
PHYSICAL REVIE% 8 VOLUME 33, NUMBER 10 15 MAY 1986

Soliton lattice structure and midgap band
in nearly commensurate charge-density-wave states

Masahiro Nakano and Kazushige Machida
Department ofPhysics, Kyoto Uniuersity, Kyoto 606, Japan

(Received 17 July 1985; revised manuscript received 18 November 1985)

The incommensurate charge-density-wave (CD%) states for systems with a nearly-half-filled, a
nearly-third-filled and a nearly-quarter-filled band are investigated theoretically by solving the
Frohlich model in one dimension within a mean-field approximation. The Hamiltonian matrices
with sizes as large as 100' 100 are numerically diagonalized in momentum space in a self-consistent
manner, taking into account all higher harmonics. The stable CD& states are thus determined,
yielding the energy-gap structure, the electron-density modulation, the order parameters with vari-
ous higher harmonic components, and the degree of localization of the eigenfunctions. It is shown
that the midgap band inside the main Peierls gap always appears in nearly commensurate CD%'
states. This is attributed to the soliton (or kink) lattice structure of the electron-density modulation.
A universal form of the electron-density modulation is deduced in the commensurate limit. Peculiar
peaks found in the recent absorption experiment on orthorhombic TaS3 are interpreted in terms of
the midgap band. Possible experiments on other quasi-one-dimensional CDW materials such as
Ko 3Mo03 are proposed.

I. INTRODUCTION

Much attention has been recently focused on incom-
mensurate states in various materials from dielectrics to
metals. ' In particular, the charge-density-wave (CDW)
states in quasi-one-dimensional materials such as TaS&,
NbSes, (TaSe4)2I, and Ka 3MoO& have attracted much in-
terest in connection with their non-Ohmic conduction
mechanism. In spite of intensive theoretical and experi-
mental efforts, a most fundamental property of the or-
dered state, namely the energy-gap structure of the incom-
mensurate CDW (ICDW), has not yet been fully elucidat-
ed, partly because of the difficulty in making a good sam-
ple.

Recently, a remarkable experiment on orthorhombic
TaS& has been reported. This experiment strongly indi-
cates that the nearly-quarter-filled commensurate CDW
state ' possesses a midgap band inside the main Peierls
gap.

There has been much theoretical work on an ICDW
system with a nearly-half-filled band (commensurability
index n=2), " a nearly-third-filled band (n =3),'
and a nearly-quarter-filled band (n =4). ' The nearly-
half-filled case has been most extensively studied. An ex-
act solution within the mean-field theory of the Frohlich
model is known. For the other electron-filling frac-
tions, 2s however, the detailed properties of the ICDW
have not yet been investigated. In particular, the energy-
gap structure near the Fermi level in such a nearly com-
mensurate CD%' state has not been studied thoroughly.

Here we study the ICD% state in systems with a
nearly-half-filled, a nearly-third-filled, and a nearly-
quarter-filled band, aiming at finding general properties
of the nearly commensurate CDW state. Starting with
the standard model for the Peierls transition in one di-
mension, we apply a mean-field approximation to it. We

properly take into account all higher harmonics and diag-
onalize the mean-field Hamiltonian in a self-consistent
manner. The momentum- (or wave-number-} space repre-
sentation of the Hamiltonian is employed to perform nu-
merical diagonalization. It is quite easy to draw informa-
tion of the global features of a system such as the band
structure, or the soliton lattice structure of the electron-
density modulation, in this representation, while the real-
space representation used by Su and Schrieffer' and Ono
et al. 2o is advantageous in obtaining local properties of
the CDW state, such as the one-soliton profile as a local-
ized object in the Su-Schrieffer-Heeger (SSH} model.
Thus, these two approaches are complementary. We em-
phasize, however, that the advantage of our momentum-
space approach lies in the facts that (1) we can effectively
treat an infinite system with various unit-cell sizes and,
thus, (2) we can obtain the most stable state of the CDW
with the periodically modulated structure, or the soliton
lattice structure and associated bands. It is interesting to
compare our work with that of I.e Dai ron and Aubry, 26

who have done a similar self-consistent calculation in real
space and discussed the band structure from a different
point of view in connection with the electron-localization
problem.

The present work is a natural extension of the work
by Kotani' and Kotani and Harada to higher commens-
urate cases, enabling us to yield information on the "near-
ly commensurate" CD% state. %'e only treat higher com-
rnensurate states and approach a true incommensurate
state by increasing the commensurability index and exam-
ining systematic changes of the higher commensurate
states. This approach might be justified when we consider
a real system because, in the existing experiments, it is
practically impossible to see the difference between a true
incommensurate state and a higher commensurate state.

In the next section, we give a formulation of the prob-
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lem based on the mean-field Frohlich model in one di-
mension. The results of the self-consistent calculations
are shown in Sec. III, mainly for the third-filled-band and
quarter-filled-band cases, because the half-filled-band case
has been extensively studied numerically and analytically.
We devote Sec. IV to discussion of the experimental
relevance and the validity of our theory. Summary and
conclusion are given in the last section. Throughout this
paper, we confine our arguments to the ground state
( T=O).

II. FORMULATION

We start with the Frohlich Hamiltonian in one dimen-
sion and treat it in momentum space:

The mean-field approximation for phonon variables is
equivalent to the adiabatic approximation.

Let us consider the system with electron number v per
site (0&v&1). The lattice distortion, due to the Peierls
instability, described by the fundamental wave number
Q =2k+ (the Fermi wave number is kz ——mv/a and a is
the lattice constant}, which is a most effective nesting
wave number, spontaneously occurs in the ground state.
This lattice distortion, or the primary order parameter

hg, nixessarily induces the distortion with higher har-
monics (b,zg, big, etc.} generated through the self-
consistent condition (2.7). Thus the effective mean-field
electron Hamiltonian, in which all higher harmonics of
the order parameter are taken into account, is written as

H = g ekckck + g ~kfikfik
k k

Hei = g ekckck+ g ~igp ig-
1=1,2, . . .

(2.9)

+ '
Xgq(bq+f'q)c'ck „ (2.1)
k,q

where ck(bk) is the creation operator of an electron (pho-
non) with wave number k. The energy spectrum of the
electron (phonon) system is ek(cok ). The electron-phonon
interaction in the third term comes from the coupling be-
tween the electron charge density pq= gk ckck+q with

wave number q and the ionic displacement. Its coupling
constant is denoted by gq. N is the total number of ion
sites. We have neglected the electron spin. The electron
density p„at the nth site is given by

p. =
N

gpqeq
k

(2.2}

H =H, i +H ps
—g b,k & pk &,

Hei = g ekckck+ g ~kp k i—
(2.4)

(2.5)

Hpg
——g a)kbkbk+ g gq &P k &(bq+b q),

1
P (2.6)

The ionic displacement u„at the nth site is expressed in
terms of the phonon operators by

N
q (2Mcoq ) '/

where M is an ion mass.
Applying the mean-field approximation to Eq. (2.1), we

obtain

The self-consistent condition is now given by

2 lag I'
~ig = — &pig &¹Oig

(2.10}

with / =1,2,3, . . . , oo.
When v is rational, i.e. v=m/n, where n and m are

prime to each other, the problem is reduced to diagonaliz-
ing an nXn Hamiltonian matrix which is constructed
from Eq. (2.9). We call n the commensurability index.
The incommensurate state is characterized by an irration-
al v. We approximate it by the commensurate state with a
high commensurability index n as mentioned in Sec. I.

Our numerical calculations are performed by a simple
iteration method which diagonalizes Eq. (2.9) under the
self-consistent condition Eq. (2.10): We first assume a set
of initial values hig (1=1,2, . . . , n} Then. diagonalizing
the n Xn Hamiltonian matrix to obtain the eigenvalues
and eigenfunctions for certain points (about 1000 points}
in the first Brillouin zone of the undistorted system, we
obtain a new set of b, ig and substitute these values into
Eq. (2.9) to check the self-consistency. This step is repeat- .

ed until self-consistency is attained. The resulting self-
consistent solution, which consists of the values of b,ig,
the eigenvalues, and the corresponding wave functions,
provides information concerning the ground state of our
system, such as the spatial variation of the electron densi-

ty, the band structure, etc.
We have assumed in the following that the energy band

e'k ls glvell by

ek ———eosk, (2.11)

with the order parameter, which is assumed to be real,

gk(&&k &+&f ' k&)-1

N
Q.7)

where &
.

& is the expectation value. The mean-field
Hamiltonian H, i (Hzi, ) describes the electron (phonon)
motion under a given lattice distortion (an electron-
density modulation). The diagonahzation of the phonon
Hamiltonian H~k, in Eq. (2.6) readily yields a self-
consistent equation for the order parameter:

2Igk I'
~k= — &Pk& . (2.8)

NQPk

where the energy unit is scaled by twice the transfer in-
tegral 2t in the tight-binding model; thus the unperturbed
band is spread over —1 &E & 1. The length scale is mea-
sured by the lattice constant a. The dimensionless
electron-phonon coupling constant is assumed to be in-
dependent of the wave number for the convenience of
computation, that is,

2lgig I'
(2.12)

CO~g

although it is not difficult to extend it to k-dependent
ca!es in our formulation (see Sec. IV for detail). The
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Hamiltonian to be diagonalized is now

Hei = —g ckck cosk + g 4)gp )g
k 1=1

with

Cf
&)g ——— &pig & . (2.14)

We consider the systems with a nearly-half-filled
(n =2), nearly-third-filled (n =3), and nearly-quarter-
filled (n=4) band, where n is defined by v=(I/n)(1+5),
that is, we focus on nearly commensurate states. The de-
viation from the lower commensurate state is character-
ized by 5. To approach a nearly commensurate situation,
5 has to be small enough. The maximum size of the ma-
trix we have treated is about 100; therefore the smallest
value of 5 is the order of 0.01. In this case, our calcula-
tion is effectively of an infinite system with an affective
unit cell of size about 100 sites. We have employed the
periodic boundary condition.

Q= 2k'

III. SELF-CONSISTENT CALCULATION

According to the formulation mentioned above, we
have performed numerical diagonalization of the Hamil-
tonian matrix Eq. (2.13) for various values of the coupling
constant a and the derivation 5 from a nearby commensu-
rate state. The results of the self-consistent calculation
are presented mainly for the third- and quarter-filled
cases, including the overall band structure, the CDW
energy-gap structure, electron-density modulation, and
eigenfunctions.

2Q

Q~ 2k'

A. Overall band structure

When an electron band is just a third- (quarter-) filled,
the trimerized (quadrimerized) lattice distortion occurs in
the ground state because of the Peierls instability. The
fundamental wave number Q =2m/3 (Q =2m/4) corre-
sponding to 2kF characterizes the periodicity of the dis-
tortion and the concomitant electron-density modulation.
We show schematically the relevant wave numbers for the
Peierls distortion in Fig. 1 for both third- and quarter-
filled cases, where 2Q (3Q) is equivalent to Q in the form-
er (latter) case. The overall band in the perfect trimerized
(quadrimerized) state is split into three (four) bands by
opening up two (three) Peierls gaps, as displayed in Fig. 2.
The lowest-energy band is occupied and the others are
empty in one third- (quarter-) filled case.

The band structure in the nearly-third-filled case is
shown in Fig. 3. The band is split into three main bands
as in the perfect trimerized case in Fig. 2. However, in-
side each gap the midgap states appear, as is clearly seen
in Fig. 4 where the enlarged figures near the Fermi level
are shown. It is observed from Fig. 3 that as the coupling
constant a increases, the Peierls gaps become wider and
the relative position of the midgap band approaches the
nearby band (conduction or valence band). The corre-
sponding figures in the nearly-quarter-filled case are
shown in Figs. 5 and 6. %'e can observe a similar energy-
gap structure; the midgap band split off from the valence

FIG. 1. Relevant wave numbers Q, 2Q, and 3Q in (a) the
one-third-filled case and (b) one-quarter-filled case. These wave

numbers induce the Peierls gaps in the cosine band. The
hatched region is occupied. Note that 2Q (3Q) is equivalent to

Q in the perfect third- (quarter-) filled case.

(or conduction) band appears inside every main Peierls

gap.

B. Midgap band

The traces of the top of the valence band, the bottom of
the conduction band, and the edges of the midgap band
are depicted in Fig. 7 as a function of the deviation 5
from the nearby commensurate states. As

~

5
~

becomes
small or the system approaches the commensurate state,
the width of the midgap band becomes narrower, tending
to the midgap level. The limit corresponds to the so-
called soliton level. The position of the midgap band rela-
tive to the main gap near the Fermi level is not symmetric
about 5=0, but invemion symmetric about the center of
the main gap in the third- and quarter-filled cases. The
limits of the position of the midgap band in the third-
filled case are approximately 0.1 X the main Peierls gap
from the valence (conduction) band when 5&0 (5&0),
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lit into three (four) bands and the two (three) Peier sban is sp' ino

a =1.08).gaps appear in the third- (quarter-) filled case (a = .
1. 0
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which roughly coincides with the energy level of the one-
liton state (+—' soliton) evaluated by Ono et al. sso& an —3

f theth commensurability index increases, the position o t ee
dmidgap band is pushed toward the nearest main ban .

C. Order parameters

Figure 8 shows the primary order parameter hg as a
function of the electron filling for a fixed value of a
(= 1.0). The breaks of the smooth curve occur at electron
filling fractions of —,', —,', and —„'. The detailed figure near
the third-filled case reveals limg p /3 g =0.835 or
kg~0. 836, as Q~2u'/3 as is seen from Fig. 9. The
corresponding ratios of the limiting values to the com-
mensurate ones are -0.9 and -0.64 for the quarter- and
half-filled cases, respectively. These limiting values are
found to be independent of the coupling constant a. This
is consistent with the analytical calculations as is shown
later.

'b-The relative amplitudes of various harmonics are exhi
ited in FilL 10 near the commensurate states. The magni-
tudes of 55g and hig (Zsg and X4g) are reversed at

~
5„~ -0.02 ( ( 5„~ -0.01) for the third- (quarter-) filled

caen, signaling that inside this region the nearly com-
mensurate state is realized where the higher harmonics are
essential in forming the CDW. The crossover region o 5
for the quarter-filled cases is apparently narrower than
those for the half- and third-filled cases, as is seen from
Figs. 10(a)—10(c).

As the system approaches the commensurate state
(5~0) in the third-filled case the (3l+1)th harmonies
gro~ while the 3lth harmonics decrease, because the a&ave

number (3l+1)Q (l =1,2,3, . . .) bxomes relevant in
f '

the energy gap near the Fermi level and thus theorming e
Fi . 1).corresponding order parameters should grow (see ig.
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FIG. 3. Overall band structure in the nearly-third-filled case.
(a) a=1.08, 5= ~~; (b) a=1.08, 5=—,00; (c) a=1.15, 5= 98

(d) a=1.15, 5=—,~. The band is mainly split into three

parts. Note, however, that inside each main gap a sharp energy
band can be seen. The states below E= —0.5 are occupied. As
a decreases, the position of the midgap band shifts toward the
center of the main gap.

lim
( ik„g (

=hc/n . (3.1)

Similarly, in the quarter-filled ease, the (4l+1)th harmon-

ics grow while the 41th harmonics decrease and become
irrelevant and the (41+2)th harmonics stay constant.

As is estimated from Fig. 10, all the limiting va ues of
the relevant harmonics toward the commensurate states
are approximately given by
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FIG. 4. Band structure near the Fermi level. It is clearly
seen that inside the main gap a sharp band appears. It is isolat-
ed from the conduction band above E g —0.47 and the valence

1 ~band below E & —0.53. (a) a = 1.0, 8= ~, ; (b) a=1.0,
1
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FIG. 6. Band structure near the Fermi level. It is seen that
inside the main gap a sharp band appears which is isolated from
the conduction band above E p —0.64 and the valence band

I 1below E g —0.78. (a) a=1.08, 5= 95 (b} Q 108 5 97.

This formula is valid for the third-, quarter-, and half-
filled cases and holds for a=1.08 and 1.15 within a cer-
tain numerical uncertainty. From these limiting
behaviors, we can deduce a plausible form of the order pa-

0. 0U

(b) M

0. 5-
//////jP/i

-Q. 10 0. 00 0. 1I)

0
Cx

L&J

LL)

0. 00 0. 02
t t f I l

f
I I

'! lMT

0. 00 0. 02

FIG. 5. Band structure in the nearly-quarter-filled case. (a)
a =1.15, 5= 95; (b) a = 1.15, 5= —

97 . The band is mainly split
into four bands. Note that inside each main gap a sharp energy
band can be seen. The states below E = —0.7 are occupied.

(e)

M~-—

; Ill/z//IzedÃ/7/1 IIPII/7/iziViy~z j J'A

i"! O. I.~', ":
&1 . 1':j

FIG. 7. Traces of the energy-band edges near the Fermi level
as a function of the deviation 5 from the commensurate state.
The hatched regions are occupied. V, M, and C stand for the
valence, midgap, and conduction bands, respectively. (a) The
third-fiHed case (a=1.08), (b) the quarter-filled case (a=1.08),
and (c} the half-filled case (a=1.0). The tending limits of the
midgap band from 5~0 and 5~0 toward 5~0 are different in
(a) and (b) and nearly the same in (c). Note that as the commen-
surability index increases, the midgap band becomes closer to
the main band.
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FIG. 8. Variation of the fundamental order parameter h,~ as

a function of the electron filling (a= 1.0).
(b)

raineter in nearly commensurate CDW states: A com-
bination of the step functions shown in Fig. 11 turns out
to give exactly the same Fourier coefficients as in Eq.
(3.1). These analytical limiting forms, in turn, give the
tending limits of the primary order parameters:
h~/b, c—2/n ( —,

' -fille—d case), 3~3/2ir ( —,
' -filled case), and

12&2/~ (4-filled case). Our extrapolat& values men-

tioned above agree with these values. A correct analytical
solution which remains unknown at present for the —,'-

tand —,-filled cases must recover these limiting forms.

D. Electron-d~ity modulation

We show the electron density as a function of the lattice
site in Fig. 12 for the —,'-filled case and in Fig. 13 for the

4 -filled case. In the —,
' -filled case ( ~ -filled case), the kink

which connects the threefold (fourfold} degenerate ground
states becomes evident as a increases. Between kinks,
which are regularly placed to form a kink (or soliton) lat-

tice, an almost perfect trimerized (quadrimerized)
electron-density modulation is realized. For the —,'-filled

case the density-modulation pattern +——changes into a
——+ pattern after passing a kink for 5&0. For 5&0,

0. 1

0. 05

0 . 02; ~,.
I f I &, s I J.

0. 24
F I LL I'iG

0. 2-

0. 1=

. 5

0. 02-

0. 05I
0. 45

(c)

0. 55

FIG. 10. Variation of various higher harmonics normalized

by the corresponding fundamental order parameter:

EIg=—dL~/h, ~ as a function of the electron filling. (a) The
third-filled case (a=1.08), (1) the quarter-filled case (a=1.08),
and (c) the half-filled case (a=0.9).

~ ~ P

{ 1

F I LL ING
0. 36

FIG. 9. Detailed figure of the variation of the fundamental

order parameter h,g as a function of the electron fi&»~g near the

third-fiHed case. The isolated point corresponds to the perfect

third-filled case (a= 1.08).

the + ——pattern becomes —+ —.A phase change of
+2m/3 occurs, depending upon 6 & 0. In the 4 -filled case

the phase change is +m/2.
Figure 14 shows the local electron density averaged

over a few neighboring sites. The excess {or deficit} elec-
tron from the third-filled band is accumulated around the
kink site, accommodating a fractional charge of 2e/3 per
kink, including the eIectron spin. Note that the area
under the curve in Fig. 14 is —,

' . (The origin of the vertical

scale is set to —,'.) The spatial extension of the excess (or
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lation of the order parameters toward the commensurate state.
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filled case, (1) the third-filled case, and (c) the quarter-filled
case, where P is a numerical factor which depends on the value
of the higher harmonic: Equi). (Note that if hqi~=O, then
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FIG. 13. Electron-density modulation in the nearly-quarter-

filled case as a function of the site for various values of
a(a=0.9, 1,0, 1.08, and 1.15 from top to bottom, 5= 97 ).
One period of the periodic modulation is shown.
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deficit) electron density approximately coincides with the
width of a kink and becomes narrow as a increases. Ex-
cept for the fact that the fractional charge per kink is
e/2, the essential feature of the local-density modulation
is same for the —,

' -filled case.
We note here the different roles played by the coupling

constant a and the deviation 5 from the nearby commens-
urate state in the formation of the kink lattice. While a
determines the width of a kink, 5 characterizes the spac-
ing of the kink lattice as is clearly shown in Fig. 15 where
the electron density is plotted by changing 5 and keeping
a fixed. Therefore even if a is small, the sharp kink lat-
tice structure becomes clear as 5 becomes small or the sys-
tem enters a nearly commensurate state.

0. 0-
» ~

r»f l» 11»r»» 11 l»\ \1 11 1» rr wr» mme»rr»r»11»»»1 r»

0. 2 r r I r r r r r r r

1000
SiTE

FIG. 12. Electron-density modulation in the nearly-third-
filled case as a function of the site for various values of
a (a=0.9, 1.0, 1.08, and 1.15 from top to bottom with the same
5= 9S ). Since the modulation is periodic, we only display one

period. As a increases, the width of a kink becomes narrower.

E. %ave functions

The amplitudes of the wave functions are shown in Fig.
16, indicating that the midgap state is localized exponen-
tially at the kink site (see also Fig. 17) and its maximum is
located precisely at the center of the kink, while those in
the conduction (or valence) band are extended over a
whole system. Thus the midgap state is responsible for
the formation of the soliton.
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FIG. 14. Electron-density modulation averaged over a few

neighboring sites in the nearly-third-fiHed case (a=0.9, 1.0,
1.08, and 1.15 from top to bottom with the same 5= 9S ). The

origin of the vertical axis is set to the 3-filled case. Note that

the area under the curve in each panel is 3 . As a increases, the

excess electron density is seen to accumulate at the kink site.
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FIG. 15. Electron-density modulation in the nearly-half-

filled case as a function of the site (5= —z', , —4', , —67, and

from top to bottom with the same a=1.0). As
~
5

~

de-

creases, the region where the modulation is nearly commensu-
rate is wider while the width of a kink is relatively unchanged.

IV. DISCUSSIONS

We have investigated various properties of the nearly
commensurate CD% states and, in particular, studied the
relative position and the width of the midgap band which
appears inside the main Peierls energy gap. In this section
we consider the possibility of observing such an energy-

gap structure and examine the validity of our calculation.

pose experiments on various low-dimensional CDW ma-
terials such as Ko 3MoO& (Ref. 30) or (TaSe4)zl (Ref. 31)
to look for the midgap band. Optical-absorption or
electron-tunneling measurements might be a direct way to
detect it. In particular, in the former material the nearly-
quarter-filled ICDW (Ref. 32) is realized at around 100 K.
We believe that there exists a good chance to observe the
midgap band in this material.

A. Experimental relevance

The observation of the midgap band might be limited
within the crossover region 5„, which we introduced in
Sec. III C. %'e should point out that in this connection
the ICD%' materials usually have a lock-in transition
from the incommensurate to commensurate state as the
temperature decreases, just above which the system exhib-
its a nearly commensurate state. Therefore, if we adjust
an appropriate temperature immediately above the lock-in
transition, we always get a nearly commensurate situation
in which the bandwidth of the midgap state is narrow
enough to be easily accessible, experimentally. %e pro-

1. Remark on KoqMoOq

As is mentioned above, K03Mo03 is a typical nearly-
quarter-filled system. Fujishita et al. ' have concluded
that there is a sinusoidal modulation of the ICDW state
since they did not find higher-order satellites in the neu-
tron diffraction experiment corresponding to the second
harmonic h2~. %e point out that the most important
higher harmonic is not the second harmonic 52~ but the
third one, 5+, in the nearly-quarter-filled case, as is easi-
ly seen from Fig. 10(b). The former component (b,2~)
remains small while the latter (b,i~) grows as the system
approaches the nearly commensurate state. Therefore, we
urge a precise diffraction experiment to see the CDW
modulation.
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kink) lattice structure characterizes the CDW in NbSe&.
The periods of the discommensuration lattices are 54 and
50 sites, corresponding to Q, and Q2, respectively. His
assertion agrees with our model calculation. In fact, the
experimental fact that the intensity of the second harmon-
ic is very weak compared with that of the primary one as-
sociated with the wave number Qi is quite understandable
in view of our theory.

N N N

I T f W B T I I

N

A K N
N wN

i i f 1 i T i T

N N N
~I

N N N
N N

N N N N N

~~%% ~N ~e~~h ~h. ~~~""~~~~
I I I I I I I I I I I

N N
N

N

A" NA INI "N "N "I N NN AN N" NN NN

~ I I I I I

1005}TF
FIG. 16. Amplitude of the wave function in the third-filled

case as a function of the site. The wave functions corresponding
to the conduction (top) and valence (bottom) bands are extended.
The wave function of the midgap band (middle) is localized
around the kink site (a =1.15 and 5= —, ).
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FIG. 17. Amplitude of the wave function of the midgap band
in the quarter-filled case, indicating the locahzation with an ex-
ponential tail at the kink site (a= 1.15 and 5= » }.

2. Comments on NbSe~

We mention here the work by Wilsoni on NbSei,
which is another nearly-quarter-filled system and exhibits
two CDW transitions at Ti ——145 K and Ti ——58 K. By
noticing that the two CDW wave numbers Qi 0.2408b'——
and Q2 ——0.2599b' along the chain axis can be
well approximated by higher commensurate states,
Qi ———,'(—„' )b' ( =—0.2407b') and Q, = —,'( —'„' )b'
( —=0.2600b'), he claims that the discommensuration (or

9. Analysis of the experiment on TaSt

Let us examine the experiments on another quasi-one-
dimensional CDW system: orthorhombic TaS3. The
wave number of the ICDW along the chain axis or c axis
continuously decreases from -0.255c' at the onset tem-
perature of the ICDW, To-=215 K, to 0.250c' at the
lock-in commensurate-incommensurate (C-IC) transition
temperature Tc tc -90 K. Therefore, orthorhombic
TaS3 is an ideal system with the nearly- —,'-filled band

(» 0).
According to Itkis and Nad', the fundamental absorp-

tion spectrum at T=98 K just above the lock-in tempera-
ture consists of three peaks at hvi ——184 meV, hvar ——125
meV, and hv3 —62 meV. Since the energy of the hvi
peak roughly coincides with the activation energy estimat-
ed from the conductivity measurement, we can identify it
as the absorption across the main Peierls gap. As is seen
from Fig. 7(b) [we note that the deviation 5 from the
quarter-filled-band in TaS3 at 98 K is estimated as 5=-0
(0.01}]we can expect two more absorptions in the ICDW
state, namely the electronic transition from the occupied
midgap state to the conduction band and the other transi-
tion from the valence band to the midgap state are expect-
ed. The applied electric field or thermal effect makes the
latter process possible. We notice that hvi —

hvar-=59

meV is roughly equal to hv3 ——62 meV, coinciding with
our assignment of the peaks. In the experimental data
taken under other experimental conditions the essential
feature mentioned above is preserved. Therefore we con-
clude that the ICDW in orthorhombic TaS3 possesses a
midgap state.

B. Validity of our calculation

l. Importance of higher harmonics

We show the band structure near the half-filled case by
taking into account all harmonics in Fig. 18(a). The band
structure is shown in Fig. 18(b) when only the odd har-
monics (hg, hi~, . . .} which become relevant near the —,'-
filled case are taken into account and the even harmonics
are neglected in the self-consistent calculation. We can
see that the band structure for both cases remains almost
the same, except that the midgap band is precisely situat-
ed at the center of the band in Fig. 18(b). Figure 19 ex-
hibits the band structure when taking into account only
the fundamental order parameter b,~. The resulting
bands are seen to be fragmented. Therefore, these results
clearly indicate the importance of the effect of higher har-
monics when we consider the stable lattice distortion and
the energy-gap structure in the CD% systems. The ana-
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monics, corresponds to the situation in Fig. 18(b) and is
valid in the limit of the nearly-half-filled case (or
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very small); otherwise the even harmonics significantly af-
fect various physical properties.
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FIG. 18. Ener - a sgy-g p structure near the Feil~i level in the
nearly-half-filled case {a=1.0 and 5=—). ( ) Alla higher har-
monics are considerixi. (b) Only odd ha rmomcs are taken into
account. Note that the midgap stat tede is situa precisely at the
middle of the band (E=O) in (b) whil thm

'
e e overall gap structures

in (a) and (b) are similar. Also see Fig. 19.

constant a introduced in Eq. (2.12) is independent o t e
wave niiinber. Since in the nearly-half-filled case the
relevant wave num is Q =2k+~~, the wave-number-
d dent cou lin cons +pliilg coilstalits c(ii ~ 1 &g associated with the
odd harmonics 6&21+11~ ( I =0,1,2, . . . ) are virtually
same. y one coupling constant a(—=a&) is left. We
note that t e az~ associated with the even harinonics

tern
as e sys»5

em approaches the commensurate state. The same argu-
ment holds for the nearly-third-filled

Q is eqmvalent to (31+2)Q, leaving only one

comes irrelevant. Therefore, for these fillings we have

0 Q.
essenti y made no approximation on the k dependence

In the nearly-quarter-filled case, however, we need two

4 +1)Q and (41+2)Q are independent of each other, and

a =a —=ai
41 is irrelevant. Therefore, we have ed

g ——azg
—=a in this case. Since the order parameter b,z,

rel
whose aiiiplitude does depend on the val fe v ue o a2~, is less
re evant than the primary order paraiii t 5 +~e exs (~I+])g aIld

1~i+31~, we believe that the essential feature we have
drawn remains unchanged even if Cg 0,'2g.

S. Validity oj- the assumption on periodic stmctures

In our analyses, the periodicity is assumed
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FIG. 20. EElectron-density modulation in the nearly-half-
fiHed awe as a function of the site (a=1.15). (a) The unit-ce11
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30 (b) The umt-ceH size n =29 and S=—5 ~

the resultan
Note that despite the large difference of th ho e umt t e sizes used

e resultant modulations and band structures (Fi 21)
similar.

c es ig. are quite
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index), by retairung selected Fourier components with
wave number 2kF and its higher harmonics. Further-
more, in all calculations discussed above, we fix the excess
electron number per period to be + —,', + —,

' or + 4 in each
filling, thus obtaining the soliton lattice structure in
which the period is n sites and each soliton carries the
corresponding number of electrons.

In order to check the stability of the structure, we make
calculations with different number of excess electrons.
For example (see Figs. 20 and 21), the nearly-third-filled
system with + 1 excess electron per 90 sites yields the
same results as that with + —,

' excess electron per 29 sites.
Notice that the periodic structure in Fig. 20(a) with unit
cell size 30 is the computational result, not the assumed
one. The associated band structures in Fig. 21 are very
similar. The same situation occurs for other excess elec-
tron numbers and also for the nearly- —,

' -filled and nearly-
—,
' -filled cases.

This proves the validity of the assumption on the
periodicity (i.e., retaining only the harmonics of 2k~) and
confirms the relative stability of those soliton lattice
structures discussed in the previous sections.

V. SUMMARY AND CONCLUSION

We have given a detailed study of the midgap band
found inside the main Peierls energy gap in the nearly
commensurate state and proposed the limiting forms of
the order parameters. We start with the Frohlich model
in one dimension within the mean-field approximation.
Numerically diagonalizing the Hamiltonian matrices with
sizes as large as 100X 100 in a self-consistent manner and
taking into account all higher harmonics of the CDW or-
der parameter, we studied various properties of the nearly
commensurate CD% states such as the energy-gap struc-
ture, the wave functions, and the electron-density distribu-
tion.

We mention other systems which exhibit the midga
state: The incommensurate spin-density-wave problem
in Cr is known to be equivalent mathematically to the
present ICDW problem in the half-filled case. The
midgap state in Cr is identified by optical reflectance mea-
surement: we have observed the midgap band absorp-

L. : !
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0. 0 O. t

'i E(;!()R

FIG. 21. Energy-gap structure near the Fermi level. A set of
the parameters used is the same as in the corresponding Figs.
20(a) and 20(b). Energy-gap structures (the width of the main
Peierls gap and the position of the midgap band) in (a) and (b)
are very similar.
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