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Spin-spin correlations in finite systems: Scaling hypothesis
and corrections to bulk behavior
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We study the correlation function G(R, T;L) and the correlation length g{T;L) in a finite spherical
I I

modei of size L ~ XC under periodic boundary conditions and emphasize the role of the quantity

L/g(L), rather than L/g(~), as the scaled length of the system throughout the transition region, including

temperatures below T,(~). We obtain a variety of finite-size effects, some of which may have validity for

all O(n) models with n & 2.

to the bulk correlation function G(R, T;~), which can be
studied in detail for various values of R (- ~R~) in relation
to the parameters L and p(L).

We consider a system of size L~-~ x ~~, under periodic
boundary conditions, for which the Privman-Fisher hy-

pothesis for the singular part of the free-energy density may
be written as "

Finite-size scaling theory for critical phenomena, formu-
lated by Fisher' almost 15 years ago, has met with consider-
able success in describing the "rounding of the bulk singu-
larities" in finite systems' at temperatures close to T, (~).
By contrast, finite-size effects in the region of a first-order
phase transition [T & T, (~)] began to be explored only re-
cently. A systematic study of such effects was initiated by
Privman and Fisher for both Ising-like models' and O(n)
models, confined to a "block" (Le) or a "cylinder"
(Le 'xoo') geometry, under periodic boundary conditions.
Corroborative studies on the spherical model' and the
ideal Bose gas7 have also been carried out. In the work of
Singh and Pathria, ' the geometry considered has been fair-

I t

ly general, viz. , Le x~e, of which the block (d'=0)
and the cylinder (d'=1) are two special cases. In a more
recent communication, these authors have shown, in par-
ticular, how one may predict the approach of the given sys-
tem toward standard bulk behavior, as L ~, in terms of
the bulk exponents pertaining to both d and d' dimensions.
Most of this work, however, relates to the thermodynamics
of the system, very little attention having been paid to the
problem of correlations.

In this paper we present results of the first detailed study
of spin-spin correlations in a spherical model of general

I I

geometry L xo ~, with 2& d & 4, under periodic boun-
dary conditions. By previous experience, some of these
results, especially the ones for the exponents, may be appli-
cable to all O(n) systems with n & 2. One of the key find-
ings of this study is that the quantity L/g(L), where g(L)
is a finite size correlation le-ngth pertaining to the actual sys-
tem, rather than /Lg(oo), where g(oo) is the corresponding
bulk correlation length, emerges as the natural scaled length
of the system. Not only does this vindicate previous asser-
tions'o as to the role played by the quantity ('(L)/L in estab-
lishing "correspondence between finite systems, similar in
shape but different in size" but it also enables us to carry
out a detailed study of the temperature dependence of g(L)
itself in the various regions of interest. At the same time, it
provides a basis for probing the system at temperatures
below T,(~), where L/g(L) (& 1. This could not be pos-
sible with the variable L/g(~), which vanishes identically
for T» T,(~); see, for instance, Luck. ~ We also derive an
explicit expression for the finite-size correction G'(R, T;L ),

f'*'( T,H;L) = TL 'I'(x, ,x, )-,

G(R, TH;L) = a'"C2R' ' nX(R//g, L/(, x,),
where a is a microscopic length, such as the lattice constant,
while g is a finite-size correlation length obeying the sub-
sidiary hypothesis

((T H;L ) = LS(xi,xi)

Following the line of argument adopted in Ref. 8, we
predict that, for T& T,(~) and L ~, g will obey a
power law,

( D L(v+v)/v g(v

for d'(2, awhile for d'=2 it will diverge exponentially;
here, i denotes the bulk index akin to v but pertaining to a
1'-dimensional system. Moreover, to reproduce the field-
free, bulk correlation function (for r/ » a ), namely, 'i '4

G(R, T, O'~) =M((T)+A(T)R2 4 [T( T ( )] (5)

where Mo(T) is the spontaneous magnetization and A (T) a
system-dependent coefficient, the scaling function X in (2)
must possess the asymptotic behavior

[g(r 1 0) ] y (ri —(v+v)/v)2p/v

+ X,(ri t"+")/")n+ X (r,-i), (6)

1986 The American Physical Society33 672

where xi = C)L'/" t, xi= CiL /"H/T, Ci and Ci are model-
dependent scale factors, while t(T) is a generalization of
the conventional reduced variable t [ = [ T T, (~)]/—
T, (oo)] such that t t as T T, ( )o;othe other symbols
have their usual meanings. It is easily seen that a scaling
hypothesis for the correlation function, consistent with (I),
1s
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with universal amplitudes lation function is given by'

and

x, =a 'd-D: p/" [Mf(T)c, 'I/I '~] (7) G(R T L, )=
2PN )., ) )( —2J Xcos(k,a) ' (9)

X,= '"D-:" /" [W(T)C, 'I/I-" ],
while X"(r,/) represents the finite-size effect in X. Near
T= T,(~), Eqs. (7) and (8) imply that, whereas Mo(T)
ac ItIs, A(T)~ ItI""—in perfect agreement with Ref. 14.
Away from T,(~), they tell us how t and C2 should vary

with T:

ItI~ (M'ttA ')'/'d "" C ~ (M(f '"A/')'/'

in perfect agreement with Ref. 8, where these quantities
were determined using the bulk information for T
2 T,(~).

For analytical study we consider a field-free spherical
model, of size L~ x x Lq, for which the spin-spin corre-

(u-2)/2
1 @ X

K(d 2)/2(l(. (q/) )
4rrK 2rr

) q ) [)((q/) ](d-2)/z

(10)
where K =PJ,K„(z) are the modified Bessel functions,

)((q/) = $ (q/L/+ R/)'
0

the parameter @(T;L/) is determined by the constraint
equation

J
——2d « 1; (ll)

where n/=0, 1, . . . , (N~ —1), N~ =L.~/a, kj=2mn//N/,
while j= 1, . . . , d. Following the methods of Ref. 6, we
obtain (for R/, L/ » a)

(~-2)/2
2 —6

I
i (

8rr(K, K)=—
4m

2d/2 x K(d 2) 2/(~ -(0/q) )
,~0 [)(0(q/) ]" '"' (12)

where )(0 denotes ()(.)it-0. Recalling our expressions for t, Ci, and C2 for the spherical model, ' we readily see that, for
r I

geometry Ld d x ~d, Eqs. (10)-(12) conform to the scaling hypothesis (2), with

((T;L) = a/4P(T;L) = L/2y(xi),

y being the thermogeometrie parameter of the system. At the same time, Eq. (13) conforms to the subsidiary hypothesis (3),
with

$(x), 0) -1/2y(xi)

8(() g(L) —g(~)
(oo)

From the known behavior of y, we can now show that, for t & 0 and L
' (d-1)/2

4 —d 2g(~) L/t( )

2 L

(14)

(15)

where f(~) —at ", while d'- d —d'; this generalizes a recent result of Lucky which pertained to the special case d'- l. In
the close vicinity of T, (~), g(L) - O(L) and its precise value can be obtained only numerically; for the exceptional cases
d P 2 and d & 4, however, we obtain the following analytical results:

1

[Tr((2- d')/2). ]-'/('-' ' (.= d 2« I), -
,.„, g(L)

[~ir((2 —d')/2)e] ' '4 ' (e=4 —d && 1),
where d'& 2. This generalizes certain other results of Luck9 (valid for d'=1) and some of Brezin9 (valid for d'=0 and 1).
For t & 0 and L ~, we find that prediction (4) is veriTied. Accordingly, for d' & 2,

ga: L(d-d )/('-d )
I t I)/(z-d ) (16)

and the amplitude D is determined; for d'=2, on the other hand, g diverges as L exp(4mC)Ld 2ItI).
As for the correlation function G(R, T;L), it satisfies all the requirements stipulated in Eqs. (6)—(8). While details will

be published elsewhere, we summarize some of the more important results here. First of all, for R « (, the correlation
function assumes the remarkable form, cf. Eqs. (5) and (6),

' d-2
G(R T.L) 1

K +r((d-2)/2) ~
8~&/2~

+ G"(R,T;L), (17)

' (d —2)/2

G"(R, T;L) = K(d-z)/2(&(q) ) K(d-2)/2()(0(q) )
[)( (q) ] (d 2)/2 [)( (q) ](d 2)/2

q(d ) 0
(18)

&/2

1
d

h. (q) = —g (q,L+R/)i+Re~, R)j = R2 —Rf, R)2 = $ RJ2,
i=]

(19)
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while the primed summation in (18) implies that the term with q(d') =0 is excluded. The foregoing result is consistent
with the expectation" that

lim [ lim G (R, T;L/) ] = Mo ( T)
g ~ oo g. .~ oo

J
(20)

Expression (18) leads to a variety of finite-size effects. In particular, for T & T, ( oo) and L ~, we obtain a much simpler
result:

' d —2

G, (R T L )
F ((d —2)/2) a

8m d/'K

' 2 ' ' 2 —(d —2)/2

q+ +
q(d ) i

-(d-2) (21)

Further simplification results if R (& L; we get

G'(R T L) =

I (d/2) d a
d

2. —d' s (0 d'-2)R2 R2

8 »2d K „ ' L
(d )

' d-2' '2
1 a R

4dK L L

If R is not (( L and/or L is not (( (, then series expansions can be carried out in the manner Zasada and Pathria did for
the Bose gas;9 explicit results have thus been obtained for the most practical cases (namely, d = 3 and d'=0, I, and 2), and
will be reported subsequently.

For R » L, which implies that R [] » L, we can no longer talk of a finite-size correction to the bulk correlation function;
we have instead a qualitatively different situation. To see this, we transform (10) into the form

G(R, T;L) = 1 0 [I

' d —2
'

g (2 —d )/2 cos[2~(n ~ Rt)/L ]It' r (2(n27r2+y2)1/2g ((/L )L (2 —d )/2

4~d'/2K L L (n2~2+ 2)(2 —d )/4
(22)

G4ds(R, T', L ) —(a/L ) G (8 ui r T) (23)

and note that, for R[] » L, the most dominant contribu-
tion to the sum comes from the term with n= 0, with the
result that

I

the correlation length entering into the latter will still per-
tain to the actual system. While this last result is highly
suggestive, full implications of (22) cannot be realized un-
less the contribution of terms with a&0 is properly as-
sessed, Work in that direction is in progress.

Thus, the correlation function essentially splits into two
factors —one pertaining to the finite dimensions of the sys-
tem and the other pertaining to the infinite ones; of course,
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