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Raman and infrared spectra of linear-chain models of mixed crystals are investigated. Motion
along more than one direction is allowed. Much of the phenomenology of real linear-chain com-
pounds such as ZrS;_,Se, can be qualitatively accounted for: preservation of the Raman and in-
frared symmetries present in the parent pure compounds, one-, two-, and three-mode behavior,
disorder-induced linewidths, and line-shape asymmetries. The physical nature and significance of

many of these observed phenomena is clarified.

I. INTRODUCTION

The type of quenched-in disorder present in various
condensed systems can sometimes be classified in various
categories.! Disorder in the positions of the atoms influ-
ences the elastic x-ray scattering spectrum for example.
This positional disorder coexists with topological order
when the disordered lattice can be mapped into an ordered
lattice without breaking bonds. Mass and force-constant
disorder, on the other hand, have only limited influence
on the elastic x-ray spectrum (they enter indirectly in the
structure factor), but they manifest themselves drastically
in the dynamic properties probed by neutron or light
scattering. These spectroscopies are also influenced by the
disorder in the effective light-matter coupling constants.
The latter disorder (e.g., polarizability for Raman scatter-
ing) is clearly not unrelated to the disorder in mass, force
constant, or position, but the relation can be quite compli-
cated.

Predicting the detailed light scattering spectrum of a
general disordered system, while possible in principle, is
an extremely complicated task. Nevertheless, one would
like to be able to extract some information on any given
disordered system from its light scattering spectrum.
Qualitative results can also be extremely useful. For ex-
ample, it is generally believed that the Raman spectrum of
amorphous semiconductors such as> Ge or Si reflects the
total density of states of these systems because the
momentum conservation rule is broken so that more or
less all modes become Raman active. While certainly not
rigorously valid, this observation may be extremely useful
in practice.

Mixed crystals represent a class of systems which in
some sense are intermediate between the amorphous solids
and the pure crystals. These crystals have only substitu-
tional disorder, i.e., atoms of one kind or another go at
random into the sites of an ordered lattice. They thus
have relatively little disorder: Their elastic x-ray spec-
trum looks like that of a pure crystal. They have certain-
ly no topological disorder and the position disorder, if
present, is very small. Their light scattering spectrum is
also in a certain sense very close to that of the pure sys-
tems: take compounds of the type AB,C,_, for example.
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The modes observed in the parent compounds (AB or
AC) are either both present in the disordered system
(two-mode behavior) or a single mode at the average fre-
quency of the parent modes is present (one-mode
behavior). Both types of behavior can be explained at
least qualitatively by simple one-dimensional mass-
disorder models.>* In some sense the explanation is based
on the Saxon-Hutner-Luttinger theorem® which states that
for a simple harmonic chain, the disordered system does
not have modes in the regions of frequency space where
neither parent has eigenmodes. One-mode behavior can
(but does not necessarily) occur when the optical bands of
the parent compounds overlap. This behavior is con-
firmed by coherent-potential-approximation calculations,’
approximate renormalization-group calculations,” and
simulations.*®° Note, however, that the accepted nomen-
clature “one-mode” and “two-mode” behavior is some-
what misleading for reasons which will be discussed in the
present paper.

The simplest experimental systems with which one
could hope to compare theory and experiment should thus
be quasi-one-dimensional. Compounds such as MS;_, Se,
where M is Zr or Hf have been grown and seem to fulfill
this requirement.!®!! Extensive studies of the optical'2—2*
and elastic properties”® of these compounds have ap-
peared. Despite their apparent simplicity, if one includes
possible disorder in the mass, coupling constant, first- and
second-neighbor force constants, the parameter space
needed to describe these compounds is enormous. De-
tailed fitting of the experimental results would certainly
be possible but does not seem especially desirable. The
questions we want to answer in this initial study are in-
stead of a qualitative nature. For example, what is the
simplest one-dimensional model which exhibits one- and
two-mode behavior in its Raman spectrum? (It turns out
that some of the qualitative features of the Raman spec-
trum of AB,C,_, do not compare well with those of the
above real systems.) Why is the Raman line shape in
some sense so similar to that of the parent compounds,
i.e., are the observed modes narrow because total density
of states in the optical bands of the parent compounds are
narrow or instead is the positional order helping to
preserve the momentum conservation rule which exists in
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the pure compounds? How can one explain the apparent
preservation of the symmetry classification of the modes
even in the disordered compounds? Can the increase of
the linewidths with disorder be understood only from the
breaking of the wave-vector conservation rule or does one
need to invoke a modification of anharmonicities by dis-
order? What is the relative influence of polarizability (di-
pole moment) and mass disorder on the light scattering
spectrum? Can one extract any information from the
line-shape asymmetries (for example, on the curvature of
the dispersion relation of the parent compounds)? Clear-
ly, none of the above questions are answered unambigu-
ously by the Saxon-Hutner-Luttinger theorem.> Further-
more, this theorem breaks down when one does not con-
sider a strictly one-dimensional model.

Our results should not be interpreted as completely gen-
eral. In many cases, the part of parameter space which
we explored to draw conclusions is relatively small and its
choice is guided mainly by physical intuition on the above
compounds and not by detailed fitting. Nevertheless, this
work lays the ground work for later studies and shows
clearly that most of the qualitative features of the optical
spectra of the above family of mixed crystals may be un-
derstood qualitatively from simple models.

Section II contains preliminaries on Raman and in-
frared scattering, the method of calculation and the struc-
ture of the linear-chain compounds of interest in the
present study. Section III contains our results on both a
strictly one-dimensional system and on a more realistic
model. In Sec. IV we summarize our findings.

II. LIGHT-MATTER COUPLINGS,
METHOD OF CALCULATION,
AND THE MS;_,Se, FAMILY

A. Light-matter coupling

We briefly recall a few known facts on Raman and in-
frared scattering. Since detailed accounts are available in
the literature,?® our discussion is brief and limited to semi-
classical images.

In infrared experiments, one usually measures the
frequency-dependent reflectivity from which the fre-
quency-dependent  dielectric constant is extracted.
Through a Kramers-Kronig analysis, one can extract an
absorption spectrum which, at a given frequency, is pro-
portional to the square of the component of the oscillating
dipole moment which is perpendicular to the line of sight:
> qiu; where g; and u; are, respectively, the charge and
relevant component of the displacement of atom i. To be
more specific, let I(w) be the intensity of light polarized
in the direction x detected at frequency w, then
N 2
2 giup %

Iw)~o*3, w—w,) , (2.1)
i=1

M

where there is a sum over the N atoms i and, in dimen-
sion d, a sum over the dN eigenmodes . There are other
physical constants and numerical factors coming from
geometry, detection efficiency, occupation factors, etc.,
but they are of no interest in the present study since they
only set the overall scale for the detected intensity or, as
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in the case of the occupation factors, are smooth functions
of frequency. In what follows, we always work with
I(»?) which is related to Eq. (2.1) by I (0?)dw?*=1(w)dw.
Hence, we evaluate,

2

N
S gu R | S0 —wf) . (2.2)

i=1

oY) ~0* Y,
I

Note that we do not include Coulomb forces in our calcu-
lations. This is justified in ordered crystals?’ when one
calculates the frequencies of TO modes extrapolated to
the zone center (i.e., through the polariton region). We as-
sume this to be valid also in the disordered systems. All
the infrared spectra calculated below are thus for TO
modes. We use the terms “transverse” and “longitudinal”
to refer to the average direction of oscillation with respect
to the chain direction.

Raman scattering, on the other hand, originates from
the induced dipole &E, where & is the polarizability ten-
sor. When the lattice oscillates at a frequency w, the po-
larizability is modulated at the same frequency when
d&’/dQ+0 (with Q a generalized displacement). Through
beating with the electric field, this induces a shift in fre-
quency of the induced polarization. The Raman intensity
is proportional to the square of that induced polarization,
hence to (Qd&/dQ)*. In what follows, we adopt the fre-
quently used model,?®~3® where the total polarizability of
the lattice is a sum of the polarizabilities of every chemi-
cal bond. Then with 8r; the change in the vector joining
the two atoms at the end of bond I/, we can write the
square of the induced dipole in the direction x when the
incident radiation is polarized along z as

2
I(0*) ~(wotw)* 3, 8w —wp)
n

> orf*)-Vafi(r)
1

(2.3)

with @, the frequency of the incident radiation. One uses
the minus or plus sign depending on whether one is in-
terested in the Stokes or anti-Stokes line.

For the purpose of the following discussion, let us
rewrite the sum over bonds in Eq. (2.3) as a sum over lat-
tice sites. We are then left with an expression of the form,

N 2
S fFu | 8o’ —aw}), (2.4)

i=1

I'(0*) ~(wgtw)* Y,
m

where f; depends on the particular lattice and polarizabil-
ities. Equations (2.2) and (2.4) are functionally very simi-
lar and are thus amenable to the unified mathematical
treatment described in the following section.

B. Method of calculation

Let us write in matrix notation the equations of motion
for the system in the harmonic approximation,

(D -Mo*)U=0, (2.5)

where M is a diagonal matrix containing the masses, D is
the dynamical matrix, and UT=(u¥,u%,u3,...,u})in a
two-dimensional model, for example. In the classical lim-
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it (#iw << kT, with T the temperature), both the infrared
and Raman intensities (2.2) and (2.4) may be written in
the form,

_C_FT 1

I~lmlm | FT—————F
) D —M(w°+ie)

€—

; (2.6)

where C=w* for infrared and (wotw)* for Raman
scattering, while FT=(f%,f%,f3,...,f%) with different
values for the f; depending on whether one is looking at
Raman or infrared scattering. To prove Eq. (2.6) note
first that it may be rewritten in the form,

: C pTap—112 1
I~limIm | —F'M
€— (1)2 M—l/2DM—1/2_(w2+ie)
XM™V2F| . 2.7)
Then, let V'* be the eigenvector for the mode ,
(M—I/ZDM—I/Z)V(p)zw‘Z‘V(;L) . 2.8)

Since the matrix to the left is real and symmetric, it may
be diagonalized by an orthonormal transformation made
up of the eigenvectors V*). Using this result, Eq. (2.7)
may be rewritten in the form,

I~3
m

%(FTM—I/ZV(;A))[( pTymIp—1/2F]
@

X S(wz—wﬁ) (2.9)
Noting from Egs. (2.5) and (2.8) that
M-y pyw (2.10)

one recovers Eq. (2.4). Note also that the normalization
VTV =1 for every eigenvector means that for any eigen-
mode,

N
VIv=U"MU= 3 Mpu}=1,

i=1

(2.11)

which is the correct normalization since the equipartition
theorem for harmonic motion leads to a kinetic energy
proportional to kT
2 N
) d
- S Mui= kT, (2.12)
i=1

where d is the dimensionality. This equation explains the
factor of w? in the denominator of Eq. (2.6). In the quan-
tum case, one can take the occupation factors into account
by the substitution,

kT #i
.._i._,T_
w Tw

1

T (2.13)
e tho/kT _ 1

with the minus sign for the Stokes intensity and the plus
sign for the anti-Stokes intensity.

In what follows, the “projected density of states,” Eq.
(2.6) is evaluated by transfer matrix methods which are
generalizations of the negative-eigenvalue theorem which
is often used to compute total densities of states.>! The

method has been described briefly in Ref. 8 and in more
details in Ref. 32. We can summarize the idea as follows.
One first notes that Eq. (2.6) may be obtained from the
second derivative with respect to © of the following gen-
erating function:

F=In [ [ DZexpl—+ZT(D —M(0*+i€))Z

+OF7z] |, (2.14)

where ZT=(z%,2%, .. .,2%), and

[oz=11[" dx.

i=1

(2.15)

The matrix D is then written in block tridiagonal form in
such a way that the problem becomes strictly one dimen-
sional for the blocks containing information on the de-
grees of freedom in every “unit cell.” One then generates
recursion formulas for the generating function and its
relevant derivatives by evaluating the Gaussian integrals
one unit cell at a time. This method can be seen as a way
to optimize Gaussian elimination for the sparse matrices
of interest here.

Finally, we should note that in practice the calculations
are naturally performed with finite values of €. The &
functions in Eq. (2.4) are then replaced by Lorentzian
functions. This is a very convenient way of introducing
phenomenologically the natural linewidth which is due to
anharmonicities. We chose a value of € which leads to the
correct order of magnitude for the linewidths of the pure
compounds. Note that the larger € the smaller the system
size needed to achieve convergence. This is easy to under-
stand intuitively because in the presence of large damping
the modes can propagate only over short distances. In the
numerical results presented below, we used system sizes
large enough to insure convergence.

C. The MS;_,Se, family of compounds

The crystallographic structure of these compounds, il-
lustrated in Fig. 1, has been described in detail in Refs. 10

QeO
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FIG. 1. Structure of ZrS;_,Se,-type compound. (a) Projec-
tion in the xz plane of a unit cell. Open circles are S or Se
atoms and solid circles are Zr atoms. The Zr atoms of one
chain are at the same distance along the b axis as the chalcogens

of its neighboring chain. (b) Structure along one chain direction
(from Ref. 34).
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and 11. Roughly speaking, they are made up of weakly
coupled pairs of chains. There are eight atoms per unit
cell. Each chain in a pair is weakly coupled through van
der Waals forces to its companion. A chain is made up of
a perfectly ordered sublattice of M atoms (either Zr or
Hf). In between every pair of M atoms, there are chal-
cogen atoms (S or Se) on an isosceles triangle whose plane
is perpendicular to the chain axis. In the mixed crystals,
S and Se can occupy any chalcogen site and the positions
of the atoms do not differ from those of the correspond-
ing pure compounds by much: x rays®**34 reveal a small
change in average lattice constants.

In what follows, we consider a single chain and assume
that it is completely independent of other chains.
Nevertheless, we should note that in the real compound,
the fact that there are two chains per unit cell leads to
pairs of modes very close in frequency, one of which is in-
frared active while the other is Raman active. This comes
from the fact that an infrared mode of a single chain can
be either active or inactive in infrared spectroscopy de-
pending on whether its companion chain is oscillating in
or out of phase. In the latter case, there would be some
Raman activity coming, in a bond-polarizability model,
from the interchain bonds. The fact that in the real com-
pound such Raman-infrared pairs of modes are close in
frequency reflects the fact that the chains are weakly cou-
pled. Clearly, our calculations of intensities and line
shapes have a chance of being realistic mainly when we
model modes that are seen in the same spectroscopy (ei-
ther Raman or infrared) in both the single- and double-
chain system.

III. MODELS AND RESULTS
A. Strictly one-dimensional chain

The simplest model representing substitutional disorder
in mixed crystals of the type MS;_,Se, is that of a linear
harmonic chain 4B, C,_, in which atoms A of mass M,
are on a periodic sublattice while atoms B and C with
masses Mg and M are placed independently on the sites
of the other sublattice with probabilities x and 1—x,
respectively [see Fig. 2(a)]. This model is clearly inade-
quate in general, but should have some of the qualitative
features of modes of the real chain when they involve
motion of the M atoms and of the chalcogen cages as a
whole.

1. Infrared spectrum

The infrared spectrum of the strictly one-dimensional
chain has been extensively studied before*®° and this sec-
tion only summarizes some of the main results.

Motion along only one direction is considered. The in-
frared absorption spectrum is approximated by what can
be interpreted as the density of states projected on the
zone-center optical branch. More specifically, referring to
Eq. (2.2), we have
2

N
S qu* | 8o*—wh) . (3.1)

i=1

Io®)~0*S
n

(a)

X

FIG. 2. (a) One-dimensional chain 4AB,C,_,. A atoms are
located regularly on the open circles sublattice. B and C atoms
are independently distributed on the solid circle sublattice with
respective probabilities x and 1— x. There is no force-constant
(k) disorder. Motion in only one direction is allowed. (b)
“Three-atoms-per-unit cell” model 4AB,C,_,. A atoms occur
regularly on the open circles. The “chalcogen” atoms B and C
are independently distributed on the solid circles with respective
probabilities x /2 and (2— x)/2. There is no force-constant dis-
order but the metal-chalcogen force constant k;, nearest-
neighbor, k;, and next-nearest-neighbor, k3, chalcogen-
chalcogen force constants differ. The latter force constant is
necessary for stability. The diagonal bonds &k, form a 7/6 angle
with the horizontal axis. Motion is allowed in the plane.

The factor in front of the § function can be interpreted as
the square of the projection of the displacement vector
U=(uy,us,...,uy)on the vector " =(Q,,0,, - . . ,Qn)
which, when Q;=(—1), has the same symmetry as the
vector describing the amplitude of a plane wave in the
zone-center optic mode of the linear binary chain.

Previous investigations*®° have shown that one sees
one or two optically active bands in the mixed crystals
with mass disorder only. Such behavior is often referred
to as one- or two-mode behavior, but we wish to stress
here that, in general, one gets contributions to the infrared
intensities from a wide range of frequencies covering a
large portion of the optical bandwidth of the parent com-
pounds so we shall use the terminology® one-band and
two-band behavior.

To be more specific, let us describe one- and two-band
behavior in more details as observed®’ in the one-
dimensional model with mass disorder only. In the case
where the optic bands of the parent compounds AB and
AC do not overlap, only two-band behavior can be ob-
served.>®> The modes closest to the original two zone-
center optic modes are more intense but, in general, a
large fraction of the modes in the energy range corre-
sponding to the optic bands of the parent compounds are
excited. The modes at or very close to the optic band
edges of the pure compounds do not usually contribute
appreciably. The relative weight of the two bands de-
pends on the concentration.

When the optic bands of the parent compounds overlap,
the infrared activity is in the frequency interval Aw? be-
tween the two zone-center optic modes of the parent com-
pounds. Sometimes, one can see that the active frequen-
cies shift slowly with concentration from the infrared ac-
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FIG. 3. Mass parameters for one-band and two-band
behavior in the strictly one-dimensional AB,C,_, model with
mass disorder (from Ref. 8). B=Mpz/M, and n=1—Mc/M;
(Mc <Mpg). Other methods of calculation (e.g., Ref. 6) give
qualitatively similar results.

tive mode of one of the parent compounds to that of the
other. The width of the excited band is, in general, a siz-
able fraction of Aw?. Very often, at a given concentration,
one sees a crossover to two-band behavior, i.e., there are
two excited bands with a clear gap in between. Around
the crossover, most of the interval Aw? is infrared active.

For the sake of completeness, we have reproduced in
Fig. 3 the diagram showing the regions of parameter
space in the mass-disorder model where the various types
of behavior are observed. Note that one-band behavior is,
in general, observed for small values of 1 —Mc/Mp where
M <My, in other words when the perturbation due to
mass disorder is relatively small and the infrared active
modes of the parent compounds are close. The atom A4
which repeats must also not be too heavy, otherwise atoms
B and C hardly influence each other. We also want to
stress that in either one- or two-band behavior, a whole
range of eigenfrequencies of the disordered system become
active. Within the present model, the natural linewidth of
the individual eigenfrequencies (modeled here by €) is the
same in the disordered and ordered cases. It is only when
the natural linewidths of the excited eigenfrequencies
overlap that the infrared spectrum looks as if only one or
two modes were excited. We exhibit explicit examples of
this in the discussion of the more elaborate model in Sec.
III B.

2. Raman spectrum

Following Eq. (2.3), in a model where the total polari-
zability is a sum of bond polarizabilities, the Raman spec-
trum of the one-dimensional chain is proportional to

I~ 3 | S autt —ulf))
]

m

2
8(w2~—a),2‘) , (3.2)

where g is related to the derivative with respect to length
of the polarizability of the bond / and u,; and u,; are the
displacements of the atoms at either ends of the bond.
Let us rewrite Eq. (3.2) as a sum over site instead of
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bonds. We find
2
I((OZ)"' 2 Z(Gi,,-+1—a,~,,-_l)u,-(“’ 8(602—60,2‘) ; (3.3)

B i

where a;;,; and a;;_, are the polarizability derivatives
for the bonds between atom i and its two neighbors.

Systems which possess an inversion center cannot be
Raman active if they are infrared active and vice versa.
Nevertheless, this selection rule does not necessarily apply
to disordered systems so it is legitimate to ask what is the
Raman spectrum of the mixed chain. We consider two
cases. First, suppose that there is no polarizability disor-
der, i.e., the polarizabilities of the two types of bonds ( 4B
or AC) are the same. Then it is clear that the sum within
large parentheses in Eq. (3.2) reduces to zero. There is no
Raman active mode.

Second, assume that the polarizabilities of bonds AB
and AC differ. Equation (3.3) shows that this time, the
displacement vector is projected on a vector proportional
to ¢T=(€,,0,€3,0, . . . ,€y) where the €; are independent
random variables which can take the value —1,0,1 and
whose average is zero. Note that B- and C-type atoms in
this case are surrounded by identical bonds and hence are
projected on a O in the vector ¢. Typical spectra obtained
in this case are shown in Fig. 4. The factor » ~? coming
from the normalization [Eq. (2.12)] has been omitted in
this figure. This avoids having to plot the » ~? divergence
at low frequencies. The following qualitative remarks are
of interest: The spectrum is very different from the corre-
sponding infrared spectrum and also from the total densi-
ty of states. Nevertheless, where the intensity is strong
there is also a corresponding large density of states and
the modes involve mainly motion of the atoms A4 on the
ordered sublattice. The latter result is expected when one
considers the explicit expression for the vector ¢. The
rough shape does not depend too much on concentration
and the Saxon-Hutner-Luttinger theorem? is clearly satis-
fied since active modes are within the bands of the parent
compounds.

We digress in passing to note that in the mixed crystal
there is one finite-frequency eigenstate which is extended,

5 SV

Tr T i rrr o T TSy

0.0 0.5 1.0 715 20 25
w

FIG. 4. Raman spectrum, in arbitrary units, for the strictly
one-dimensional model. M, =4, Mp=2, M =1, €=0.01,
k=1, x =7. Chain length, 2000 atoms. A factor =2 has not
been included in the spectrum.
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namely the band-edge mode where only the ordered sub-
lattice is moving. In that mode, the B and C ions are not
moving hence their mass is irrelevant and the disorder
does not show up, which means a truly extended eigen-
state. We note that the strongest Raman intensity in the
figures happens to lie near this extended state but that
mode itself is not Raman active. This can be seen by not-
ing that magnitude of the displacements of the A atoms
are all identical in this mode, which means that its inten-
sity is

2

. ) (3.4)

I~ —

N E(—l)iEi

i

where the factor 1/N comes from the normalization for
an extended state. Since the €; are random variables with
zero average, the average of the square of the sum in Eq.
(3.4) is of order N, which means that the intensity is in-
dependent of N, instead of growing linearly with N and
hence is negligible. The large Raman intensity near this
mode is thus largely due instead to the large density of
states in this region.

B. The model with three atoms per unit cell

Careful experimental investigations®*?""3* have demon-
strated the importance of the S, or Se, molecule in the
pure chains to explain the spectrum of the MS,_,Se,
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compounds. It is the absence of these molecular modes
and the absence of motion in a perpendicular direction
which are the main defects of the strictly linear-chain
model. The simplest model which includes the “molecu-
lar” modes is illustrated on Fig. 2(b). The atoms are al-
lowed to move in the plane, which means that there are
six degrees of freedom per unit cell in this model instead
of two as in the preceding one. The forces between the
atoms are central, hence rotationally invariant.>®* The pa-
rameter space is potentially enormous but we restrict our-
selves to three masses (M 4,Mp, M), two nearest-neighbor
force constants (k,k,), one second-neighbor force con-
stant (k3), two polarizabilities (metal-chalcogen and
chalcogen-chalcogen bond), and one angle 6. Note that
we have only mass disorder. The parameter 6 is clearly
irrelevant as long as it is within a reasonable range (we
take 6=1/6), so that given the arbitrariness in the choice
of units for mass, frequency, and scattering intensity, we
are left only with two mass ratios, two force-constant ra-
tios, and one polarizability ratio as parameters. The
behaviors we discuss below are “generic” in the sense that
they can occur for sizable ranges of parameters.

The zone-center and zone-edge modes of the pure com-
pounds are schematically represented in Table I along
with the formula for their eigenfrequencies. Figure 5 is a
schematic representation of the dispersion curves for the
pure compounds. Note that for all wave vectors K, the

TABLE 1. Eigenmodes of the pure chain near the zone center and zone edge for the model of Fig.
2(b). M stands for the 4 atom on the periodic sublattice, while m stands for B or C. The definitions of
the force constants k; to k3 and of the angle 0 are given in Fig. 2(b). A is for acoustic, R for Raman,
IR for infrared. L (longitudinal) and T (transverse) refer to the direction of motion with respect to the
chain direction. T and L in the usual notation LO and TO for infrared modes have a different mean-
ing: we are always computing TO frequencies. The first two columns of the last four rows are the opti-

cal modes which are discussed in this work.

Zone center Zone edge
Name Symmetry Symmetry »?
*> e [ ] .
Longitudinal o> o> <0 4—cos’0
acoustic (LA) -> Ld L4
3 . .
Transverse ® 3 Q 4—Lsin%0
acoustic (TA) 3 ° °
) <o k, m *> <o
Longitudinal o> 2—cos%0 |1+ == o o < (k,cos?0+2k5)
infrared (LIR) « m M o <o
) $
k
Transverse Q 2—sin%0 |1+ %&1— ‘ o o \ ik.sin26
infrared (TIR) é m : 3 "
. - 2 e e
Longitudinal [e) ~k,cos%6 (o] [o] —(k,cos?0+2k;)
Raman (LR) 7Y m «-> o M
$ s 3 ¢ >
Transverse fe) =(k,sin’6+k,) o) fo) = (k,sin’6+k,)
Raman (TR) s " i & m
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3 LIR
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o
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La TA
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FIG. 5. Sketch of the dispersion relations o(K) for the model
of Fig. 2(b) at the extremal compositions.  is the frequency
and K the wave vector. M, =2, Mp=1.5, Mc=1, k=1,
k;=5, k3=0. The notation for the branches is defined in the
table. Note that the Raman branches LR and TR are flat. The
former has some curvature, however, when k;7£0. The TR
branch is at sizably larger frequencies than the other modes be-
cause of the large value of k,. This corresponds to the strong
chalcogen-chalcogen force constant inferred experimentally.

eigenmodes involve motion either purely along the chain
or purely transverse to it. We also stress once more that
longitudinal and transverse in the case of the infrared
modes refers here only to the direction of the displace-
ments of the atoms relative to the chain direction. The in-
frared frequencies that we are calculating are those of the
TO (transverse) modes in the usual notation.?” [See dis-
cussion below Eq. (2.2)].

Since there is no polarizability or charge disorder in our
model, the components of the vectors ¢ on which the
eigenstates must be projected to compute the light scatter-
ing intensities are the same in every unit cell, which can
also be stated as meaning that the density of states is pro-
jected at K =0. Hence, we only need to specify the six
components of ¢ in a unit cell. Let the chain axis be
along the x axis. Then let the first two components corre-
spond, respectively, to the x and y displacement of the M
atoms, the third and fourth to the x and y displacements
of the top chalcogen atom, and the fifth and sixth to the
displacements of the other chalcogen.

The vector,
#7=(2,0,—1,0,—1,0) (3.5)

gives the infrared intensity of the dipole along the chain
direction, while

¢2T=(0’2’0,_1’0,_1) (3-6)
gives the intensity in the perpendicular direction.

For the Raman intensity, suppose that for a given bond
in the r direction, the polarizability tensor is given by?*—3°

&=al|r | @t 3.7

with ? a unit vector. Then,
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A A

a A A A
a_a rprq(r-ﬁr)—l—%(Srprq+rp8rq),

8r-Va,, = ar

(3.8)

where 0r, is the p component of the difference between
the displacement vectors of the atoms spanning the bond.
Explicit evaluation and gathering of all the factors multi-
plying a given atomic displacement leads, within numeri-
cal factors, to

$37=(0,0,1,0,—1,0) (3.9)
for I and

¢3=(0,0,0,1,0,—1) (3.10)
for I™. Note that since the polarizability tensor is sym-

metric for every bond, I®=I* for the system as a whole.
Furthermore, while I™ is not the same as I’”, they are
proportional, hence Egs. (3.9) and (3.10) suffice to com-
pute the Raman active modes.

Note that the symmetries of the vectors [Egs. (3.5) and
(3.6) and (3.9) and (3.10)] correspond to those of the
zone-center optic modes of the pure compounds illustrat-
ed in Table 1. Note also that if we add the two vectors,

¢7=(1,0,1,0,1,0) , 3.11)
¢7=(0,1,0,1,0,1), (3.12)

corresponding to the two acoustic branches, the set ¢, to
@6 forms an orthogonal basis for the K =0 projections of
the density of states.

1. Infrared spectrum

In all the spectra illustrated in this section, the factor of
o* appearing in Eq. (2.2) has been dropped. This is a
smooth factor that does not change the sharp features of
the spectra.

We consider in turn the longitudinal and transverse
modes. Figure 6 illustrates the evolution of the spectrum
for the longitudinal mode as a function of composition.
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FIG. 6. Evolution of the longitudinal infrared mode as a
function of composition x for the model AB,C,_, of Fig. 2(b).
¢7=(2,0,—1,0,—1,0, M, =2, Mg=2.5, Mc=1, k=1, k,=5,
k3;=1.5, €=0.01. Chain length, 115 cells (345 atoms). The
vertical scale is arbitrary.
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The compound is AB,C,_, and x takes the values 1.5,
0.8, and 0.5. The masses are chosen such that the ratios
2Mg /M, and 2M-/M, are approximately equal to the
corresponding ratios of total chalcogen (3Se for 2B or 3S
for 2C) mass to zirconium mass in the ZrS;_,Se, com-
pound. The chalcogen-chalcogen force constant is rela-
tively large because the molecular modes most influenced
by that force constant are at relatively high frequencies as
will become apparent below when we discuss the Raman
spectrum. Figure 6 shows that, in general, one expects a
large fraction of the band between the optic mode fre-
quencies of the corresponding pure compounds (marked
by arrows) to be excited. The width € of the individual
Lorentzian peaks forming the spectrum has been chosen
to fit roughly the observed widths in the pure compounds.
If anharmonicities are larger in the disordered compound,
the spectra would be smoothed out even more and Fig. 6
might well then be interpreted as a change from one-band
to two-band behavior around x =0.5. On the other hand,
within the resolution of Fig. 6, a few peaks could be taken
literally as “modes” in the experiments. In fact, there are
often such stray peaks appearing in the experimental spec-
tra for midrange compositions. They are often interpreted
as “impurity modes” but the extra modes we see here are
not associated with any kind of extrinsic impurities.

The purely one-dimensional chain of Sec. III A has in-
frared spectra which are qualitatively similar to those of
Fig. 6. Since it is known*®’ that this one-dimensional
chain can exhibit one-band behavior, it is legitimate to ask
whether this behavior persists for the more complicated
model and whether the mechanism in the latter case is
similar to that invoked in the former case. Figure 7
displays a spectrum where only one band is observed.
Figure 8 illustrates the evolution of the peak frequency
with composition. This is clearly what one would call
one-band behavior. The heights of the vertical bars are
about equal to the observed widths of the mode. Note
from Fig. 7 that as mentioned for the strictly one-
dimensional chain, the width of the mode in the strongly
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FIG. 7. One-band behavior for the transverse infrared mode
of the model 4B,C,_, of Fig. 2(b) at composition x =0.5.
¢7=(0,2,0,—1,0,— 1), M,=2, Mp=1.5, Mc=1, k, =1, k,=5,
k3=0, €=0.01. Chain length, 500 cells (1500 atoms). Vertical
scale arbitrary. Note that the natural linewidth 8w?~2¢ is an
appreciable fraction of the frequency interval between the optic
modes of the pure compounds.
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FIG. 8. One-band behavior in an infrared mode: Evolution
of the peak frequency as a function of composition for the pa-
rameters of Fig. 7. Height of the vertical bars is about equal to
the bandwidth. The plot appears linear whether frequency or
frequency square is used in ordinate. The compositions studied
are x =0, 0.2, 0.5, 1.0, 1.5, 1.8, 2.0.

disordered regime, here x =0.5, is a sizable fraction,
about +, of the frequency interval between the infrared
active modes (indicated by arrows) of the pure compound.
The real system ZrS;_,Se, has a comparable ratio of
linewidth to frequency difference between extremal com-
positions.!® Clearly, that width comes from the fact that
many eigenmodes are infrared active in the disordered
compound. It is not induced by anharmonicities. With
the value of € chosen here, these could account for only
half of the linewidth. Contrary to the strictly one-
dimensional chain, the line shape here can be modified by
changing the force constants to move other optic branches
closer or farther away from the region of interest. Final-
ly, note that the masses were chosen so as to be in the
one-band region of Fig. 3. This was done so as to make
the infrared modes of the pure compounds as close in fre-
quency as they are in the real system. In the latter case
though, this occurs because the force constants in the ZrS;
and ZrSe; compounds differ contrarily to the present
model.

2. Raman spectrum

Of the two Raman branches, the tranverse Raman (TR)
branch, which involves molecular motion of the “chal-
cogen,” (B and C atoms), is most closely related to experi-
ment. The longitudinal Raman (LR) mode, on the other
hand, is not a molecular mode in the sense that in the
presence of disorder, the A atoms are strongly involved in
all eigenstates. This LR mode also has no even approxi-
mate analog in the strictly one-dimensional chain. Its
spectrum in the parallel-perpendicular configuration I is
exhibited in Fig. 9. Most of the band between the pure
compound modes is activated, but the structure is com-
plex and differs from a simple density of states. That
type of behavior is often observed in our spectra. Note
also that when higher-frequency modes of the pure com-
pounds are close to the frequency range of interest, they
are activated as well.

Let us come back to the more interesting transverse Ra-
man mode. A glance at Table I and at Fig. 2(b) immedi-
ately suggests that with a strong chalcogen-chalcogen
bond, we are dealing with molecularlike modes. Figure 10
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FIG. 9. Longitudinal Raman spectrum, in arbitrary units, for
the model AB,C,_, in the parallel-perpendicular configuration
I? for x=1. ¢7=(0,0,1,0,—1,0, M,=2, Mp=2.5, Mc=1,
k=1, k=5, k3=—0.35, €=0.01. Chain length, 500 cells
(1500 atoms). Note that the activated frequency range is be-
tween the two Raman frequencies of the pure chains. Some ac-
tivation persists outside that range but is quite small.

illustrates the spectrum in the parallel-parallel I’? config-
uration for x =1. This is clearly a so-called three-mode
behavior, very analogous to that observed in MS;_,Se,,
where M is*"?%34 Zr or?® Hf. The left- and right-hand
peaks are associated, respectively, with Se-Se and S-S vi-
brations while the center peak comes from the S-Se “mol-
ecules.” All frequencies are slightly higher than one
would expect from the isolated molecules. Two factors
contribute to the sharpness of the lines: First, the bands
of the original compound are flat, which means that the
molecules there are vibrating independently of one anoth-
er; and second, the frequencies are much higher than any
of the other ones of this compound, leading, from a sim-
ple perturbative point of view, to modes that are not influ-
enced by any other because of large energy denominators.
Most importantly, this TR spectrum allows us to exhib-
it two important general facts. First, and in a sense as ex-
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FIG. 10. Transverse Raman spectrum, in arbitrary units, for
the model 4B, C,_, in the parallel-parallel configuration I*” for
x=1. ¢7=(0,0,0,1,0,—1), M,=2, My=1.5, Mc=1, k=1,
k=5, k3=0, €=0.02. Chain length 500 cells (1500 atoms).
B-B and C-C vibration frequencies, respectively, w?’=7 and
©*=10.5.
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FIG. 11. The TR left-hand (B-B~Se-Se) mode of Fig. 10
seen in transverse infrared configuration, ¢7=(0,2,0,—1,0,—1).
The height of infrared active modes on that scale is comparable
to that of Raman active modes in Fig. 10. The background in-
tensity comes from the tails of the Lorentzians of the transverse
low-frequency infrared modes.

pected, the Saxon-Hutner-Luttinger® theorem is not satis-
fied for this model, i.e., the S-Se mode appears in a fre-
quency range where both of the parent compounds had a
gap. This nonapplicability of the theorem is apparent in
other spectra we have calculated but here it is most obvi-
ous. Second, the categories Raman, infrared, longitudinal,
and transverse for this model remain a good classification
even in the disordered compounds. This is demonstrated
by Figs. 11 and 12. Figure 11 shows the transverse in-
frared (TIR) spectrum in the frequency range of the left-
hand Se-Se peak of Fig. 10. Even though there is a small
peak at the expected frequency, the intensity is a factor
10° smaller than that of the other infrared active modes
hence completely negligible. For a pure chain of the same
length we did not see that peak, which indicates that the
small intensity observed in the disordered compound is
not an end effect but instead is due to the breakdown of
the infrared-Raman exclusion rule of the pure com-
pounds. For all practical purposes though, one can con-
sider this exclusion rule as still valid. The intensity at
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FIG. 12. The TR intermediate (B-C~S-Se) mode of Fig. 10
seen in transverse infrared configuration, ¢”=(0,2,0,—1,0,—1).
The height of infrared active modes on that scale is comparable
to that of Raman active modes in Fig. 10.
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that frequency in the I Raman configuration and longi-
tudinal infrared (LIR) configurations were even smaller
than that in Fig. 11. For the middle peak of Fig. 10, on
the other hand, which arises purely from the disorder, one
might expect that the symmetries just discussed are more
strongly broken. The fact that this is indeed the case is
shown by Fig. 12, which represents the transverse infrared
spectrum in the S-Se frequency range. In this worse case
(the intensity was even smaller, 10~* to 10~3, in the other
configurations) the intensity is roughly a factor of 100
smaller than that of the infrared active modes, so even
though the exclusion is not as good as for the Se-Se peak,
for all practical purposes the symmetry classification of
the pure compounds is still valid. It should also be clear
that the exclusion transverse-longitudinal is stronger than
the exclusion Raman-infrared since in all cases, the TR
modes had an intensity in the TIR configuration stronger
than in the LR one.

3. Line-shape asymmetries and correlated disorder

Attention of various groups has been focused recently
on line-shape asymmetries.’*~4° In all cases, the mecha-
nism proposed for asymmetric line shapes is similar: In
the mixed, or disordered, crystal the momentum conserva-
tion rule is broken, so it is assumed that the modes near
the optically active modes of the pure compound will also
be excited. This means, for example, that for an optic
branch whose highest frequency is an active zone-center
mode, disorder will induce a broadening of the line on the
low-frequency side.

The above mechanism is easily checked for the strictly
one-dimensional model.*! Suppose that in a “two-band”
case, one looks at the infrared spectrum near the highest-
frequency mode of the AC compound. For small concen-
trations of B, one observes a broadening of the line to-
wards the lower frequencies. With small enough €, one
can resolve individual peaks which can in turn be put in
correspondence: with the highest possible frequency of
small segments of the AC chain. Noting that the infrared
mode of short segments of AC compounds are all smaller
than that of the infinite compound, the asymmetry to-
wards low frequencies is immediately explained. The in-
tensity of a peak is then proportional to the probability of
obtaining a segment of the necessary length, so in this
case it is clear that correlations between the occupation of
different sites will reduce the line-shape asymmetry since
longer segments of the AC compound will become more
probable.

Line-shape asymmetries are also observed in the
MS;_,Se, type of materials.?>?"*? Since these com-
pounds are too small to be analyzed by neutron scattering,
experimental information on the dispersion relations of
the zone center is not available. It would thus be valuable
if, as suggested by the above discussion, one could associ-
ate the line-shape asymmetries of the optical spectra with
curvature of the bands of the pure compounds.

The top curve in Fig. 13 is a magnified view of the line
shape of the B-B (Se-Se) vibration observed in Fig. 10.
Each chalcogen lattice position in this case is occupied
with independent probabilities. This line is clearly
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FIG. 13. Line shape of the TR left-hand (B-B~Se-Se) mode
of Fig. 10 as a function of correlations. No correlations for the
upper curve, and perfect intracell correlations for the lower
curve. The intensity is normalized differently for the two curves
to illustrate the fact that the left-hand side of both lines have
identical shapes. x =1.8, €=0.01. Chain length, 1000 cells
(3000 atoms). Note that in the case of no correlations, the bump
on the high-frequency side develops into a peak for smaller
values of x.

asymmetrical. Since the optical branch of the pure com-
pound is in this case flat, the direction of the asymmetry
here is in no way related to the dispersion relation. One
should thus be aware that the explanation of line-shape
asymmetries in terms of band curvature is not universally
applicable.

The line-shape asymmetry is nevertheless also reduced
when correlations are added to the model. We have stud-
ied various intermediate cases but it is perhaps more in-
structive to look at the limiting case where there is perfect
correlation within a unit cell and no correlations between
cells. In other words, the occupation of different unit
cells is independent, but a given cell can only be occupied
by two chalcogens of the same kind. The spectrum then
obtained is the lower curve in Fig. 13. Clearly, the
disorder-induced asymmetry has disappeared. In fact, the
line basically has its zero disorder width 2¢ because the
oscillations in each cell are now independent given that
the k3 bonds are central forces. Note that we have re-
duced the vertical scale in the perfect correlation case to
show that the low-frequency side of the line is the same
with or without correlations.

Finally, note that the asymmetry observed for the C-C
(S-S) line is very similar to that of the B-B (Se-Se) line in
Fig. 13. While this asymmetry is towards higher frequen-
cies for both of these lines, in the real compound the S-S
line shape extends towards the lower frequencies, al-
though in this case the asymmetry is less pronounced than
for the Se-Se line.

IV. CONCLUSIONS

While the purely linear-chain model has been used for a
numbser of years* as a model to understand optical proper-
ties of mixed crystals, it is only recently that it has been
possible to do experiments on real linear-chain com-
pounds.'>=23 This is particularly important because it is
only on these one-dimensional systems that all the
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features of the linear-chain model can possibly be realistic.
Indeed, it is known* that some properties of the linear-
chain model are qualitatively different from the corre-
sponding properties of higher-dimensional systems. For
example, it is known that all states are localized in one di-
mension while a mobility edge exists in higher dimen-
sions.** Hence the linear-chain model can be compared to
results on higher-dimensional systems only with extreme
caution.

Unfortunately, the simplest linear-chain com-
pounds!®~?* MS;_,Se, do not quite have the structure of
the linear-chain model: Motion is allowed in more than
one direction and the unit cell is more complicated, yield-
ing “molecularlike” modes. We have thus studied the
simplest model which in our opinion has all the qualita-
tive features of the real compounds. The model is exhibit-
ed in Fig. 2(b). We considered mainly the effect of mass
disorder. We recall that our purpose was not detailed fit-
ting. Such a task is arduous enough for the pure com-
pounds,?* in this first analysis it would only mask the
physics of the results. What has been accomplished is
summarized in the following paragraphs: (1) to (4) dis-
cuss results that are specific to our model and cannot be
inferred from the strictly linear chain, while the results
mentioned in the following paragraphs are equally valid
in the strictly one-dimensional chain and in our model.

(1) The best-established result for the purely one-
dimensional chain with one degree of freedom per atom is
the Saxon-Hutner-Luttinger theorem.> Perhaps the most
obvious feature [cf. the frequency of the S-Se molecular
mode (Fig. 10)] of our results is that this theorem does not
apply for our model. Hence, while the MS;_,Se, family
could have been thought of as a good realization of the
linear-chain model, some of its features are qualitatively
different from those of the linear chain.

(2) Our model reproduces the fact that the infrared-
Raman and longitudinal-transverse symmetries are
preserved in experiments on mixed compounds. This con-
servation of symmetry is very important for the experi-
mentalists since they use it to follow the evolution of the
mode frequencies with concentration. We have also expli-
citly shown, however (Figs. 11 and 12), that these sym-
metries are only approximate. They probably come from
the fact that the modes that mix more strongly come from
a given band and hence possess the same symmetry (longi-
tudinal or transverse to the chain direction for example).
While the preservation of the above symmetries in the
mixed crystals has been recognized for a long time by ex-
perimentalists, our calculation is the first to our
knowledge to exhibit this phenomenon for a linear-chain
compound. It is interesting to speculate on what addition-
al disorder must be introduce to break these symmetries.
Some obvious suggestions come to mind.

(3) We have confirmed that for the model of Fig. 2(b),
Raman lines are asymmetrical (Fig. 13), as in the real sys-
tem, and that correlations reduce the asymmetry. We
have also shown that contrary to the strictly one-
dimensional chain and to what is more generally as-
sumed,3¢—%° the asymmetry cannot always be used to infer
the curvature of the bands of the parent pure compounds.
In the usual models,*¢~*° there is no weight in the regions

6609

where the pure compounds have no eigenfrequencies.
This assumption is fully justified when the Saxon-
Hutner-Luttinger theorem’ applies. In our model, the Ra-
man band of interest is flat in the pure compound and
nevertheless quite asymmetrical in the mixed compound.

(4) Within the polarizability model used here,?®—3°
matrix-element disorder (polarizability disorder) can be as
important as mass disorder (Fig. 4) in the determination
of the Raman spectrum of the strictly one-dimensional
chain. In the more realistic model of Fig. 2(b), however,
polarizability disorder does not modify the spectra
dramatically, but this is, in a sense, because contrary to
the strictly one-dimensional chain, there are already very
strong intensity Raman active lines even without polariza-
bility disorder.

The following results apply qualitatively to both the
strictly one-dimensional chain*®° and to the model of
Fig. 2(b).

(5) In the cases where the calculated spectra have rela-
tively narrow bandwidths, it is because the frequency
range between the optic modes of the parent compounds is
relatively narrow. In other words, it is a whole band, or
large fraction of a whole band, which is excited in the
disordered compounds. When one can identify a single
“mode” in the spectrum of the disordered chain, it is in
fact a very large number of modes which are excited, but
the individual contributions are not resolved because of
the relative value of the damping € (anharmonicity). Note
then that it is, in general, not necessary to invoke a change
in anharmonicity to explain the broadening of the overall
spectrum in the disordered compounds. In fact, in the
one-band case we have studied (see below), quantitative
agreement with the observed broadening at intermediate
compositions can be obtained with a value of € which does
not change with composition.

(6a) Much emphasis has been put>* in the past on the
distinction between one-mode and two-mode behavior, or
more appropriately, one-band and two-band behavior.
One-band or multiband behavior can be observed in both
the strictly one-dimensional chain and in the more ela-
borate model of Fig. 2(b) (Figs. 6 and 7). In the latter
case, simple one-band behavior was observed (Fig. 7) for
eigenmodes which are qualitatively similar to modes of
the strictly one-dimensional model in the sense that they
do not involve large relative displacements within the
chalcogen cages. There are several points concerning
one-band and two-band behavior which clearly stand out
from the one-dimensional chain results. First, the distinc-
tion between one-band and two-band behavior is qualita-
tive only with no sharp distinction between both types of
behaviors. What happens in all cases, is that many modes
are activated in the frequency interval between the optic
modes of the parent compounds. The individual modes
may or may not be resolved depending on anharmonici-
ties. The “center of gravity” of the activated mode shifts
progressively form the frequency of one compound to that
of the other: sometimes the band of activated modes
shifts in a block, sometimes in two separate blocks, in
general in many blocks, and when the concentration is
varied continuously, the concentration at which a change
from one-band to two-band behavior occurs, when it does,
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is not sharply defined. The discussions* on one-band

behavior “with structure” and two-band behavior “with
structure” are symptomatic of the purely qualitative
difference between one- and two-band behavior. Second,
while one- and two-band behavior may be correlated with
the localization length of the modes, it is clearly not relat-
ed to the distinction between localized and delocalized
states: Indeed, in one dimension states are localized with
probability one.*

(6b) The above considerations suggest that the fixed-
point theory of Ref. 7, for example, should not be inter-
preted as indicating that the distinction between one-band
and two-band behavior is of the same type as the distinc-
tion between two “phases” or that a change from one- to
two-band behavior is like a phase transition. Another
class of models which may be misleading is the isodis-
placement theory. While second-neighbor interactions
are necessary in the latter approach to produce one-band
behavior, we see that in the linear chain, one-band
behavior can occur without such interactions. Second-
neighbor interactions sometimes favor one-band behavior,
sometimes they do not.’ Isodisplacement models also sug-
gest the existence of delocalized modes, but the linear-
chain model clearly demonstrates that one-band behavior
can be obtained with localized states. Isodisplacement
models should be considered as a fitting procedure where
some of the fitting parameters have a physical signifi-
cance which is unclear.
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Extensions of the present work could include a study of
the influence of force-constant disorder on one-band
behavior, and a more thorough investigation of the factors
influencing the asymmetry of the Raman lines when the
Saxon-Hutner-Luttinger theorem does not apply. Finally,
note that our method of calculation is a generalization of
the negative eigenvalue theorem®3"3? which allows an ef-
ficient computation of projected densities of states
without explicit evaluation of all the eigenvectors and
eigenvalues. Raman and infrared spectra are simply ob-
tained from the same point of view by projection on dif-
ferent vectors.
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