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%e give a full renormalization-group treatment of the electron density-density correlation func-

tion in a disordered system near the mobility edge. %e extract the scaling behavior of the diffusion

constant and conductivity in the critical region. Thus, the behavior of these quantities as a function

of wave number and frequency is determined and the crossover between the high-frequency and

large-wave-number domains is given explicitly.

I. INTRODUCTION

In this paper we describe the scaling properties of the
dielectric function and the diffusion constant of a disor-
dered noninteracting electronic system. %e discuss the
critical behavior, near the mobility edge, of the wave-
number (q) and frequency (to) dependence of these quan-
tities. That is, we give a full renormalization-group calcu-
lation of the scaling function for the diffusion constant, or
conductivity, including the multiplicative constants.

Thus, results are obtained for the behavior for either the
large-frequency or large-wave-number critical regimes. In
addition, the crossover between them is given explicitly.
The critical wave-number dependence of the diffusion
constant, or conductivity, which is not obtainable from
perturbation calculations of the usual response functions,
has not been calculated before. We restrict our con-
siderations to the absolute zero of temperature.

I.et us consider the retarded density-density correlation
function for a noninteracting disordered system,

Il(q, t)o=i fdr fdr' fdte'q" "'e ' t(([p(r, t)p(r', 0)])Id;,8(t) .

Here, the square brackets denote the commutator, the angular brackets the quantum thermal average, and ( Iz;, the
disorder average. This is the density response to a change in chemical potential p, i.e., II(tI, to) =dp(q, to)/dp(ti, to). At
to=0, and small q, II is just the thermodynamic density of states dn/de For sm.all (q, co), we may write

(1.2)

where II =dn/dp and the correlation function II' is the "retarded-advanced" piece of II:
0

II'(tI, co)=(i/2n) fdr fdr' f deIG (a+to, r, r')G"(e, r', r)Id;,e'q"

where G '" are the standard single-electron Green"s func-
tions in the disordered system.

At co =0, H'=0 and it is convenient to write

rr'=&~x . (1.4)

X =Xo(q,co) =
2

(1.5)
Dg —l co

where D =UF~/d is the diffusion constant in d dimen-
sions and Ni is the single-particle density of states. Weak
disorder is defined by Et;r))1, where r is the elastic
scattering time. Here, uF and Z~ are the Fermi velocity
and the Fermi energy.

The Einstein relation gives the conductivity o. in terms
of D:

For weak disorder, standard perturbation theory yields the
characteristic diffusion propagator form for X,

o=e Ddn/dp, .

For noninteracting electrons, dn ld p, and N i are identical,
and in the following we use Ni everywhere.

A standard treatment' of the localization problem re-
veals that the localization transition is driven by interact-
ing diffusion modes of the form of Eq. (1.5). To pursue
this line in the present context, it is convenient to intro-
duce, as the coupling constant, the variable t,

t =(NiD)

which scales as 1. and so has canonical dimension
2—d. We redefine the frequency scale by introducing to,

which has dimension d. Thus, instead of Eq. (1.5), we
have
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Xo(q, CO) =
2

q +h
where we have defined

X=X/Ni,

which has dimension —d, and

(1.9)

(1.10)

11 b
(2.1)

The nontrivial content of Eq. (2.1) is that P(t) is a func-
tion of t only, independent of 1 or b T. he P function has
been computed by perturbation theory ' in t:

h = —idiot,
=P(t) = st—+2t'+ P(r'),

d lnb
(2.2)

which has dimension 2.
Although h is imaginary, it is easier to consider it real.

This would be the case in the physical situation at finite
temperatures when inelastic scattering is present. Then
—i~ is replaced by the inelastic scattering rate 1/r;„. In
the present case, we may continue to imaginary h at the
end. As pointed out by Schafer and Wegner, 5 the h in Eq.
(1.9) is analogous to the inverse transverse susceptibility in
the ordinary O(n) spin model below T, . In that case the
transverse correlation function is given, at low tempera-
ture T, by

TX= J(si(q, t)si( —q, 0))dt

TM

It'iq +8
where M is the magnetization, Ei is the spin-stiffness
constant, and H is the external field. In the localization
problem, t [Eq. (1.7)j and h [Eq. (1.10)) play the role of
temperature and magnetic field. In fact, the form of the
diffusion propagator in Eq. (1.9) is identified with the
bare transverse propagator in standard treatments of the
fixed-length spin 0( n) model or nonlinear 0 model. 6'

II. SCALING BEHAVIOR OF g(q, a))

%'e now assume that the one-parameter scaling '
description of the localization problem is valid and deduce
the behavior of the function X(q, co). For the analogous
O(n) model, the corresponding problem for the transverse
correlation function has been worked out, for example, in
Ref. 5, but only at q=0. In the localization problem, the
scaling behavior of g(q =O, co) has been considered by
%egner, Hikami, and Shapiro and Abrahams. ' A
heuristic discussion for finite q has been given by Imry,
Gefen, and Bergman. " For small q, our discussion will
be based on the momentum-shell recursion method of
wilson and Kogut' as applied by Nelson and Pelcovits
to the O(n) case. However, at larger q, the scaling
behavior of X is inaccessible by the usual technique and
we are forced to consider the invariant correlation func-
tion as first discussed by Elitzur' and Jevicki. ' This will
be described in Sec. IV.

We begin with a system specified by t and h (or co)
measured on the basis of some unit of length. The intrin-
sic momentum cutoff for the diffusive motion described
in Eq. (1.5) is the inverse elastic mean free path. There-
fore, it is convenient to choose the initial length unit as
the elastic mean free path I =U~v.. %"e then change the
length scale by a factor b & 1 and integrate out all Fourier
components (bl) '&q ~1 '. The new rescaled problem
is characterized by a renormalized t(b) which obeys the
scaling equation

Sq ~g(b)Sq(b) (2.5)

The spin-rescaling factor g is determined by the require-
ment'2 that the rescaled Hamiltonian have the same form
as the original one. The result is

g dg —(d —2+ q )/2 (2.6)

The factor b in Eq. (2.6) simply comes from the defini-
tion of the field S» in momentum space and corresponds
to the same factor in Eq. (2.4). We see that an additional
critical index q is introduced in the spin problem. In lo-
calization, however, the scahng of Eq. (2.4), which gives
g=b~, implies r1=2 d This—m.akes the localization
problem simpler in some respects than the O(n) model,
where the nontrivial order-parameter- (spin-) rescaling
factor g is responsible for anomalous dimensions in the
model.

Turning now to the "transverse" correlation function 1',
we write down at once the homogeneity scaling relation it
satisfies,

Y(q, t, ji) =b X(bq, t (b), h (6)) . (2.7)

In the O(n) model, an extra factor g b appears on the
right-hand side (rhs). Instead of X, it is useful to discuss
the scaling of thegenera1ized diffusion constant D(q, co)
It is defined from L by

(2.8)

In zeroth order, D=N&D. According to Eqs. (2.7) and
(2.8), D satisfies

where e=d —2, and 6( . ) indicates that the correction,
if not zero, is of order higher than r . The unstable zero
of P(t) and the associated fixed-point value

(2 3)

signals the mobility edge.
The localization problem is different from the O(n)

model in a number of respects. The former, as is well

known, i 5 corresponds to the n~0 limit of a generalized
nonlinear 0 model of n )&n matrix fields of noncompact
symmetry. In this O(n, n) formulation, the density of
states E& plays the role of the order parameter and exhib-
its no anomaly at the transition corresponding to the mo-
bility edge. This has been discussed in detail by McKane
and Stone. ' The density of states per unit volume scales
in a trivial manner,

(2.4)

corresponding to a critical exponent P=O. In the O(n)
model, on the other hand, a nontrivial spin rescaling
occurs' at each step of the renormalization-group process:
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D(q, t,h)=b ~+iD(bq, t(b), h(b}) . (2.9)
0

Thus, in general, near the mobility edge, the diffusion
constant becomes scale dependent. This will be discussed
further in Sec. V.

It is now convenient to replace the b and t(b) depen-
dences by an equivalent dependence on correlation length.
This quantity arises naturally as follows: We integrate the
P function to get t(b) in terms of its initial Ucdue, t, at
b = 1. The result is

t(b)
—1= (2.10)

where t'=e/2. The correlation length g, in units of the
mean free path, is given by the value of b for which
t /t(b)=2 Tha. t is, it is the scale characterizing the
crossover from the critical region t (b) =t' to the metallic
region where t(b) scales as b ', i.e., the scaling has
reached the point where the first term in the P function
[Eq. (2.2)] dominates. In units of the mean free path, g(t)
is given by

—1/a

(t)=

Thus, Eq. (2.10) becomes

t'/t (b) =1+(b/g)' . (2.12)

D(q, t,h)=, g 'F(x,y), (2.13)

where F is dimensionless and

x = —icog", y =qg (2.14)

are the dimensionless arguments of F.
We now give various limits of the scaling function

E(x,y). In the critical region, g'~00, x,y ~~1. Here, D
must be independent of g. Thus,

F(x,O) =aix'~

F(O,y) =a2y' .

(2.15)

(2.16)

The prediction of Eq. (2.15) that D~O as chic~ has been
made before. ' ' The crossover between these limiting
behaviors must also be independent of g. This boundary
is then given by

X =CX3Pd (2.17}

The general arguments we have given do not give us the
proportionality constants a in Eqs. (2.15)—(2.17) nor the
detailed crossover to the region x,y small. In what fol-
lows, we shall calculate these constants and discuss the
behavior of F(x,y) everywhere in 2+ e dimensions.

We now replace, in Eq. (2.9), the t dependence by the
correlation-length dependence. Thus by setting b =g in

Eq. (2.9), we see that D(q, co} must have the scaling form

FIG. 1. Los&est-order particle-hole diffusion ladder.

X(q,co}=2rrNir &, (3.1)

as in Fig. 2, by adding the single-particle Greens func-
tions at the ends of S' and addin~ an undressed bubble
6"6". Schematically, X=6 G"+ 6 "6"NG "G".
Here, G" '"' is the average retarded (advanced) single-
particle Green's function. A perturbation procedure for
9' is established as in Ref. 3. The lowest-order self-
energy X(q,ca)=S' ' —S'o ' is found as in Fig. 3. The
( q, co)-dependent part of X(q,c0) is given by

X(q, co) =Dq 22 g 1

q
D (q') ico— (3.2)

When this correction to & ' is used in the determination
of X, we find

X =—(q +h)+ —(h'~ —1)q2 a/2 2

E
(3.3)

In deriving Eq. (3.3), we have evaluated the integral in Eq.
(3.2} in 2 + e dimensions and used Eqs. (3.1}and (1.10) to
pass to X and X. The variables t, h are defined in Eqs.
(1.7)—(1.11). In Eq. (3.2) we chose an ultraviolet cutoff A
of order 1/1, but have adjusted it to absorb the order unity
phase-space factor. The "frequency" h is measured in
units of the square of the cutoff. At e=O (d=2), Eq.
(3.3) gives the usual lnc0 localization correction to the dif-
fusion constant.

We remark from Eq. (3.3) that, at e~O, no lnq terms
occur, even at finite q. This is reminiscent of the O(n)
model, where 1nq singularities do not occur anywhere in

scale until we leave the critical region and reach the
weak-coupling region where perturbation theory is valid.
We then use the scaling relations of Sec. II to obtain the
critical behavior of quantities froin their perturbation ex-
pansion.

We follow Nelson and Pelcovits and employ the
Wilson-Kogut' momentum-shell technique to derive re-
cursion relations to effect the scaling. We can find
X ac IG"6"]d;, in perturbation theory by summation of
the maximally crossed diagrams. The calculation is car-
ried out, essentially following Hikami, as follows. The
bare diffusion [particle-hole (ph) or particle-particle (pp)]
propagator &o(q, co} is the sum of ladder diagrams as
shown in Fig. 1. From

&o [2n——N ill(Dq i co)—]
one obtains

III. RENORMALIZATION-GROUP CALCULATION

We employ the usual renorma1ization-group strategy:
For a system near its critical point we change the length FIG. 2. Density-density correlation function.
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qb„=yb„/g (1, (3.9)

() xt ' =(g/b„)", xt ' &y",
and if xt*((1,

(3.10a)

which, since b„/g is a function of x only [Eq. (3.8)], de-
fines the boundary of region (i) in the x,y plane shown in
Fig. 4. The boundary may be defined explicitly at large
and small x: According to Eqs. (3.8) and (3.9), if
xj' yy1,

FIG. 3. Definition of self-energy X and its lowest-order

graph. The &0 appearing in X is a particle-particle ladder.
xt' =(gjb„), xt' &y (3.10b)

the perturbation expansion of the transverse correlation
function. This will be discussed further in the next sec-
tion.

The diffusion constant D(q, t, h) (recall D=NiD) is the
coefficient of q in X '. Its scaling is given in Eq. (2.9).
From Eqs. (2.9) and (3.3), we find, by scaling with a fac-
tor b,

T

D(q, t, h)=b ' —,+, [(h')'~ —1]j' (3.4)

where we have denoted t (b), h (b) by t', b', and t"=e/2 is
the zero of the P function Eq. (2.2). The rhs of Eq. (3.4)
can be written in the form of Eq. (2.13) by expressing t' in
terms of gjb according to Eq. (2.12). We find

E

F(x,y)=1+ ~ (h')'~ . (3.5)

We next choose the appropriate scale factor b. We
have to discuss several cases separately, depending on the
relative magnitudes of ni, q, that is, x,y.

Here we follow Ref. 7. The expansion parameter for
the problem at d =2+a is t lnh. Although t =O(s), for
small h, t lnh is not small. The strategy is to scale out of
the critical region by b =b„such that h(b )=1. Then,
from Eq. (3.5),

From Eqs. (3.6) and (3.10), we find F(x,y) explicitly in re-

gion (i): For xt'»1,
F=1+(xt')",

and for xt' ((1,
(3.11a)

(3.11b)

Equation (3.11a) describes the critical region as in Eq.
(2.15) and Refs. 9, 3, and 10. Equation (3.11b) gives the
small frequency correction to the diffusion constant.
From Eqs. (3.10) and (3.11) we may find two of the a con-
stants we introduced in Eqs. (2.15)—(2.17). They are

ai ——(e/2)'~, as ——2/e . (3.12)

where A is the ultraviolet cutoff of order 1/I. Self-
consistency is achieved by replacing Do on the rhs by D.
Then by using Eq. (2.13) to express D=N, D in terms of
F, Eq. (2.11) for g in terms of t, and Eq. (2.14) for x, we
find

F=1+(xt '/F)' (3.14)

which is identical to our Eqs. (3.6) and (3.8). This result

It is interesting to note that our scaling result is identi-
cal to the self-consistent equation of Vollhardt and
Wolfle. ' The latter is obtained from the perturbation re-
sult for D (we use the units e /h = 1):

' c/2

(3.13)

F(x,y) =1+(gjb„)' . (3.6)

The quantity gjb„ in Eq. (3.6) may be expressed as a
function of

x = i cog"=h P'jt— (3.7)

only as follows: Since the frequency co =Pico scales as b

[Eq. (2.4)], we have

1 =h(b„)=ir0(b„)t(b ) =ib„cot(b„) .

Combining this with Eqs. (3.7) and (2.12), we find

t'x =(jjb„)"[1+(b~/g)'] . (3.8)

Thus, Eqs. (3.6) and (3.8) give F(x,y) as a function of x
only for small q. In particular, we require q'=bq~1 in
the scaled system. Therefore, Eq. (3.6) is valid only if

FIG. 4. Regions of the x =co%&P', y =qg plane. The scaling
result of Eq. {3.I 1) is valid in region (i) and that of Eq. (3.17) is
valid in region (ii).
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has also been obtained by Hikami' by solution of the
Callan-Sirnanzyk equation.

F(x,y) = 1+(qg)'(h ')'~ = 1+y'(h '}'~

where

h'=h (bq) = ice(bq—)t(bz) =xt y (1+y )

(3.15)

(3.16)

Here, we have used Eq. (2.12) again, but with b =bq
=q '. Thus, we obtain

B. g +co

When q is sufficiently large that qb & 1, then we must
stop the scaling at bq such that qbz = 1. If
t(bs)

~

lnh {b~)
~

is small, then the perturbative result of
Eqs. (3.4) and (3.5} is valid. We use steps similar to those
which led to Eqs. {3.6} and (3.8). From Eq. (3.5), at
&q =g, we have

ant correlation function and for it a lnq expansion is ob-
tained at d =2+s. Furthermore, one then succeeds in an
explicit calculation of the exponent q. Informative dis-
cussions of this have been given by McKane and Stone'
and by Amit and Kotliar.

The perturbation theory for the interacting diffusion
modes that we have used so far does not admit a simple
formulation for the invariant correlation function since it
deals only with the locahzation analogue of the transverse
correlation function in the spin problem. It is the
"retarded-advanced" piece of the density-density correla-
tion function as in Eq. (1.3).

Fortunately, the field-theoretic formulation' of locali-
zation explicitly exhibits the full symmetry of the problem
and the invariant correlation function has been calculated
by McKane and Stone. ' Their Eq. (5.11) is

Xt(r) = nm—[1+ 4nt'1 nr +4 n( n +1 }(t') ln r

F(x,y) =1+[xt'/(y'+ I )]'~

The boundary for this value of F is determined by

t'~lnh'( = ln „(1.
1+y ' y"(1+y ')

Condition (3.18) has the following limits: If y »1,

(3.17)

(3.18)

—2nst'ln r] . (4.1)

The last term was omitted ' in Ref. 16. The renormalized
coupling t' is determined from the bare coupling t in Eqs.
(5.8)—(5.10) of Ref. 16. The replica index n, eventually
taken to zero, determines the symmetry of the model.
Here, it is a noncompact O(n, n)/[O(n)XO(n)] realiza-
tion of the localization problem. The P function ' is

xt'~y e-'"' (3.19a) P( t) = —[st +2(n —1)t'+ 6'(t')] . (4.2)

and if y g~ 1,

xt+ )y2e —1/t y~ (3.19b)

which defines the boundary of region (ii} on Fig. 4.
We have apparently extended the scaling result for F to

a region of larger y. However, within region (ii), F is still
independent of y since Eq. (3.16} differs from the y-
independent result for F in region (i) [Eqs. (3.11)]only by
terms of order y' ~, which is unity to the order of accura-
cy of our calculation. The present scaling theory, as in
the O(n) case, 7 does not extend to obtaining the q depen-
dence of the diffusion constant, particularly, in the region

y »1. This is a reflection of the fact, as mentioned be-
fore, that a lnq expansion does not occur in perturbation
theory for X.

IV. CRITICAL REGION

Recall the definitions x = iNicog, y—=qg. In the
critical region y&~1, ordinary perturbation theory at
1=2 leads to lnx singularities as x~O in all terms.
However, scaling arguments show that we expect 7 ~y
free of singularity at x =0. This same situation obtains in
the O(n) case where the resolution' is based on the fact
that in the critical region y =qg»1, when the magnetic
field h (=xtg in our case) is smail, the magnetization
is fluctuating so strongly that there is no distinction be-
tween the transverse and longitudinal correlation func-
tions. The asymmetry is restored and one studies the in-
variant correlation function

At g~~, t~t'=e/(2 —2n), and the expansion, Eq.
(4.1},for Xt exponentiates as it should,

7k+1
gl = —7l7TP' ~ 'g = E, .

n —1
(4.3)

Here, the previous scaling result ri =2—d is recovered ex-
plicitly at n ~0.

As we implied earlier in this section, the quantity of in-
terest in the localization problem is the transverse piece of
the invariant correlation function Xt. In the O(n) non-
linear cr model, it is simple to extract the transverse piece.
In the critical region qg~ao, the symmetry being re-
stored, all components of Xt are equivalent, so any single
component may be found from Xt by dividing by n.

For the present case of O(n, n) noncompact symmetry
one could, in principle, extract the transverse piece from
the invariant correlation function, Eq. (4.3), at finite n

and then, after Fourier transformation, pass to the n=O
limit. In the absence of a rigorous recipe to extract the
transverse part X from Xt in the critical region at finite n,
we resort to the following argument: At finite n, all com-
ponents of Xt are massless near the critical point. Since
Xt is a trace, it has (2n) equivalent components. Howev-
er, in the limit n ~0 the longitudinal part of Xt becomes
massive and has no critical behavior whatever. ' There-
fore, in the physical situation, at n ~0, all singularities in

Xl belong to the transverse part we seek. On this basis we
shall proceed from Eq. (4.3) by dividing 4n and taking
the Fourier transform. The result for any one component
of Xt is

X, =&s(r) s(0)) .

It turns out that the 1nII singularities cancel in the invari-

X(q)= —,'+s/q' ".
Finally, at n ~0, where g =2—d, we find

(4.4}
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X(q) = ,—He/q (4.5)

We can express this result in the notation introduced in

Eqs. (2.8)—(2.14):

2D( qy co) q

D (q, co }q i—co

The dielectric function is obtained as

(5.2)

F(x,y)= —,'y', x «y (4.6}

which is, of course, of the scaling form given in Eq.
(2.16). We therefore have found the final a constant in-
troduced in Eqs. (2.15)—(2.17), cti ———,

' .

e(q, co)=1+iV II(q, co), (5.3)

where Ve is the Fourier transform in d dimensions of the
Coulomb interaction e /r Th. us we obtain

U. CONCLUSION

We have derived the critical behavior of the diffusion
constant of a disordered noninteracting electronic system
near its mobility edge. In particular, the diffusion con-
stant becomes scale dependent. At short distances,
(i.e., qg' large), D is q dependent„going as q" . This
behavior is the equivalent in momentmn space of the fam-
iliar ' length-scale dependence,

'D (q, co)q
E(q, 'co) =

D (q, co)q i co—

where

ae —V n[4Nie I ((d —1)/2)]' '

(5.4)

(5.5)

is the inverse Thomas-Fermi screening length in d dimen-
sions. We see from Eq. (5.4) that the static screening is
unaffected by critical fluctuations on the metallic side,

cr &x D ~ 1/L" (5.1)
e( q, co) =1+(a'd /q)" (5.6)

for L &g. Similarly, at Nicog" large, the diffusion con-
stant is frequency dependent according to D ~co' ', a
result9 simply derived'o from Eq. (5.1) by the substitution
L~ =&D/co.

Some results of this work, particularly the scale depen-
dence of the diffusion constant, have already been used in
several places. I.ee discussed the screening and density
of states near the mobility edge for interacting electrons.
He used the behavior of the diffusion constant in the criti-
cal region to derive the perturbative interaction correction
to the density of states. Anderson, Muttalib, and Ram-
akrishnanz showed how the critical q dependence of
D (q, co) can enhance the Coulomb pseudopotential and de-
crease the T, of a disordered superconductor near the mo-
bility edge. Kapitulnik and Kotliar also discussed disor-
dered superconductors. Using the scale-dependent dif-
fusion constant, they have made explicit predictions for
the critical-field behavior near the mobihty edge. Some of
these results have been summarized in the review of Lee
and Ramakrishnan. 2

One of the motivations for obtaining the critical
behavior of the diffusion constant was to discuss electron
screening and dielectric constants on either side of the
mobility edge. This roblem has been addressed by
several authors. " ' ' Imry, Gefen, and Bergman, " in
particular, were the first to discuss the behavior of the
dielectric constant in the critical region for the various re-

gions of q and co. Our results enable the evaluation of the
constants in their heuristically obtained interpolation for-
mu1as.

We now summarize our conclusions for the physically
relevant quantities. Once the diffusion constant is ob-
tained in the critical region, then the retarded-advanced
correlation II' of Eq. (1.3) is determined by means of Eqs.
(1.4) and (1.5). The full polarizability II(q, co) [Eqs. (1.1)
and (1.2)] is given by

as pointed out in Refs. 11 and 23. As emphasized by
Lee, the region of static screening co &D(q, co)qi shrinks
to zero near the mobility edge.

The diffusion constant itself is given as follows: For
coN i g" & 1 and qg & 1,

D(q co)=(2/eN )i co' e

for qg & 1 and coN, f & 1,

D (q, co) = (1/4sN i )q',

and for coNigd and qua&1,

D(q, co)=(2/sNi)g '.

(5.7a)

(5.7b)

(5.7c)

e NiD(q, co}co
cr(q, co)=e (co/q )II(q,co)=

z
.

co+ED(q, co)q
(5.8)
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Equation (5.7c) is obtained at once from Eq. (2.13) since
Ir(x', y) is unity outside the critical region [see, for exam-
ple, Eq. (3.6}]. From Eqs. (5.4)—(5.7), the constants of the
interpolation formulas of Ref. 11 are easily obtained.

In Ref. 11, d=3 and the imaginary part of the dielec-
tric constant is identified with the conductivity. For gen-
eral d, however, the conductivity is obtained on the metal-
lic side from a generalized Einstein relation:
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