-orbit contribution
both in the interband matrix element of Eq. (7) and in Eq.
(6}. We also omit the free-electron term in the diagonal
part and the Pauli spin term in Eq. (6), as they give only
small contributions to the effective mass and the spin g
value of electrons in InSb.

%e choose, for the periodic parts of the Luttinger-
Kohn functions, the following states (in the x,y, z crystal
coordinate system}, which diagonalize the Hamiltonian in-

The above set of coupled differential equations for the en-

velope functions essentially contains no approximations.
If the electric potential is due to a constant electric field,
U(r) =eEr, then it is rigorously diagonal in the band in-
dex, even if it is not slowly varying over the unit cell.
The Pauli spin term in Eq. (6) contains both diagonal and
nondiagonal terms.

In the procedure of Luttinger and Kohn, ' one applies a
canonical transformation in order to eliminate the off-
diagonal part iri i P and to amve at a one-band equation
with an effective mass mo replacing the free-electron
mass mp. This procedure is valid under certain restric-
tions, which depend on the problem in question {Zak and
Zawadzki ). These restrictions may be generally summa-
rized by the criterion that the electron energy counted
from the bottom of the band must be small compared to
the energy gap between the band in question and any oth-
er energy band. However, in small-gap semiconductors
one often deals with electron or hole energies which are
comparable to that of the gap. In such situations, the
one-band equation is not applicable. The second ap-
proach, due to Kane, essentially follows the procedure of
perturbation theory for nearly degenerate levels: one con-
siders a finite number of close-lying levels, treating them
exactly and leaving out all other levels in the first approx-
imation. We follow this scheme in our considerations of
InSb-like semiconductors.

A=( —By,0,0), U(r)=eEy . (10)

One can now express the envelope functions f&,f5,f7 and
f4,f6,fs by the functions fi and f2, respectively, and
substitute them into the first and fifth equation of the set
given in Eq. (9). In doing this, one deals with terms pro-
portional to commutators (P„,eEy) (see, e.g., Ref. 21).
These terms are responsible for Zener interband tunneling
in the electric field, but they give negligible contribu-
tions to electron energies as long as the energy gap c~ is
not too small. Similar terms couple also fi and fz func-
tions but, again, the coupling is very weak under usual ex-
perimental conditions. Hence, in the following we
neglect these terms. Taking into account the commuta-
tion rules

(P„,Py)= ih IL, (Pg—,P„)=(Pg,PY)=0, (11)

where L =(vari/eB)' is the Landau radius, we finally ob-
tain the following decoupled equations for f=f& or
f=f2

(s —U)(eg+ s —U)(e~+ b, + e U)—
—(as+ 76+e —U)a P + To f(r) =0,2 2 ~ Z+~

(12)

where 8+ {X——+iY)/~2 and the symbols t and &, denote
spin-up and spin-down functions, respectively. S and
X, F,Z are periodic functions, which transform like atom-
ic s and p functions under the operations of the
tetrahedral group at the point I'. Although we have
neglected the spin-orbit contribution to the nondiagonal
terms in the Hamiltonian, the zero-order functions do in-
clude the effect of the spin-orbit interaction. Making use
of the identity

x P=a+P +x P++KP, ,

where x+ ——(~, +is~)lv 2 and P+ (P, +iP„)l——v 2, the set
of equations given in Eq. (6) can be represented (includ-
ing the above-mentioned approximations) in the matrix
form on the facing page [Eq. (9)], where

(i/mo)(—S
I pz I

Z~.
In the following, we consider electrons in crossed mag-

netic and elo:tric fields 8=(O,O,B) and E=(O,E,O). We
choose
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Q Q Q

I

+Q Q
l

l

l

l

Q Q Q Q

l

I

N

+
bC

I

Q Q Q+ ~~

l

4)

Q O Q N Q + Q
Oe

I

fi(r)=exp(ik x+ik, z)Pi(y) . (13)

After some manipulation, we obtain the following eigen-
value equations for the two projections of the total angu-
lar momentum j=+—,':

+ r0 (y —yo) 0+(y) =0+0+(y» (14)
d ~0

d 2

where

where + and —signs correspond to fi and fz functions,
respectively.

In the absence of external fields ( U=O, 8=0, P~Sc),
Eq. (12) reduces to the Kane dispersion relation for
narrow-gap semiconductors. In case of an external mag-
netic field, Eq. (12) reduces to the description of Landau
levels obtained by Bowers and Yafet. 5 The last term
within the large parentheses determines the spin splitting
of levels due to magnetic field.

Equation (12) describes the conduction I 6 band, the
light hole I's band, and the splitoff I 7 hole band. The
heavy holes in the above three-level model are infinitely
heavy (s= —es), since their finite mass results from k p
interaction with distant bands, not included in the above
description.

In arder to make the solution of Eq. (12) more tract-
able, we consider the range of electron energies
e«ss+2b, /3. As it will be seen below, the strong in-
equa&ity is not always valid for elix:trans in inversion
layers on InSb (ex+2k/3=0. 8 eV). However, the above
approximation furnishes a reasanable description, taking
into account twa essential features of the band structure:
the nonparabolicity of the conduction band (due to the
praximity of the valence hind) and the large spin Lande
factor (due to the strong spin-orbit interactian). For the
above range of energies we may neglect e —U in compar-
ison with sr+2k/3 and as+6 in Eq. (12). Then we ar-
rive at an equation that is quadratic in the energy s and in
the external electric potential. In view of the gauge
chosen in Eq. (10) we may also separate the variables
looking for solutions in the form

l

Q + O ~ Q Q Q

l

+4
O Q Q Q Q

f

e8 2e~E~

mo moF8

aSo=-
mom

a= —Ak„+eE 1+2e8
Pf O

E,8

2
P+ =~++

2mo co

flak, A k, + pfoga& .
2pt1 o 2' o

(15}

(16}

(18)

The effective mass m 0 and the Lande g factor at the band
edge go are defined as

2K 26+ 368

PygO 3' 5+E8
(20}
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~0 25
yygo 26+3cs

(21)

P+(y) =0 for y =0 and y = + ao . (22)

The problem of correct boundary conditions is related
to lifting of spin degeneracy due to an inversion asym-
metry of the interface potential and the spin-orbit interac-
tion. However, since we are concerned with relatively
strong magnetic fields, which result in large spin spht-
tings of electron energies, we do not engage in inversion
asymmetry considerations.

It follows from the form of Eq. (14) that we basically
deal with two types of solutions, depending on the relative
strengths of the magnetic and electric fields. The first
type for (e8/mo ) &2e E /mo es and the second type
for (e8/mo ) &2e E /moss We t.entatively call them
the magnetic case and the electric case, respectively.
However, as we show below, the presence of an interface
[expressed by the boundary conditions in Eq. (22)] some-
what complicates this simple division.

In the following, we often use the cyclotron frequency
co, =e8/m 0 defined with the band-edge mass m 0.

Equation (14) looks similar to the eigenvalue equation
for the harmonic oscillator centered at yo. However, the
boundary conditions for our problem are not those of the
usual harmonic oscillator. Namely, we assume that the
(x,z) plane at y=O represents an interface between the
semiconductor to the right and, e.g., an insulator to the
left. The electron may not penetrate into the insulator, so
that the wave functions should vanish at y=O for an in-
flnite potential barrier. In principle, as has been pointed
out previously, this boundary condition applies to the
complete wave function 4, given in Eq. (3). However, in
order to simplify the problem mathematically, we will ap-
proximate this condition assuming that, for the conduc-
tion band, it applies also to the main component of the
wave function, i.e., to fi and to f2 for the two spin orien-
tations, respectively. Thus we impose the following ap-
proximate boundary conditions on the solutions of Eq.
(14):

Eq. (14) takes the form

d, 4(q —qo)' -u0(-q) =0,
cog

where q =y/8, qo ——yo/R, and

(26)

1 A~++
2Pl 0 CD

(27)

Equation (26) represents the standard form of the dif-
ferential equation for the parabolic cylinder function. i7

The boundary conditions now read

P( q) =0 for q =0 and q =+ 00 . (28)

The electron energies can be obtained from Eq. (27) if
the eigenvalues a of Eq. (26) are known. The latter can be

on the value of the center coordinate yo, which determines
the electron position with respect to the barrier, and on
the value of co, which determines the width of the well,
i.e., the extent of the wave function. The corresponding
classical electron trajectories are shown in Fig. 1. It is
clear that the electron energies will depend strongly on yo,
if the electron is close enough to the barrier. If we divide
Eq. (14) by Ace and introduce the length

' 1/2

(25)

III. ELECTRONS IN CROSSED FIELDS

In the next sections we present quantitative results for
the eigenenergies of Eq. (14) with the boundary conditions
of Eq. (22) and discuss their physical meaning.

A. Magnetic case: General

We consider first the magnetic case

co =co, (1—y )~0,
where

(23)

(24)

0)
CJ
Cf

4)

Oxide 0 Semiconductor

is an important parameter for the problem. In the mag-
netic case there is y & 1 and, as follows from Eq. (15), we
deal with electrons in a parabolic potential well centered
at yo. The influence of the barrier then depends strongly

FiG. 1. Classical orbits of inversion electrons in a metal-
oxide-semiconductor structure in the presence of crossed electric
and magnetic fields EiB for different electron positions yo
{schematically). Orbit A lies inside the semiconductor and is not
affected by the presence of the interface at y=0; orbits B and C
result from periodic reflection at the interface.
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given analytically to a good approximation for three
ranges of qo values;

2.+i -~a&»—("+I)— qo" e, qo» 1
2m n~' (29a}

~g 1{n+—, )
u.= —(2n+ —', )+ (2n+1)qo, (q ~

&1
m nt

(29b)

—49o [ 4~(a+ 4 )Qo] 90 && —1 ~ (29c)

Equation (29a) has been derived by considering the
asymptotic form of the parabolic cylinder functions for
large negative arguments and looking for its zeros (for
qo »1 the argument q —qo at q=0 is large negative}. In
this case, the influence of the barrier is exponentially
small, since the barrier occurs far away from the average
electron position qo, where the wave function already de-
cays exponentially.

As far as the range of Eq. (29b} is concerned, the eigen-
values of Eq. (26) for qo ——0 are well known:
a„(qo——0)= —(2n+ —,} for n=0, 1, 2, . . . . They are ob-
tained observing that in this particular case Eqs. (26) and
(28) are satisfied by uneven harmonic oscillator functions.
One can expand the eigenvalues a„{qo) in a power series
of qo and Eq. (29b) represents the first two terms of this
expansion. 28

Finally, Eq. (29c) has been obtained using the Wentzel-
Kramers-Brillouin (WKB) quantization procedure. The
phase —,

'
results from the Bohr-Sommerfeld quantization

condition, in which the left-hand turning point (infinite
barrier) contributes the phase —,', while the right-hand one
(parabolic well} contributes the phase —,'.

Equations (27) and (19) can be used to express the elec-
tron energies by the eigenvalues of Eq. (14), as given ap-
proximately in Eqs. (29a)—(29c). After some simple alge-
braic manipulations we obtain

This equation follows from Eqs. (16) and (17}. Here kd is
defined as %cd ——m 0v&. Note that one can write

2' 2
2721 OUd

y = (kdL) = (33)
Kg Bg

Using this procedure the dispersion of the hybrid sub-
bands e„(k ) is obtained. Figure 2 shows the electron en-

ergies in the conduction band of InSb for a fixed electric
and magnetic field versus k„L for n =0,1,2 and k, =0. In
the calculation, we used numerical values for the eigen-
values a„of the parabolic cylinder functions.

As follows from the preceding discussion, large positive
k L values correspond to electrons in the bulk of the
semiconductor, away from the barrier. The increase of
the electron energies in this range is mainly due to the in-
crease of the potential energy of the magnetic orbit center
in the external electric field [see Eq. (38)]. The increase
on the left-hand side is due to the fact that the electron is
pressed very close to the barrier and oscillates rapidly in
its vicinity (see Fig. 1). At large positive k,L values, the
subbands for different indices n and spin orientations +
run parallel to each other, since the ei~envalues a„{qo)be-
come independent of qo ( —a„~n+ —,). This allows one

to observe sharp cyclotron resonance transitions. The
magnetic field causes spin splitting of the subband ener-

gies that is highest for the electrons in the bulk (qo-+ 00 ).
This features results from Eq. (31), in which the term

-2
+ Q)= 0

Ii
-2

e.=6k„u~+(1—y )' [(s /2) +e D+ ]'-
where

(30)
300—

(31)

k~L = (1 y) ~ qo+kgL 1+2—2 iyW

2 Fg
(32)

and U~ E/8 is the drift veloc——ity in crossed fields, trans-
verse to both of them (for y & I).

With these equations, one can calculate the electron en-
ergies as a function of the subband index n, the normal-
ized center coordinate qo, the momentum Ak„and the
spin orientation. However, for the puiyose of optical con-
siderations, it is more useful to knower the energies as a
function of the momentum Ak, rather than of the center
coordinate qo, since kt„ is conserved in direct optical
transitions. Once the energy is obtained from Eq. (30) for
a given qo, one can calculate the corresponding k„value
from

100—
I

— B=8T
E = 5xlO Vcrn

i ) I l ( l i i l l

-2 0 +2 +4 +6
k„I~O~m-')

FIG. 2. Eigenenergies of inversion electrons in crossed fields
calculated for InSb band parameters (magnetic case). In the
upper part lines of constant Fermi energy E~ in {k, k, ) space
are shown for the electron density n, =1.5)(10' cm 2.
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+ —,'goy&8 is independent of the center coordinate qo,
whereas the eigenvalue a„(qo) strongly increases at center
coordinates qo «» —1, i.e., at large negative k„l. values.

The cyclotron resonance energy c2+ —c~+ is visibly
smaller than s&+ —sz+, which is a direct consequence of the
nonparabolicity, well known from cyclotron resonance ex-
periments on bulk InSb.

In order to describe the occupancies of various sub-
bands n, one has to calculate the lines of constant energy
in (k„,k, ) space. An example of such a calculation for
the spin-split ground state 0+-and the first excited state
1+-is also shown in the inset of Fig. 2. Knowing the den-
sity of states:

p(k)dk„dk = I /(4' )dk„dk

0.0250

0.0200

I I

t ~0~ V . .
= " em

C le
I
l

l
I
I

for each spin orientation, we can calculate the number of
electrons contained within each Fermi line
(nq+ =6.3X10" cm, no ——5.4X10" cm, n i+

=2.0X 10"cm, n i
——1.3)& 10" cm 2). The Fermi en-

ergy ez shown in Fig. 2 corresponds to the total surface
density n, =15&10"cm

Knowing the k L values involved, one can calculate the
range of corresponding center coordinates qo. For the sit-
uation in Fig. 2i the electrons are contained between
—397 &yo & 293 A, so that the right-hand limit is, in fact,
located in the bulk: yo ——4.3R. This means that the elec-
trons with such orbit centers are in practice three-
dimensional, i.e., their wave functions are no longer influ-
enced by the barrier.

It follows from Fig. 2 that one should be able to excite
electrons also near the surface, which will result in reso-
nances at higher excitation energies. Such resonances
have recently been observed.

8. Magnetic case: SuL limit

If the electrons are located sufficiently far away from
the barrier, we may replace the boundary conditions [Eq.
(22)] by the conditions P(y =+oo)=0. Such a problem
has been considered before. s' The eigenvalue problem of
Eq. (26) then becomes identical to that of the harmonic
oscillator (as long as co &0) and the quantization can be
carried out immediately: a„= (n + —,

' ). —The same re-
sult can be obtained from Eq. (29a), neglecting the ex-
ponential term. The explicit solutions for the electron en-
ergies are again given by Eq. (30), where D„k no longer

depends on qo,

2

D„,, (y) =i', (1—y')'"(a+ —,)+, + —,go pa& .
2@iO

(34)

To enable comparison with experiments, the cyclotron
mass defined as

Ae8/m =c„—++
&
—c.„+-

is introduced. We carry out the calculation for k, =0, for
which the combined density of states is the highest.

In Fig. 3 we plot cyclotron masses in InSb, calculated

0.0150

0.0)2 5
0

E=O

l

7 8

FIG. 3. Electron cyclotron masses in crossed fields calculated
for InSb band parameters. The masses are given for the purely
magnetic case (E=O) and for two constant electric fields (mag-
netic case, bulk limit).

with the use of Eqs. (30}, (34), and (35) and the following
parameters: m o

——0.0136m 0, e ——0.2SO eV, and
go = —S1.3. The employed gap value is somewhat higher
than the real one (0.236 eV), which is a consequence of the
fact that in the theoretical model we have put the spin-
orbit energy b, = 00. The calculated masses for the spin-
up transitions are in very good agreement with experi-
ment, confirming validity of our description. For com-
parison, we also show in Fig. 3 cyclotron masses
(0+-~1-+) in the absence of an electric field. The corre-
sponding curve for E=O has been calculated from the ex-
pression

s=[(ss/2) +s D„+k i'i— (36)

where

D~ =~.«+ 2)+ .+ 2goos&
PRO

(37)

for k, =O. These formulas are obtained from Eqs. (30)
and (34} for E=y=O. They have been widely used to
describe magneto-optical and magnetotransport experi-
ments in narrow-gap semiconductors.

The results shown in Fig. 3 may be interpreted in the
following way. At high magnetic fields y «1, the elec-
tric term in the effective frequency co is negligible: co=co„
and the increase of the cyclotron mass is due to the de-
crease of the cyclotron frequency with increasing electron
energy as the magnetic field gets stronger. This is
described by the square root in Eqs. (30) and (36) and goes
back to the quadratic dependence of the eigenvalue A, + on
the electron energy in Eq. (19).
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At lower magnetic fields the electric term in co becomes
important [see Eq. (23)]. As the magnetic field B de-
creases it makes co smaller and smaller {y ~1) resulting
in the strong enhancement of the cyclotron mass, as de-

fined in Eq. (3S). This is in sharp contrast to the E=O
case, in which only the first effect occurs, as is seen from
Eq. (36) and the results in Fig. 3. The good agreement be-
tween experiment and theory in both E=O and E&0
physical situations confirms the validity of our model for
conduction electrons in InSb.

The one-band effective-mass approximation for elec-
trons in crossed fields may be obtained from Eqs. (30) and
(34) in the limit of large es values. One can then approxi-
mate (1—y )'~ =1—y /2. Developing the square root of
the square brackets to terms linear in D„k and neglecting

terms involving 1/ss, one obtains finally

E2
s=faoe(ii'+Y}+, +YgopaB+eEkxL Tmo

2mo

(38)

300—

loo—

0

I 1 I 1 I

-2 0 +2 +4 +6

k„(10 rrj j

In this parabolic approximation, the transverse electric
field shifts all Landau levels downwards by the same
amount, so that its effect may not be observed in cyclot-
ron resonance intraband experiments. However, as was
first pointed out by Aronov, the hole Landau levels are
shifted upwards by the same transverse electric field and
it is possible to observe a decrease of the interband ener-

gies in crossed fields using both absorptive and dispersive
interband magneto-optical effects. 6

Eg A'k,'
+as fico,a;(qo)+—

+ 2goPa&
E,g

2

where we have the simple relation qo=V 2k, l. between
momentum and center coordinate [see Eq. {32)]. The re-
sult is illustrated in Fig. 4.

It can be seen that in the bulk limit (large k values) the
energies do not depend on the electron position. Nonpara-
bolic effects in the orbital and spin quantizations are
clearly visible. The presence of barrier affects higher Lan-
dau levels more strongly, which is understandable since
the higher states are more extended.

Nonparabolic effects in magnetic surface levels have
previously been studied experimentally in bismuth and
have been explained theoretically using the semiclassical
one-band effective-mass approxiination (EMA} and the
subsequent introduction of a nonparabolic mass. The
present procedure gives a more complete account of non-

C. Magnetic surface levels ( E=O)

The above theory also applies to magnetic surface levels
as studied on metals and semimetals. In these materials
the Fermi energy by far exceeds the cyclotron energy and
magnetic surface levels become occupied also in the ab-
sence of an electric field ( E=0). From Eq. (30) we obtain

FIG. 4. Energies of magnetic surface levels calculated for
InSb band parameters. The pvave vector k„can be related to the
electron distance from the barrier, see text.

parabolic magnetic surface levels starting from the two-
band EMA including the electron spin.

D. Electrons in crossed fields: Electric case

As the parameter y of Eq. (24} approaches unity
(co~0}, the electron wave functions are progressively ex-
tended [R~ 00, see Eq. (25)], and the existence of the bar-
rier influences the motion more strongly. Also, the elec-
trons whose initial positions are well within the bulk are
now reflected from the barrier, so that their motion is ba-
sically electriclike, only weakly deflected by the magnetic
field. In other words, the magnetic field is in this case not
strong enough to prevent the electrons from reaching the
interface. Finally, for y=1, there is co=0 and R =00, so
that without the barrier, the electron motion becomes un-
bound and the quantization disappears. Thus, in the un-
limited space a sufficiently strong transverse electric field
destroys the Landau quantization. However, in the pres-
ence of an interface the electrons may not run away, since
they are reflected from the barrier. For co, & 2e E /asm o
we have, in Eq. (14), a parabolic potential barrier instead
of a parabolic potential well and the electrons oscillate be-
tween this barrier and the interface. The shape of the po-
tential and the classical electron orbits are shown
schematically in Fig. 5.

We consider first the case y= 1, i.e., the effective fre-
quency m=o. For a given semiconductor with band-edge
mass in o and gap energy ss, this condition fixes the rela-
tive E and B field intensities: B =E(2m o /ss )'~'. Equa-
tion (14) has no quadratic term and its solutions are given
by the Airy function. The energy quantization can be ob-
tained using the boundary conditions in Eq. (22) and the
known zeros of the Airy function. i However, a very
good approximation to the eigenenergies (up to a fraction
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400—

300-

0

FIG. 5. Potential energies, wave functions, and classical or-
bits for magnetic ( a, b) and electric ( c) type of motion for inver-
sion electrons in crossed fields.

of a percent3 ) can be obtained for this case with the use
of the semiclassical WKB quantization procedure, which
provides also a good insight into the physical situation.

We rewrite Eq. (14) in the form

,p„+ay /=A, +P,
Zm,' " (40}

where a and A, + are given in Eqs. {17)and (19), respective-
ly, taking into account the fixed E/B ratio of the present
case. We assume that a ~ 0, which means that the elec-
trons are confined in a triangulir potential well. In the
WKB procedure, pz is treated as a c number and it is
determined from Eq. (40). The semiclassical qu~ntization
condition is

100—

—8=3.9T
F =Sx/0 Yern

0 I 1 I ( I l l I I I l I I

-6 -4 -2 0 +2 +4 +6

k„(16 m )

FIG. 6. Eigenenergies of inversion electrons in crossed fields
calculated for InSb band parameters and the limiting case be-
tween magnetic and electric type of motion {co=0). In the

upper part lines of constant Fermi energy E~ in {k„,k, ) space
are shown for the electron density n, = 1.5 X 10'2 cm '.

pz y= n+ —,
' (41)

, py'+ay b'y' 0=~+—0
2m 0

(43)

where y, =A,+/a and the phase —,
'

is the sum of the left-
hand turning point contribution —, (infinite barrier) and
the right-hand one —, (linear potential). After the integra-
tion we obtain a transcendental equation for the energies:

[xg (1+x+P)+ ~ gc (me /mc) —,
' (k~L)2 ———,

' (ksl. )2]s~

1+2Px+ —k I.v 2P

=—,
' e(r + —,

'), (42)
2P

where a and A,+ are defined in Eqs. (17) and (19), and

e 2(E&}2

Eg

E' has been defined as

E'=E(1—5 )'~

where

Fg (1
2mo

(44)

(45)

{46)

where, as before, x+ ——e+/Ace, and P=hco, /es. An ex-
ample for the subbtuid structure is given in Fig. 6 and will
be discussed in the next section.

Now we consider the c ise 2e E /asm c & ro, . Equation
(26) is then the one for Weber parabolic cylinder functions
of the second kind. The energies may be quantized us-
ing the zero of the Weber functions and the botm&ry
condition (28). However, as in the case r0=0, it is much
simpler to use the semiclassical qmsntization procedure.
For the case B=O, such a calculation has been done be-
fore.2' We rewrite Eq. {14}in the form

p„=(2mc )'~ (A+ a2/4b +b (y —yc—)t]'~

ln w'hic11

(47)

yo+ (48)

The Bohr-Sommerfeld integral takes the form

is an important parameter for the electric case. Treating

pz as a c number and completing the square in Eq. (43),
we obtain
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( —eE'y +eE'yo —a~ }1/2

X ( eE—'y +eE'yo+a+ )'/ dy =Br(n + —,),
where

' 1/2
1/20+ =E, I+I

(49)

(50)

I

E
EQ

C)
0 ~

t4

400—

The WKB phase in Eq. (49) is the same as in Eq. (41).
The right-hand turning point y, of the classical motion is
determined by the zero of the first square root in Eq. (49).
This gives y, =yo a+ /—eE'.

The integration in Eq. (49} can be carried out analyti-
cally and the result is

300-

' 1/2
Fg

4eEVnr(n + —,
' ), (5 l)

2m 0
)00—

InSb

where

A =eE'yo —a+, B=eE'yo+a~ . (52)

Equation (51) represents a tratiscendental equation for the
energies s„(k„k,) in the electric case (5 & 1). The energy
is involved in yo [through a, see Eqs. (17) and (48)] and in
a ~ [through A, + and a, see Eqs. (19) and (50)].

The general case of crossed fields may be reduced to the
purely electric limit by putting 8=0. This gives 5=0 and
E'=E, and after a simple manipulation A and 8 become

—8=0
E = Sx10 Vcm

0 I l I I I

-6 -4 -2
I I I I

0 +2 +4

kx(10 m )

1 l

+6

A =E—Eg, B=Eg+E+Ey

where

'2

, (k, +k, )
282 0

(53)

(54)

400—

represents the energy of the free motion perpendicular to
electric field. This is exactly the result obtained previous-

ly for the purely electric case. '

Figures 7(a) and 7(b) show electron energies e„(k, ) for
various subbands at k, =0, calculated numerically from
Eqs. (51}—(54} for the electric case (5& 1}. In Fig. 7(a),
we illustrate the 8=0 case, i.e., electric subbimds. The
curves are symmetric with respect to the k =0 value and
the dependence e„(k ) is first quadratic and then becomes
linear. Both features are seen directly from Eq. (54). Fig-
ure 7(b) shows subbiuids in a transverse magnetic field
(5 =0.58). The dispersion relations s„(k~) are asym-
metric and the absolute values of the energies are shifted
upwards (diamagnetic shift). This effect is somewhat ob-
scured by the appauing spin sphtting.

The energy minima shown in Fig. 7 can be directly ob-
served in metal-to-semiconductor tunneling or in magne-
totransport experiments, where discontinuities of the
density of states are of importance. The shift of the ener-

gy minima to higher values with growing magnetic field
agrees qualitatively with a perturbation treatment for a
parabolic band. ' On the other hand, in order to theoreti-

300—

100—

—8=3T
E = Sx10 Vcm

I I I

-4
I I I I ) I l I

-2 0 +2 +4

kx{16 m )

I I

+6

FIG. 7. Eigenenergies of inversion electrons (a) in an electric
field (electric case, B=O) and (b) in crossed fields (electric case,
B+0) calculated for InSb band parameters. In the upper part
lines of constant Fermi energy E~ in {k,k, } space are shown
for the electron density n, =1.5 X 10' cm
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cally investigate how a transverse magnetic field influ-
ences intersubband optical resonances, one has to first
determine the value of k and k, involved in the optical
transitions for a given Fermi energy [see Figs. 7(a), and
7(b)].

Unlike in the magnetic case, the one-band EMA cannot
be recovered from Eq. (51): The reason is that, as men-
tioned in the Introduction, the one-band EMA for any fi-
nite E/B ratio always gives a magnetic type of band
structure [see Eq. (38)]. This will be discussed in greater
detail in the next section.

In the purely electric case (B=O) we can recover the
one-band EMA description. This is achieved by assuming
that the energies, as counted from the bottom of the con-
duction band, are small compared to the gap value es.

In this case one can develop the left-hand side of Eq.
(51}into a power series of the variable

il =(e—ei)/(eg+2ej ) «1 .

The first two terms of this expansion allows us to write
Eq. (51}in the following approximate form:

seen in Fig. 1. This feature is similar to the influence of
scattering in magnetotransport, allowing an electric
current to flow parallel to the electric field in the crossed-
field configuration, which is an electric-type property.

In Fig. 8 we show the absolute electron subband ener-
gies taken at the minima of the dispersion curves e„(k„)
at k, =O versus the magnetic field, starting from the
values of purely electric subbands. It can be seen that not
only the qualitative band structure goes continuously
from one case to the other, as illustrated by the above fig-
ures, but also the calculated energies have this continuity,
although they are calculated somewhat differently for the
magnetic, intermediate, and electric case.

It was noticed some time ago that there exists a striking
and far-reaching analogy between the behavior of elec-
trons in narrow-gap semiconductors and relativistic elec-
trons in vacuum. The crossed-field configuration can
serve as a spectacular illustration of this analogy.

In the absence of external fields, the energy-momentum
relation resulting from the two-band model is given by the
simplified Kane-formula

(es+2ei ) 2mii

' 1/2

(55)

e(p) =
2

1/2

+6' 2m,'
Eg

2
(57)

This formula can be used in case of weak nonparabolicity,
e.g., for GaAs. Finally, when only the first term of the
equation is retained and one assumes ej «es, the well-
known one-band EMA result for electric subbands in the
triangular potential is obtained:

1/3 fi (k„+k,~)
(n + —,) (eiriE) / +, . (56)

8mo 2m 0

where p=%c. It has the form of the relativistic disper-
sion relation for electrons in vacuum with the following
correspondence: a 2~0e and m o ~mo. It is easy to
see that for the band described by Eq. (57), the electron
velocity u; =Be/Bp; may not exceed a maximum value of
u =(es/2mo )'~ . This property can be also deduced by
analogy, observing that c =(2moc /2mo)'~ and using

IV. DISCUSSION: RELATIVISTIC ANALOGY

250— I I I I I I I I

In Sec. III we have discussed a continuous transition of
the electron motion from the magnetic to the electric type,
as the E/B ratio increases. The corresponding eigenener-
gies are shown in our figures, beginning from the purely
magnetic case and ending with the purely electric one.
Our theory uses the coupled-band scheme, i.e., the multi-
band EMA, reduced for not too large energies to the two-
band description, which takes into account the nonpara-
bolicity and the spin properties of the conduction band in
InSb-type materials. It should be emphasized again that
for the unlimited space the one-band EMA always gives
magnetic-type solutions, regardless of the E/B ratio.
This is a consequence of the fact that the decoupling pro-
cedure leading to the one-band EMA for crossed field is
valid only when (2m o /eg )/(E/B) « 1, which can be re-
garded as the definition of the magnetic case. On the
other hand, the two-band EMA for the unlimited space
gives magnetic-type and electric-type solutions, depending
on the value of the E/8 ratio. It should be noted, howev-
er, that the presence of an interface allows one to obtain
electric-type solutions also within the framework of the
one-band EMA. This is because the restriction of the
motion by the interface makes it more electriclike, as is

200

150

0+

50—
InSb

E = 5x10 Vcrn

0 I I I I I I I I I

0 1 2 3 B(T) 6 7 8 9 10

FIG, 8. Eigenenergies of inversion electrons in crossed fields
versus magnetic field. The minima of the dispersion relations
e(k„) [cf. Figs. 2, 6, 7{a), and 7(b)] are calculated for InSb band
parameters and a constant electric field E =5X10+ Vcm
The magnetic field at which the transition from an electric to a
magnetic type of motion occurs (y = 1) is indicated.
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the above correspondence. The maximum velocity is al-

most the same for different materials, since to a good ap-
proximation there is m 0 ~ es [cf. Eq. (20)]. u is of the or-
der of 10 cm/s, i.e., considerably smaller than c.

In the presence of an external magnetic field, the ex-
pression for the electron energies in the bulk limit [Eq.
(36)] has the form analogous to the expression for relativ-
istic Dirac electrons. Only the magnitude of the spin
term is somewhat different, as the latter is determined in
semiconductors by the spin-orbit interaction [see Eq. (21)],
which is of the atomic origin and has no correspondence
in the free-electron case.

It is well known that in the presence of crossed magnet-
ic and electric fields, the electron drifts with a constant
velocity v~ transverse to both fields. For free relativistic
electrons, this velocity is vq

—E/8 fo—r E/8 ~c (magnet-
ic case) and v~ =c 8/E for E/8 &c (electric case) (see,
e.g., Ref. 40). If a Lorentz transformation is made from
the laboratory system to a system moving with the drift
velocity, one eliminates from the equation of motion one
of the two fields. In the magnetic case the electric field
disappears and the magnetic field becomes 8'
=8(1—vq /c )'/. In the electric case, the magnetic
field disappears and the electric field becomes
E'=E(1—v~, /c )'/. Clearly, all other quantities of in-
terest should be transformed as well to the moving sys-
tem, in particular the four vector of momentum and ener-

gy
According to the relativistic analogy, the conduction

electron described by the two-band model moves in the
presence of crossed fields with the drift velocity
v~ =E/8 for E/8 & u (magnetic case) and with

v~ u28/E for——E/8 ~ u (electric case). It can be direct-
ly verified that the Lorentz-type transformation (for v~~ ~x

axis p» =p„and p,'=p, )

(58)

where

(59)

transforms Eq. (14) for crossed fields to either the purely
magnetic or purely electric case, depending on whether
the drift velocity vq or vd, is used. As far as the fields
are concerned, this is seen immediately from Eqs. (23) and
(45) for the two cases, respectively. Thus, in the magnetic
case the characteristic parameter that was defined in Eq.
(24) is simply y=v~ /u, and in the electric case [see Eq.
(46)] we have 5=v~, /u.

The result for electrons in the bulk of the semiconduct-
or (magnetic case) given in Eqs. (30} and (34} may be in-
terpreted in the following way: When a transformation to
the moving system is made, only the magnetic field is left.
The quantization can now be carried out with the result
given in Eq. (36) in which 8'=8(1—y )' in the orbital
part. Thus the energy in the moving system is given by
the square root of the terms within square brackets in Eq.
(30). However, the energy is observed in the laboratory
system, so that a transformation back to this system is

necessary according to Eq. (59) (with changed signs of
v~). This gives exactly the final result [Eqs. (30) and
(34)], which is in agreement with the experimental data. i

The energy difference measured in the cyclotron reso-
nance experiment e„+~—c„=%co may be now interpreted
as "the relativistic Doppler shift" co=(1—vq /u )' coo

where coo is the frequency in the moving system (see, e.g.,
Ref. 40}. This corresponds, in Eq. (30), to the factor
(1—y}'» in front of the square root. In the special
theory of relativity, the relativistic Doppler shift is re-

garded as a direct manifestation of the time dilatation.
A similar reasoning may be applied to the electric case.

The results for crossed fields [Eqs. (51) and (52)] and
those for the purely electric limit [Eqs. (53) and (54)] are
related by the corresponding transformations of the fields
and of the four vector of momentum-energy determined
by vd, . The boundary condition at y=O remains un-

changed since vd, is parallel to the x direction.

V. SUMMARY

We have calculated eigenenergies of electrons near an
interface in the presence of crossed electric and magnetic
fields. The underlying geometric configuration is realized
experimentally in metal-oxide-semiconductor structures or
in semiconductor heterojunctions when a magnetic field is
applied parallel to the interface. The theory is based on a
three-level k p model, which takes into account band's

nonparabolicity and a strong spin-orbit interaction. The
theory also provides a description of the limiting cases:
electric subbands (for 8=0) and magnetic surface states
(for E=O).

The presented description may be applied to narrow-

gap semiconductors with the conduction-band minimum
at the I point, that is to InSb, InAs, Gai, In, As, GaSb,
and Hgi, Cd„Te, but the general features apply also to
other materials, for example to narrow-gap lead chal-
cogenides.

We have considered throughout uniform magnetic and
electric fields, i.e., we have approximated the interface po-
tential by a triangular potential well. This should be re-

garded as a rough approximation to a self-consistent po-
tential, but it provides tractable analytical expressions for
the hybrid states, which allow one an intuitive discussion
of the physical situation.

The three-level effective-mass approximation describes
two distinct types of solutions for electron states in
crossed fields: the magnetic-type solution when the drift
velocity vd E/8 is smal——ler than the maximum electron
velocity u = (ss/2m o

)'~ possible in the conduction band,
and the electric-type solution for higher E/8 ratios.

We have emphasized a striking analogy of the described
electron behavior in narrow-gap semiconductors to the
behavior of relativistic electrons in vacuum. This analogy
provides an interesting interpretation of the results and it
can be advantageously used in the calculations.
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