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Shallow donors in magnetic fields in zinc-blende semiconductors. I. Theory
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In the weak-field regime (cyclotron energy ( effective Rydberg) the donor associated with the

parabolic minimum of the conduction band may be treated as a hydrogen atom in a magnetic field.
We review and compare the existing variational and adiabatic models pointing out those which are

most useful for the analysis of magneto-optical data. In the high-field regime (cyclotron energy &p

effective Rydberg) multiband ("nonparabolic") calculations are necessary. In this case we develop a
new approach (analogue of the adiabatic method in the parabolic case) obtaining simple expressions

for the energy levels, the wave functions, the selection rules, and the chemical shifts. In view of the

recent high-pressure magneto-optical experiments we discuss the effect of pressure on all determined

quantities. We also formulate the generalization of our multiband adiabatic approach.

I. INTRODUCTION

The increasing quantity and quality of magneto-optical
data involving intradonor transitions in semiconduc-
tors' 7 require more and more sophisticated and accurate
theories to interpret the results. The problem of a donor
(or an exciton) in a magnetic field has gained additional
interest because of its similarity to the hydrogen atom in
super strong magnetic fields, on white dwarfs and pul-
sars. However, even for a spherical and parabolic shape
of the conduction-band edge (and this is the case for
zinc-blende semiconductors at the I point of the Brillouin
zone) there are important differences between the donor
(or exciton) and the hydrogen atom. 'o The first consists
in the presence of screening of the donor potential. The
second arises for strong magnetic fields or large quantum
numbers n when the Landau level energy Ace, (n+ —,) be-
comes comparable to the gap width Es. In such a case,
the one-band, parabohc effective-mass approximation
(EMA) is inadequate and should be replaced by a multi-
band ("nonparabolic") approach. If we express the mag-
netic field in dimensionless units y=Rco, /(2Ry ) (Ry'
denotes the effective Rydberg) it turns out (see Sec. III)
that the parabolic model of the donor works typically only
up to y-10 for the ground state and fails at even lower y
for the excited states. For the hydrogen atom the "para-
bolic approach" also breaks down due to relativistic ef-
fects which, however, become important in a much higher
region of y (y&10 ).

The high-field limit y & 10 can be achieved experimen-
tally only for donors in narrow-gap semiconductors like
InSb or Hg, ,Cd~Te where 1 Ry' —1 meV. Therefore
most of the theoretical papers published as yet deal with
the one-band, parabolic case. The energies mere either ob-

tained variationally" ' or by the so-called "adiabatic
method" valid in the high-field liinit. In the last de-
cade there has been a flood of papers in atomic physics
and astrophysical journals devoted to the parabolic case
(for a review see Ref. 27, more recent references may be
found in Ref. 28). Various sophisticated numerical
methods have been developed yielding very accurate re-
sults but at a high computational cost. Unfortunately
many authors did not notice old solid-state papers, redis-
covering some results. We review and compare various
parabolic models in Sec. II. They are useful for the
description of low-field donor states and they illustrate
the quality of some approximations used in multiband
models.

Previous multiband calculations (developed mainly for
the interpretation of magneto-optical data in InSb) had
some deficiencies which we wanted to avoid. The ap-
proach of Larsen involves fairly complicated numerical
calculations and yields the results for just a few donor
states. The paper of Lin-Chung and Henvis' contains
some errors which practically cancel the whole nonpara-
bolic effect. Zawadzki and Wlasaks' simplified the ap-
proach of Larsen and obtained general expressions for ar-
bitrary donor states. They, however, neglected some im-
portant terms in the Hamiltonian so that their model
overestimates the binding energies. Moreover, both Lin-
Chung and Henvis and Zawadzki and Wlasak use fairly
inaccurate trial functions. Therefore in Sec. III of this pa-
per we develop a new multiband approach which yields
simple expressions for arbitrary donor states. Nonpara-
bolic effects become important in the high-field region,
therefore we apply the trial functions accurate in that re-
gion. Our model may be regarded as a generalization of
the adiabatic method to the multiband case. It is similar
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to the approach introduced for the excitons by Rees32 and

by Altarelli and Lipari. In Sec. III we determine the
donor eigenstates in a Coulomb potential, the selection
rules for the optical dipole transitions and the chemical
shifts due to the localized portion of the impurity poten-
tial (in the first-order perturbation theory). We also
present the generalization of our adiabatic approach so as
to improve its accuracy in the low-y region.

The transition energies and the chemical shifts are
determined in magneto-optical experiments. Recently,
such experiments were performed under high hydrostatic
pressure, ' therefore in Sec. IV we present our theoretical
curves as a function of the magnetic field or of the pres-
sure. Calculations are performed for donors in InSb and
the results are compared with previous models. Their
comparison with the experimental data is the subject of
the following paper. The effect of pressure on the EMA
Hamiltonian is discussed in Appendix A. Some useful
matrix elements are given in Appendix B together with
the simplified version of the parabolic calculation of Al-
drich and Greene. ' The exact expressions for the Landau
states from the three-band model of Bowers and Yafet are
shown in Appendix C.

II. PARABOLIC CASE

with

2
0 2 2 1/2(p+z )

(2a)

Ao ———V —iy +z c) Yp (2b)
aq

where y=Aco, /(2 Ry ) and the cylindrical coordinates
p, qr, z were introduced. The fact that the Hamiltonian A
(and thus also the energies and wave functions) depends
only on one parameter y facilitates the tabulation of the
energies and can be used to obtain the values of some

Within the one-band EMA the electron bound to a
Coulombic donor in a uniform magnetic field $=(0,0,8)
is described by the Hamiltonian

2

A =, (p ——A}— (1)
2m

where A is the vector potential of the field, m ' and ep are
the effective mass and the dielectric constant, respectively.
The simplified description of the screening, represented by
Ep neglects two factors which may be important: (1) pola-
ron effects (sometimes also described by the so-called
dynamical screening3s) substantial in polar crystals and (2)
magnetic field effect on the screening (both interband and
intraband) which will destroy the spherical symmetry of
the potential. The first effect turns out to be negligible in
InSb 29 the second requires further investigations. In Eq.
(1) the spin terms have been dropped as they only shift the
energies by constant amounts, not influencing the transi-
tion energies. Choosing the symmetric gauge
A=8/2( —y,x,0) and using the dimensionless atomic
units [energy in Ry'=rn'e /(2A ep), length in effective
Bohr radii az Aep/(I e——)] we obtain

quantities from the experiment without even solving the
Schrodinger equation '36 (this is no longer true in the mul-
tiband case}. The form of P also implies that the mag-
netic field effect will be larger for more delocalized states
while the Coulomb-field effect decreases with increasing
p. The y dependence separates in A so that the eigen-
states will contain an e' ~ factor, M being the azimuthal
quantum number. Another good quantum number is the
parity n =+1 with respect to z. Because of the Coulomb
term in (2) the Hamiltonian A is not separable and there
are only approximate methods for determining its eigen-
states. Different approaches have been developed in
essentially two regions of y: y»1 hereafter denoted as
the high-field region, and y & 1 further referred to as the
low-field region. In the low-field region the eigenstates of

were usually constructed from the hydrogen like wave
functions. In the high-field regime where the magnetic
field terms dominate over the Coulomb potential (at least
in the direction perpendicular to the field) the expansion
in Landau states was more appropriate. The high-field re-
gion was important for astrophysicists (y-10 on neutron
stars) and for solid-state physicists (y-10 in narrow-
band-gap semiconductors). However, in the latter case the
parabolic model fails at y-10 (see Se:. III} and some ef-
fects of purely "nonparabolic origin" may arise even for
y-1 [e.g. , spin doublets in GaAs (Ref. 37}]. Therefore
the high-field case in semiconductors requires special
treatment which will be developed in Sec. III.

(r,e,q&) =gfI(r ) Y( (e,y),
I

(3)

where Y~~ are the spherical harmonics and the summa-
tion runs over even or odd values of I [the z parity of Yil
equals ( —1)' ]. Inserting (3) into the Schrodinger equa-
tion, multiplying by Yi~(e, q&) and integrating over the an-
gles (see Refs. 38 and 28) we obtain a system of differen-
tial equations for fI(r} which may be solved numerically.
The energies are tabulated in Ref. 28 for many low-lying
states and for many values of P=y/2. Very accurate en-
ergies for arbitrary fields may be obtained by interpola-
tion. Several level crossings occur in the region
0.01&y~1. The wave functions obtained numerically
were used to calculate the dipole matrix elements for vari-
ous optical transitions and these were also tabulated in
Ref. 28. Similar results have been obtained variationally
by specifying the form of f~(r), usually as a linear com-
bination of some given functions. ' ' The variational
problem then reduces to the eigenvalue problem for a fi-
nite order matrix. However, the above-mentioned
methods although powerful, are fairly complicated nu-

A. Low-field region

For y&0.01 the ma netic field terms in A can be
treated as perturbations ' (Zeeman effect}. The levels
are usually labeled as the zero-field states they originate
from. In case of some excited states that are degenerate at
8 =0 one has to consider their appropriate combinations
(e.g., 3dp and 3sp). In the whole region y & 1 the best re-
sults for the eigenstates of P were obtained from the fol-
lowing expansion;
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merically. Therefore, if one is interested in obtaining the
wave functions it is worthwhile to mention some varia-
tional calculations with simple forms of trial functions
tending to hydrogen-atom states when 8~0 (Refs. 29,
14, and 20}. The best results were obtained in the ap-
proach of Larsen. In Table I we have calculated some
energies which for y&10 are only slightly worse than
those from Ref. 28. Another approach that can be used to
obtain fairly accurate energies and wave functions for ar-

bitrary fields was introduced by Aldrich and Greene ' and
is discussed in the next section (and in Appendix B).

B. High-field region

We first introduce the eigenstates of A 0 (Landau states)
corresponding to the eigenvalues y(2n+I)+k . In the
adopted symmetric gauge they can be written in the form
exp(ikz) F~( p, y) where M &n and

y¹!
2n'(N+ iM i

)!

1/2
iMq& !M! /2 —cr/2 ~

with N =n ——,'(M+
~

M
~
), n=yp l2. The eigenstates

of the full Hamiltonian M can then be written as a com-
bination of Landau states (they form a complete set} with
arbitrary n and k (the Coulomb potential does not mix the
states with different M values}. Thus

P~~(p, qr, z) =gf„(z)F„sr(p,t),
where

g„(z)= Jdk a„(k}e'~ .
27r

(5b)

Vg (z) = —Jdq fdpp 2 2, q2 F~F„sr . (6b)
(p +z )'

Numerical solution of the system (6a) was obtained in
Refs. 39 and 28 and again the extremely precise values of
the energies for many states under the n =0 Landau level
are tabulated in Ref. 28 as a function of P= y/2. It turns
out that with increasing y the coupling between various
Landau states decreases and for y »1 fairly accurate en-
ergies and wave functions can be obtained by retaining
only one term in (5a), i.e.,

year (p, g,z) =g„(z)F~(p,q )

J dka„(k)e' F~(p,p} .
27r

Consequently, the energies are obtained from a single
equation (6a) with V„„ for n'&n omitted. This is the so-
called adiabatic approximation. ' ' It consists in as-
suming that the donor states may be constructed solely
from the nearest-lying Landau subband. The eigenstates
are labeled by n, M, and P; last quantum number
numerates various solutions of (6a) and equals the number

Inserting (5a) into the Schrodinger equation, multiplying
by F~(p,p} and integrating over p and qr we get a system
of ordinary differential equations for g„(z):

,g„(z)+g V„„(z)g„(z)=[E—y(2n +1)]g„(z),
Cfz yg'

(6a)

of nodes of g„(z). The energies obtained from numerical
solving of Eq. (6a) (with V„„ for n'~n omitted) are
shown in Table I. The adiabatic approximation, intro-
duced in Refs. 22 and 23 can be also described as the as-

sumption, that for strong fields the motion in the direc-
tion perpendicular to the field will be approximately the
same as for the free Landau electron.

The modified adiabatic method introduced by Balderes-
chi and Bassani and, independently, by Tanaka and Shi-
nadazs allows for the extension of its applicability down to
y= 1 (or even lower, for the excited states). The ground-
state energies are shown in Table I. It can be seen that for
y »1 this method slightly overestimates the binding ener-

gy because of neglecting some terms in the Hamiltonian
(see Ref. 25).

There have been many variational calculations assum-
ing the adiabaticlike form of the trial function: the
pioneering works of Yafet et al. "(generalized in Ref. 31),
Wallis and Bowlden, ' and others. 'i' ' In Table I we
show the energies obtained from these simple but rather
inaccurate approaches. These trial functions have also
been applied in multiband calculations of Refs. 30 and 31.
The errors introduced by poor trial functions can be com-
parable to the effects introduced by nonparabolicity (see
Sec. DI).

We also describe the method of Aldrich and Greene '

somehow similar to the expansion in Landau states. It
consists in constructing the wave function from Gaussians
(in p and z variables) which yield simple analytical expres-
sions for the matrix elements of A . In Appendix B we
show how to simplify the calculation of Aldrich and
Greene if we are interested in the eigenstates of A which
do not need to be orthogonalized (as is often the case for
the observed donor states which differ either by the M
value or by the parity). The original paper ' was devoted
to exeitons where only the M =0 even-parity states are
observable. Due to the simplification we obtained accu-
rate energies (see Table I) by considering the matrices
9X9 (or 6X6) instead of 120X 120. The results are good
for any value of y. For low and high fields one should
take more Gaussians in the p and z direction, respectively.
The trial functions of Yafet et al. and Wallis and Bowl-
den are the special cases of those of Aldrich and Greene.
We also found that in the region 1 & y & 500 the adiabatic
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method is practically equivalent to the variational calcula-
tion with the trial function g„(z)F„M(p,p), g„(z) being the
combination of two Gaussians (see Appendix B). These
double-Gaussian functions contain three variational pa-
rameters (in Table I we display the corresponding ener-

gies) and in view of their simplicity we have also used
them in our multiband version of the adiabatic method
(see Sec. III). The ratios of the "true energies" determined
in Ref. 28 to the energies obtained with the double Gauss-
ians are also shown in Table I (we shall call them correc-
tion factors for the double Gaussians}.

Finally, in arder to illustrate the superiority of the ex-
pansion (5) over the adiabatic assumption {7) (especially in
the low y region) we have calculated the binding energies
variationally with the trial function being the combination
of two Landau states:

f&z)Pow{p 0')+elf i {z)FlM{pg)
PoMp(pig ~z)

(1+a )
2 in

where fIi(z) and fpi(z) were taken as double Gaussians af
Appendix B. In (8) we have altogether seven variational
parameters. The matrix elements of 4 can be easily ex-
pressed by those given in Appendix B and the resulting
energies are shown in Table I.

Summarizing this section, the eigenstates of the para-
bolic Hamiltonian A [Eq, (2)] can be most precisely
determined by numerical solution of the system of equa-
tions (6) in the high-field region or of the system resulting
from the expansion (3) in the low-field region. Similar
precision can be obtained in multiparameter variational
calculations' ' ' although the restricted subspace af tri-
al functions may cause some artifacts especially for the
higher excited states. The energies of most af the ob-
served states are tabulated in Ref. 28, together with the di-
pole matrix elements for optical transitions. Accurate and
simple method for arbitrary magnetic field is the simpli-
fied version of Aldrich and Greene calculation, described
in Appendix B. It can be used to determine the wave
functions, which for y &100 may also be obtained from
the variational calculation of Larsen or, for y & 20, from
the adiabatic method. The adiabatic method for
1 & y & 500 is practically equivalent to the variational ap-
proach with a double-Gaussian trial function. Still, for
donors in semiconductors it must be generalized to
the multiband case (Sec. III}. High precision of magneto-
optical results require the similar precision of the theory
(about 1%) therefore the simple trial functions of Refs.
11, 12, 15, and 20 are not sufficient.

It is interesting to note that there still exist controver-
sies concerning the connection of the high-field ( Mn, P)
and the low-field (N, l,M) labeling of the eigenstates of (2)
(see, e.g., Ref. 40}. However, the best existing calculations
confirm the noncrossing rule for the levels of the s une M
and parity. ' This rule also implies that the (n, M, P)
adiabatic levels with M ~n and n &1 will merge into the
continuum in the low-field region. The experimental evi-
dence against the noncrossing rule does not look con-
vincing and the theoretical arguments are based on the
modified adiabatic calculations ' applied in the low-
field region (where they are very inaccurate).

We also comment on the selection rules for the electric

dipole transitions between the eigenstates of 4 . As we
mentioned, the oscillator strengths for many important
transitions are tabulated in Ref. 28. For the accurate
eigenfunetions they can be determined from the matrix
elements of {p—e/c A) or r (see, e.g., Ref. 21). However,
with the adiabatic functions which are correct for large r
(where magnetic terms dominate the Coulomb terms) it is
much better s to use the matrix elements of r:

$8CO
{&mp"o I

~
I & 'w'p'"o)= {4Mpiio I

A''r
I 0 'u'p' iso)

C

where 4 is the perturbation introduced by the radiation
field with the vector potential A'(divA'=0}, uo is the
Bloch function at k=O. Decomposing A' r=A' r+
+A'+r +A,'z with r+ ——(x+iy)/~2, A+ ——( A„+iAr) /
~2 and using Eqs. (C7) from Appendix C we immediately

obtain hP even, /En=0, +1, ddf =+1 for A'+ polariza-
tions, and dP odd, b,n =BATE =0 for A,

' polarization. Us-

ing the momentum matrix elements [Eq. (C6)] in Eq. (9)
we would not obtain the hn =0 transitions for A'+ which
include the important (000)-+(010}line. Such a mistake
was made, e.g., in Ref. 31. The selection rules for b,n do
not hold in the low-field region, where many Landau
states contribute ta the wave function [see Eq. (5)]. In the
high-field region for donors in semicanduetors nonpara-
bolic effects become impartant and the selection rules in
that case will be considered in the next section.

III. NONPARASOLIC CASE

We start from a simple estimate of y=kco, /(2 Ry*).
Obviously 1 Ry'=(m'/mo){13. 6 eV)/eo For tw.o bands
separated by the gap Ez we have A'z/m'-Pzo/Ez where
Po is the standard momentum matrix element between the
two bands. In most zinc-blende materials moPo/R —10
eV so that Ry'-Ez lap and

%o,

2E
(10)

Therefore in the region y »1 we deal with %co, compar-
able to the band gap. In such a case, the one-band EMA
fails and we have to use a multiband approach. ' This
means that we choose a set of bands lying close to the
conduction band (in zinc-blende structure one usually
takes the I 6 conduction band, I's heavy- and light-hole
bands, and the I 7 spin-orbit split-off valence band}. The
interaction between these bands is treated exactly while
that with all other bands may be included in the second-
order perturbation scheme. In this way for the donor
problem we obtain (in the appropriate basis of periodic
functions from the I' point)

A =A o+ V(r),

where the "kinetic part" A o already includes the magnet-
ic field terms and is a finite order matrix operator (8 X 8
in the models of Bowers and Yafet ' or Pidgeon and
Brown ). The potential energy V(r) is a diagonal matrix
in the same representation. We assume that we know the
eigenstates of A o (conduction-band Landau states):
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~0/~k, =E:«*}W~k, * (12)

which are multicomponent, slowly varying envelope func-
tions. To obtain the total wave function the components
of the envelope function should be multiplied by appropri-
ate periodic amplitudes from the considered bands and
summed up (see, e.g., Appendix C and Ref. 34). The in-

dex s =+1 denotes two possible spin states. Generalizing
the adiabatic method described in Sec. IIB we assume
that the eigenstate of 4 may he constructed solely from
the Landau states of single ( n, M,s} subband, i.e.,

where k stands for k, . This form of the donor envelope
function guarantees its orthogonality to lower-lying eigen-
states of 4 . The Hamiltonian P 0 possesses the eigen-
states far below the conduction band, namely, the
valence-band Landau states. These states are only slightly
perturbed by the repulsive (for the holes} Coulomb poten-
tial and their mixing with the conduction-band Landau
states can certainly be neglected. This "orthogonality
problem" does not exist in the parabolic case.

The square modulus of the function (13}is

~Pawl�

/are~= J l~i l'~&ma
I
/ark~~k ~&4~

p(r) =f+"a&~„(r)dk, (13)
The binding energy of the (n, M, P,s) donor state (expecta-
tion value of M becomes (with minus sign)

r

E~p= fdk[E'«}—E:(o}]I
aII' I'(W~a

I P~k}+fdk fdk'at'aI(W~i
I
I'I @srk } (W~p I /sr p» (15)

where we subtracted the subband-edge energy E„'(0}.
Treating af as some trial function of k, we may choose it
so as to minimize E~p. All we need are the eigenstates
of 4 0. The double integral in Eq. (15) factorizes into in-
dependent integrals over k and k' so that the binding en-
ergy could be obtained numerically from the above equa-
tion. Please note that we avoid working with the compli-
cated matrix A 0 (compare, e.g., Refs. 29 and 31) immedi-
ately obtaining the scalar expression (15}. In the following
we shall specify 4 0 and we shall further simplify Eq. (15)
in that particular case.

Fairly accurate description of the conduction band of
zinc-blende materials and its magnetic field variation may
be obtained from the model of Bowers and Yafet.~' Three
close lying I s, I 7, and I s bands are taken into account,
their interaction with all othei bands is neglected. The en-
ergies of the Landau levels E„+-(k}and the corresponding
wave functions f~k are given in Appendix C. Equation
(C2} allows one to calculate numerically the kinetic part in
Eq. (15), for any assumed form of af. The potential ener-
gy in Eq. (15) becomes [using Eqs. (C3}and (C4)]

P T

(W~p I
I'

I &~p}=fd& 14 «}
I
'I'.~(»+3}'«+

2 I fF.,(» I
'I'. ;si .«)—

+}'«+
2 [Ifz,(» I'+21', +8&}I'] .I.+, sr+«)

de, dfF.,+a
+C 2

dz dz
(16a)

where

PP(z) = fdk afe'~,
21r

l eikZ
fE(z) = dk

E+E'(k} '

(16b

expect k —1). In that region the variation of E+E„'(k) in
the denominator of Eq. (16c) can be ignored, so that

x(z) =-
E +E„'(0)

Es(b +Ex)
25+ 3' (16d)

and V~(z) are given in Appendix 8. Expression (16}
may be further simplified if we note that the coefficients
ag of the expression (13) should be localized in the small-
k region, consistently with the EMA (in atomic units we

This means that we neglect terms of the order
k /[Es+E„'(0)]&&1. Consequently, two last terms in
Eq. (16a) have to be rejected. The same approximation
should be made in the kinetic energy part, i.e., the energy
difference in Eq. (15) has to be determined from Eq. (C2)
with the same accuracy. Also the norm of our eigenfync-
tion [determined from Eq. (14) with the use of Eq. (C5)]
simplifies if we neglect terms of the order of
k /[Eg+E„'(0)]. In this way Eq. (15) becomes
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+la nd
Eggs p Qgg Z

+ ~~p+3XC

l —sn+
1+5

(E +El )2s 2 ~" ~hf ~~+~c + +
(E E') (E 6 E'}

with

C(3E„'+3Es+2b,)

(E„'+Es)(E„'+Es+6,)+E„'(2E„'+2Ez+b, }—3y C(2n +1)

(18a}

(18b)

(4n+2 &) (2n + 1+&) (18 )
(Es+E„') (Es+&+E;)

where E„'=E„' 0} should be determined from Eq. (C2)
and V„Mi1

——
~
p~(z)

~
V~(z)dz. Here, instead of

treating a$ as a trial function we use its Fourier
transform Pi'(z). We have shown in Sec. IIB that for

y p&1 accurate results in the parabolic case may be ob-

tained with the help of the double-Gaussian trial function,
therefore we also use it here for P~(z). The formulas for
the matrix elements appearing in Eq. (18a) for a few states
observed in magnetooptical experiments are given in Ap-
pendix B; they can be written in a general (but cumber-
some) form (see Ref. 31).

Equation (18a) differs from the corresponding equation
(6a) obtained in the parabolic case (note that for y/Es ~0
they coincide). The potential energy is the weighted aver-

l

age «V~p, V„+1M+IiI, and V„ IM IiI. This affects
the binding energy in various ways. The second impor-
tant modification introduced by nonparabolicity (errone-
ously neglected in Ref. 30) is the fraction in the kinetic
energy part, representing simply the increasing effective
mass at the bottom of the considered {n,s) Landau level.
This fraction is always less than 1 (tends to one when

y /Ez ~0) so that the absolute value of the binding energy
increases. For all considered states the second modifica-
tion was more important than the first so that "nonpara-
bolic energies" were larger than their parabolic counter-
parts. The effect of nonparabolicity increases with y and
is more pronounced for the excited states. It also in-
creINes with n due to the increasing effective mass. Nu-
merical results will be discussed in Sec. IV.

Having determined the energy we can write down the
formula for the wave function with the same accuracy,
i.e., neglecting k /(Es+E„')«1. From Eqs. (13) and
(14) with the help of Eqs. {C3), (C4), and (C5), we obtain
the normalized donor eigenfunctions in the form

l p
P P/~i'=, q f +~,+iv'3yCn ', piv'yC(n +1)0 ~n+I, M+I

(M„+)I~z Eg+E„+ g +E+

dyP dye

Ez+ 6+En+ Es+E„+ Es+ b, +E„+

dye dp~ FnM d nM

f~p ——
I 0,0, i v 2C— , i I/C— ,piF~,(M„-)I~ E,+E„E,+6-+E„

(19a)

3C(1)~n+ I,M+ I —.+C~n —I,M —I +.+2C en —I,M —I
(19b)

where the upper sign is for M &0, the middle for M =0,
the lowest for M ~ 0. The normalizing factor M„' is given
in Eq (18c). Th.e components of the above vectors should
be multiplied by the appropriate Bloch amplitudes u„{r),
given in Appendix C. For arbitrary ( n, M) and P=0, 1 the
functions g~iI are orthogonal. For p=2, 3, . . . , they
should be orthogonalized to all lower-lying states with the
same (n,M) and the same parity. Neglecting the terms

I

k /(Es+E„') we obtain, that P~(z) with P=2,3, . . . ,
should be orthogonal to all P~(z) with P' &P of the same
parity.

The above wave functions (together with periodic am-

plitudes) can be used to obtain the selection rules for elec-
tric dipole transitions between the g~iI states. Similarly
to the parabolic case these selection rules should be deter-
mined from the matrix elements of A' r and again it is
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convenient to decompose A' r=A' ~++~+~ +~,'~, .
After some calculation we obtain, that for the spin con-
serving transitions M =0 we have the same selection rules
as in the parabolic case: hP even, lLM=+1, b,n =0,+1
for the polarizations A'+, bP odd, Xlf =b,n=0 for the
polarization A,'. For fields such that y &10 where our
adiabatic approximation is not accurate, hn may be arbi-
trary. This explains the observed intraimpurity transition
with b,n=2, 3, . . . , reported in Ref. 44. However, with
increasing field such transitions should vanish. Due to
the fact that g~p are not pure spin states, the spin-flip
transitions (&=+2) are possible. For M= —2, in the
A'+ polarization we get hill =0, b,n =0, 1, bP odd, in the
A' polarization we have ~=2, hn =1,2, hP odd, in
the A,

' polarization ~=6,n =1, hP even. Unfortunate-
ly, in many cases the experiment does not confirm these
simple rules, ' indicating the presence of other perturba-
tions, allowing for some "forbidden" transitions (e.g., the
Coulomb fields of ionized impurities).

Formulas (19) can be used to determine important (and
measurable) quantities, which are the chemical shifts of

~Eaop= (&—~op I Vi~ I itaop)

0) I'{sI v, Is&
2m'

(20a)

and for M=+1

the donor states, originating from the localized portion of
the impurity potential Vi . As long as the relative energy
shifts due to Vi are small, we can determine them from
the first-order perturbation formula. We assume V, (r)
to be tetrahedrally symmetric and localized in the region
much smaller than the cyclotron radius or the Bohr ra-
dius. We can therefore expect that only the states non-
vanishing at the impurity site (r=O) will be affected by
Vi~{r). In the parabolic adiabatic model only the states
with M =0 and P pair can have nonzero chemical shifts.
The form of our g~y functions implies that we can also
expect the chemical shifts for the states with M=+1, P
pair. For M =0 we obtain

["+ z(1 M)j (2+Ms) (1—Ms) p g yhE' p=(rt/ IiI Vi I
|tr' p)=, r~, , +

M„' (Es+E„') (Es+~+E,')' (20b)

—k /(ye ) —k /(ype )

(yd/2)'"+ (ad/2)'" (21)

where S and X are periodic functions (see Appendix C)
and the atomic units were used. When returning to ordi-
nary units the above expressions should be multiplied by
ag (emerging from the volume element in the in-
tegrals). Here it may be noted that in previous nonpara-
bolic models (Refs. 29 and 31) the wave functions had
rapidly varying cusps at r=0 [due to the presence of V(r)
in the denominators] so that g(0) and, consequently, the
chemical shifts were difficult to determine.

Before we proceed any further we comment on the ac-
curacy of the approximations which we made. In the
derivation of Eq. (18a) we have neglected the terms of the
order k /(Eg +E„'). In order to check this approximation
we have calculated the energies EN++a and Ei+io from the
exact expressions (15), (16a), (14), (C2), and (C5), using a
Fourier transform of the double Gaussian for ak, i.e.,

The energies obtained from the exact expressions are
shown in Table II together with the energies obtained
from the approximate Eq. (18). In the calculations we
used InSb parameters given in Sec. IV. The agreement is
excellent (of the order of 0.1%)which proves that neglect-
ing the terms k /{Eg+E„') was fully justified.

Another point which we investigated was the possible
(due to nonparabolicity) coupling between /~+f1 and
g„~g states considered by some authors as important for
the spin-flip transitions. This coupling is possible only
for M+1=M' and it is proportional to h. Therefore the
(000+) ground state does not couple to any (O,M', P' —)
state but the (010+ ) state has a nonvanishing matrix ele-
ment of V(r) with (001—). Still, we found that the influ-
ence of this coupling on binding energies was totally negli-
gible (less than 0.01%) in agreement with the estiinate of
Lars en.

It is important that in our treatment we approximate
directly the binding energies which, for y »1, are only

TABLE II. The (000+ ) and (110+) binding energies in InSb determined from the exact expressions
(14)—(16), (C2), and (C5) and those determined from Eq. (18) where the terms k i/(Es+E„') have been
dropped.

Eooo

8110

1.3622
1.3623

0.8641
0.8641

3.3398
3.3406

2.2929
2.2935

6.0418
6 QAAA

4.6536
4.6583

7.8170
7.8211

6.4260
6.4360

14.9281
14.9448

13.9508
13.9890
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small fractions of E„+-(0). If the binding energies are ob-
tained by subtracting the approximate donor energy E+-
from E„+-(0), the relative error will increase. This was the
case in Ref. 31 where the authors neglected the second
and third power of the Coulomb potential and the com-
mutators of p and V. It did not affect very much the to-
tal donor energy E+but -changed significantly the binding
energy E„-+(0)—E+. T-he YKA trial functions used in
Ref. 31 are also far from being accurate (see Table I).
Another nonparabolic calculation (Ref. 30), is based on
even more simplified trial functions of Wallis and Bowl-
den (Table I) and contains an error in the kinetic energy
part of E„'~y. Therefore up to now the only accurate non-

parabolic approach was that of Larsenz9 where no impor-
tant tertns were neglected and the variational functions
were very precise in the region 0(y &100 (Table I}.
However, the model requires numerical two-dimensional
integration and describes only the first few donor levels.
We shall compare the results of Refs. 29 and 31 with our
calculations in the following section.

In order to increase the accuracy of our approach in the

low y region we can proceed as in the parabolic case [see
Eq. {5)],i.e., we may construct the donor wave function
from many Landau states

{(hf =gfdkak/nMk (22)

The spin mixing has been neglected here, as in the adia-
batic model. Inserting (22) into the Schrodinger equation
with A =P 0+ V we immediately obtain

g fdk(E„' E+—u„'k + V)akg~k ——0 . (23)

Here we used the fact, that neglecting k /(Ez+ E„')« 1

E„'(k)=E„'+u„'k (24)

where u„ is the fraction defined in Eq. (18b). Projecting
Eq. (23}on g uk we can use the explicit form of the Lan-
dau states [Eqs. (C3) and (C4)] and the exact values of
their norms [Eq. (C5)]. Neglecting the terms
k /(Ez+E„') and multiplying the resulting equation by

exp i 'z ' we obtain

(z)+gy ( ) VM { }+z' n'

l —s
n ++

2
3yC n+' '

2
J

(Ez+E„')(Ez+E„' )

I j2

VM —
( )

+yC n+--1+s
2

l+sn'+-+
2

1/2

X
1

S S

2

(Ez+E; ){Ez+E„') (Ez+~+E„')(Ez+&+E„' )
V„+,'„,( )

where V ~ are defined in Eq. (6b), M„' is given in Eq.
(18c). This is the multiband analogue of Eq. (6a). From
the numerical point of view the modifications are
small —the second derivative is multiplied by a constant
u„' and the effective potential consists of three terms.
Neglecting the coupling between different Landau states
we arrive at the adiabatic Eq. (18a). The same sophisti-
cated numerical methods that were used to solve the sys-
tem of equations (6a) can be used to solve the system of
equations (25).

IV. NUMERICAL RESULTS FOR IISb

%'e shall illustrate our results on the example of InSb,
the best known narrow-gap material, available in excellent
purity. The high-field limit y ~&1 can be easily achieved
experimentally (at B=1 T y=6.5). For the three-band
model of Bowers and Yafet we adopt the following pa-
rameters, taken from Ref. 46: Ez(4.2 K)=235.2 meV,
6=803 meV, Po= —(iA/mo)(S ~P, ~

Z)=9.4X10
eVcm. Under the hydrostatic pressure the gap E~ in-
creases linearly with dEzldP=140 meV/GFa (Ref. 47)

while 6 and Po may be assumed constant. The effective
mass at the bottom of the conduction band can be written

3+ Ez(6+Ez)
2P02 (2h+3Ez)

(26)

which yields m'(P =0}=0.01355mo. The dielectric con-
stant for InSb eo(P =0}=16.8 (Ref. 48) and its pressure
dependence, calculated in our previous paper, is given in
Appendix A.

With the above set of parameters [Ry'(P =0)=0.653
meV] we calculated from Eq. (18a) the binding energies of
several donor states as a function of the magnetic field
[Fig. 1(a) and l(b)] and of the pressure at a fixed field
[Fig. 1(c)]. For comparison we also show the binding en-
ergies from the parabolic model and those obtained from
the nonparabolic models of Larsen and Zawadzki-
WI'asak. ' In all models we used the same trial functions
P~(z)F~(p, p) where (}t~{z)are the double-Gaussians given
in Appendix B (all necessary matrix elements are also list-
ed in Appendix B). We see that nonparabolicity in-
creases all binding energies but this effect is overestimated
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FIG. 1. Binding energies of several spin-up (nMP} donor states in InSb, shown as a function of magnetic field at P =0 [(a) and (b}]
and as a function of pressure at the fixed B=12 T (c). Capital letters denote different levels: A —= (000)/1s, B =—(010)/2p
C=—(020)/3d q, D=(001)/2po, E=(100), E=(110)/2p+ (there is no zero-field level for level E). Solid lines are calculated from
our adiabatic three-band model, dotted lines represent the one-band (parabolic) calculation. Circles show the results of Larsen (Ref.
29) while the dashed lines were obtained from the model of Zawadzki and %'fasak (Ref. 31). In all of the models the same trial func-
tions were used (double Gaussians).

in the calculation of Zawadzki and Wlasak for the reasons
discussed in the preceding section. Up to y ~20 the para-
bolic and nonparabolic models coincide. Our model
predicts that the (100+ } and (110+ ) levels cross so that
at higher fields the 2p+ state becomes the lowest level as-
sociated with the n =1 Landau state. The results of Lar-
sen coincide with ours, only if we use the same trial func-
tions. However, from the numerical point of view our
formula (18a) is extremely simple and more general as
compared to the double integrals in Larsen's paper. If we
compare Fig. 1 and the data from Table I we see the im-
portance of the choice of proper trial functions. In some
cases inaccurate trial functions may lead to larger errors
than neglecting the whole nonparabolicity effect. The
pressure dependence of the binding energies shown in Fig.
1(c) is rather weak and it should be obtained with the trial
functions that have high accuracy in different regions of
y (high pressure increases m' thus decreasing y).

In Fig. 2 we show two quantities which vanish in the
parabolic model; the difference between the binding ener-
gies (E i+in —Espy and the differences (Ecue

—Ey++),

(EcIti —E~pc} (separation between the spin-flip energy and
its hypothetical satellites ). Later we show that all of
these energy differences would be almost unaffected by
the central-cell potential. Again our results coincide mth
those of Larsen and differ substantially from those of
Zawadzki and Wfasak.

In Fig. 3 we display the chemical shifts for the (000+),
(010+}, and (110+) states, calculated from Eq. (20).

According to Ref. 51 we assumed (S
( Vi

~
S)

=(X
~

Vi ~X)=2.8X10 ' eVcm . We see that the
chemical shifts for the

~

M
~

=1 states are about an order
of magnitude smaller than those for the M =0 states.
The chemical shifts for (000+ ) and (000—) are almost
identical, those for (010+) and (010—) differ significantly
but due to their small values they should not influence the
(EOIti —En(IO) energy difference. It is interesting to note
that the

~
M

~

=1 chemical shifts decrease with pressure
while those for M =0 increase.

V. SUMMARY AND CONCLUSIONS

In the field region corresponding to y &20 the donor
states can be usually well described by the one-band, para-
bolic models. In Sec. II we stressed the importance of the
proper choice of the trial functions for the first few
states they can be obtained from the parabolic model of
Larsen, i9 more general formulas follow from the simpli-
fied approach of Aldrich and Greene, ' described in Ap-
pendix B. Very accurate values of the energies can be
found by interpolating the tabulated data of Ref. 28.

In the high-field region nonparabolic (multiband} ef-
fects become important. We have shown how to general-
ize the adiabatic model to the multiband case. Adopting
the simple description of the bands due to Bowers and
Yafet ' we obtained the variational adiabatic formulas
(18a), (19), and (20) for the energies, wave functions, and
the chemical shifts, respectively. We also gave the gen-
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FIG. 2. (a) Energy difference 8+~~0 —So+To versus the magnetic

field obtained from various models. It vanishes in the parabolic
case. (b} Theoretical separation between the spin resonance
0+~0 and the hypothetical impurity spin resonances
(000+ )~(000—) and {OTO+ )~(OTO —) obtained from various
models. In the parabolic approach these resonances should
coincide. Denotations as in Fig. 1.
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FIG. 3. Chemical shifts for the (000% ), (010+), (100+ },and

(110+ ) states calculated as a function of the magnetic field (a)
and of the pressure (b). We adopted (Ref. 51) (S

~
V~ ~&)

=(X
~

&j ~X)=2.8X 10 ' eVcm independent of 8 and P.
Solid lines are for the spin-up states (s =+1), dashed lines are
for the spin-dawn states {s= —1}. Levels are denoted as in
Fig. 1.

eralized expansion into Landau states [Eq. (22)] and the
corresponding system of equations (25) which can be
solved numerically by the method of Ref. 28. Still, for
y &20 where the nonparabolic effects become important,
the adiabatic approach is fairly accurate.

We can still point out two sources of inaccuracies, espe-
cially in the high-field limit: (1) The three-band model of
Bowers and Yafet should be replaced by more sophisticat-
ed descriptions of the Landau states (e.g., from Ref. 42).
Our approach can be applied to any multiband model al-
though it would require more numerical work. (2) The

description of the screening of the Coulomb potential
represented by eo is too simplified as it neglects the mag-
netic field effect and the polaron effects. We plan to in-
vestigate this in the near future.
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APPENDIX A: Ei'x ECT OF PRESSURE
ON THE IMPURITY HAMILTONIAN

P (GPa)

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7

0(P)

0
0.059
0.114
0.166
0.215
0.261
0.305
0.346

P (GPa)

0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0

—Aeo(P)

0.386
0.423
0.459
0.526
0.588
0.645
0.698
0.747

TABLE III. Narro~ gap contribution to e, (p) for InSb, cal-
culated from the formulas given in Ref. 49.

In the parabolic case the Hamiltonian (2} depends only
on y and the pressure enters through m'(P) and eo(P)
dependences. With the increasing pressure the gap at
k=0 usually increases in zinc-blende materials which
leads to the increase of m ' and the decrease of eo. Both
of these factors cause the lowering of the y value with
pressure (e.g., in InSb at a fixed 8 the pressure of 1.7 Gpa
will decrease y about 5 times).

In the three-band approach to the impurity problem,
based on a Bowers-Yafet model of the band structure, the
pressure may affect all parameters, i.e., Ez, 4, Po, and eo
(see Appendix C}. The most important (and best known)
is the Ez(P) variation, b and Po are usually treated as
constant. In InSb this seems to be a good approximation
but in wider-gap materials the relative variation of Ez(P)
is weaker and might not be dominant. The effective mass
at the bottom of the conduction band varies with pressure
according to Eq. (26). It can also be determined experi-
mentally in high-pressure cyclotron resonance measure-
ments.

The eo(P) dependence is difficult to measure in
narrow-gap semiconductors. Therefore it has been calcu-

lated in Ref. 49 from the Ehrenreich-Cohen formula, with
the energies and Bloch functions determined from the
three-band model. For InSb the following formula has
been obtained:

eo(P) = 16.8+heo(P) —(0.026)(15.14P)—(0.035}(1.66P),

(Al)

where P is in GPa and b,eo(P) is the "narrow-gap contri-
bution" calculated in Ref. 49 and given in Table III. Ex-
pression (Al) was used in all our calculations for InSb.

APPENDIX B: MATRIX ELEMENTS
OF THE HAMILTONIAN AND THE SIMPLIFIED

METHOD OF ALDRICH AND GREENE

The matrix elements V„iir of the Coulomb potential be-
tween the F~ Landau functions [see Eqs. (4) and (6b)]
for n =0 can be written as

V. ()=(- )IMI+1 z'~ d exp(yz/2)Ef L 2
2

~M ~! dylan l '

( zi/2)'i' 2

1/2

(81)

where

Erfc(x)=1 Erf(x) =(2/V —m) I exp( t2}dt—
and the atomic units were used. In many cases the formu-
la

+ (p ip, z)=QCkt+~i (p ip,z),
k, l

with

2 pg2+q(p + z) eiMyzq IM le
nH' ~l~

(83)

(84)

Vniir(z) = Vn m i'(z) (82)

may be found useful. When solving Eq. (6a) numerically
it is better to use approximate expressions for the function
e" Erfc(x) (e.g., the infinite fraction 7.1.14 from Ref. 52)
and not the approximate expression for Erfc(x) which,
multiplied by e, become very inaccurate for large x.

We now describe the modified method of Aldrich and
Greene ' which we used to obtain accurate estimates of
the energies in the parabolic case. The donor wave func-
tion is taken in the form

Here q =0 or 1 determines the parity (with respect to z),
ak (or pi) are chosen in geometric progression between
amin a amax (o Pmin a d Pmax)

ak =a;„(a,„/a;„), k =0,1, . . . , N —1 (85)
It;/{N —1)

Pi=P;„(P,„/P;„) e, 1=0,1, . . . , Ntt 1. (86)—
The coefficients Cidq are obtained from the eigenvalue
problem for an N~N&X %~Ate matrix. The functions +~q
are not orthogonal and their overlaps define the matrix
g l~ le
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1/2
7r

~

M ~! (2q —1)!! 77

klylj k{ lj
~
))q! +i (2P)q P

(87}

where we denote a=ak+a;, p=pi+pj. The matrix ele-

ments of the "kinetic Hamiltonian" A 0 are

(Pad I
~0 I!

4jq)

=[4a;(
/

M
/
+1)+yM+2pj(2q+1)]81d!~J ~

4 2 g!sr.!+iq 4pzg lsr.
~

q+i
4 l kl, lJ J kl, JJ

while for the potential energy we obtain

—2,~« —4n( —1)! ! d! ~

q iF )
1

3
1

p
ir'j =

(2 1) !))r! q+ Y q + q+ Yi
J

where F(a,b,c;x) is the hypergeometric function. sz Using the property

d abF(a,b,c;x)= F(a+ l,b+ l,c+1;x),

(89)

(810)

and the formula

' 1/2

—1 —'1 ——1 3
2P $27 a

2 1——
a

:,/2 for —& 1,a
1 — 1 ——

a
' 1/2

(811)

, , /2 arctan ——1 for —& 1,a

~sr«~« Eg!I ~ qc j)rq (812)

we can obtain all necessary matrix elements of the poten-
tial in terms of elementary functions. The Schrodinger
equation in the itrkjq representation becomes

with

a 2
Mp ——1+ p, +2a

@+1

' P+1/2

(814b)

where e,a, and p are variational parameters. The matrix
elements of d Idz and V(r) between the F~p~ func-
tions can be obtained for n =0 from Eqs. (Bg) and (89).
In our nonparabolic formula (18a) we need them also for
n+0. For p=0, 1,

so that the energies are given by the condition

det[(g! sr!q)-'~sqq EI]=0. (813}

TABLE IV. Matrix elements of V= —2/r between the single
Gaussians of Wallis and Bowlden {Ref. 12). Here A

={y/2m }'~q, x =q', Fo ——F{z, 1, 2, 1 —x) [see Eq. (Bl1}].

Gppp(e) = —4AFp

GpTp(e) = —2A Fp—2—x 1

1 —x 1 —x

Goo) {q}= [—xFO+1]
—4A

(1—x)

G)ao{«}= — [(4—4x+ 3x2)FO —2—x ]
A

G ~ {q}=— [( 2x —4x+4)FO —3+—x]3
2

G ~ {&}=— [2x {x—4}FO+4+2x]A

( 1 —x)2

G —{e}=— [(4—6x +—"x2 ——x 3 }Fo—3+x ——x i]11P
( 1 )3

G)0) {e}=—
3 [—3x {4+x2}FO+4+6x+5x2]A

(1—x)
(814a)

For each M and q we found the lowest root of (813) and
then we minimized it with respect to four parametersa;„a,P, and P . The dimension of our basis
(84} is N N~ and very good values for all energies of in-
terest in the range 0 & y & 500 were already obtained for
N~ =N jj

——3 (matrices 9 X9). In their original approach '

Aldrich and Greene were interested (for a given M and q)
in several roots of Eq. (813}and they minimized the trace
of (8!I!«) 'A ~q. They had to take N =10, j)I& 12so-—
that they were dealing with the matrices 120X 120.

The adiabatic approximation can be introduced into
the method of Aldrich and Greene by fixing N =1,
ao ——y j4. The trial functions of Yafet et al. correspond
to N =X@——1, those of challis and Bowlden are obtained
for N =Np 1 and fixed ao=——y/'4.

%e shall now write down explicitly the matrix elements
of the Hamiltonian between the adiabatic functions

F„sr(p,y)P~(z} with {{t~(z) taken as a norinalized double
Gaussian. For P=0, 1

P)(2ji+))/4 e
—)/4(re z~)+ e

—)/4{rpe z2)
4'(z)= y

(2~)'" P
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l. +~ pd p~ (2p+1)ye a 2
. P+3/2.

(815)

2

Vmp= f I
{() (z)

I Vm(z)dz=
M

'G~ls(e)+ ~+li2 Gm13(e p )+2cl.
CO

P

P+ 1/2 ' 1/2
@+1

GnMp

(816)

where G~p(e) are the matrix elements of the potential
between the "single Gaussians, " i.e., the trial functions of
Wallis and Bowlden'2 [given by Eq. (814a) with a=0].
General expressions for G~p(e) are given in Ref. 31.
Here we only list those that we needed in our nonparabol-
ic formula (1Sa) for calculating E000, Eolo, Ez~z, Eool,
Eh, , E lao, and Ella (see Table IV). Note that the proper-
ty (82) holds also for V~ii, i.e., V~~= V„

APPENDIX C: LANDAU STATES IN THE
THREE-SAND MODEL OP BOVEERS AND YAFET

In zinc-blende {or diamond) crystals the Bloch func-
tions at k=0 from the I'6, I'2, and I's bands can be writ-
ten in the form '

ul iSt, ——u2 R+t,——u3 —— R t+( —, )' Zl,1/2

3

u =—( —', )' R t+( —,')'i Zt, u, =iSl, u =R
(Cl)

(
1 )li2R t+( & )li2Z1

14s =(—,
' )'"R+ g+( —,

' )'"Z&,

where R+ (X——+iY)/~2 and the arrows t and t mean
spin-up and spin-dawn states, respectively. S and X, Y, Z
are periodic functions which transfarm like atomic s and
p functions under the operations of the tetrahedral group.
The functions u 1 and u5 correspond to the conduction I'6
band Q 2 Q 3 Q 6, and u 7 belong to the heavy- and light-
hole I's band while u4 and us correspond to spin-orbit
split-off I 7 band. If we neglect the effect of all other
bands, the 8 X 8 Hamiltonian in u„basis depends only on
3 parameters: band gap Es, spin-orbit splitting b„and the
momentum matrix element Po — i Alm—o—(S

I p, I
Z). The

Schrodinger equation (in the presence af the uniform,
static field 8) yields the flat heavy-hole band E»» = Ee-
and the following equation for the Landau states E„+-(k)
associated with the conduction band, light-hale band and
the spin-orbit split-off band

E(E+Es)(E+Ee+b )—CI [y(2n +1)+k ](3E+3Es+2b )+yhI =0,
where C was defined in Eq. (16d). As usual, the atomic units were used. We shall be interested in the conduction-band
states, given by the highest-lying (in energy) root of Eq. (C2). The eigenfunctions, corresponding to E„(k) have the fol-
lowing form

e'~ + i &3yCn i &yC(n + 1)
PnMk ~2 nMt+ E Ep(k) n —1,M —l~+ E E+(k) n+1,M+1 ~

+ i&2yC(n+1) F 00 v'2Ck + iiCk
E,+a+E„+(k) "' ' ' ' 'E, +E„+(k) 'E, +a+E+(k)

and those corresponding to E„(k)are

e'~ v'2Ck ~Ck —i &3yC(n + 1)

(C3)

lv yCn ~ + 1ii 2yCn

Es+E„(k) ' Ee+ b, +E„(k) (C4)

where M & n, F~ are defined in Eq. (4), the upper signs are for M ~ 0, the middle for M =0, and the lowest for M & 0.
The components of the vectors in Eqs. (C3) and (C4) should be multiplied by the corresponding u„ functions and
summed up. The squared norms of the above Landau states are

[Ee+E„+(k)] [Ex+6+E-„+(k)]2-
1 1

[Eg +E„+(k)] [Es +5+En-+-(k) ]
5(k —k') . (C5)
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Our normalization is exact [provided that we determine
exactly E„+(k-} from Eq. (CZ}] contrary to previous pa-
pers ' where it was only approximate. If we neglect the
terms k /[Es+Es~(0)] the norms become k independent.

In the calculations involving "parabolic" Landau states
e' F~ and the "three-b;md" Landau states (C3) and (C4)
we often made use of the following formulas (necessary
also for determining the selection rules —see Sec. II)

P,e' F =eke'~F„

1
~+~nM V' g

1r —Enss
y

++V n + lE„~)M+t —V'n M—F„st+t

+MnE+ ] st ~+&n —M + 1F~ st
J

(C7)

P+e' E~=+~igV(n+1}ye' E„+&st+t,
P e F~=p/R+nge Es (C6)

where again the upper sign is for M &0, the middle for
M =0, and the lower for M & 0.
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