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Gap of the linear spin-1 Heisenberg antiferromagnet: A Monte Carlo calculation
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We have performed Monte Carlo calculations of the energies of several low-lying energy states of one-

dimensional, spin-1 Heisenberg antiferromagnets with linear sizes up to n=32.

Our results support

Haldane’s prediction that a gap exists in the excitation spectrum for n — .

Haldane’s prediction! that antiferromagnetic Heisenberg
chains have a gap in their energy spectrum for integral, but
not for half-integral, spin values has been studied quite ex-
tensively recently. Results obtained by finite-size scaling
methods tend to support the existence of a gap for spin-1
chains. However, the reliability of the numerical evidence
is controversial, in the sense that it has been questioned
whether the asymptotic regime of size dependence had been
reached.

As it turns out, the earliest calculations** on finite spin-1
chains provide an indication of a gap. The ground-state en-
ergy per spin was observed to converge with chain length n
more rapidly than n~2. This is significant, since finite-size
scaling would predict exponential convergence if a gap were
present.* In other words, the n~? size dependence, which is
found for spin~-i— chains and which is a signature of a spec-

trum without a gap, is absent for spin-1 chains.

A more direct check of Haldane’s conjecture was provided
by the work of Botet and co-workers, who calculated the gap
of finite spin-1 chains up to n=12.5 They concluded that a
gap does exist for n — oo, a result corroborated by subse-
quent work of Glaus and Schneider.® This conclusion, how-
ever, was criticized by Bonner and Miiller, and independent-
ly by Solyom and Ziman.” The spin--;- and spin-1 chains,
when subjected to the same analyses, were found to behave
quite similarly, while in fact it is known rigorously that a
gap is absent for spin 71-.8 According to Bonner and Miiller,
finite-size results for lengths up to as large as »n = 30 might
be required to find the true asymptotic finite-size behavior.

Finally, Solyom® and Chui and Ma® proposed phase dia-
grams of spin-1 Heisenberg antiferromagnets in disagree-
ment with Haldane’s conjecture.

To clarify matters, we have performed a Monte Carlo cal-
culation of energy levels and gaps for spin-1 antiferromag-
netic Heisenberg chains of lengths 16, 20, 24, and 32, con-
siderably larger than previously investigated.

In terms of the z component of spin s? and the usual
ladder operators s;* and s at site i, the Heisenberg Hamil-
tonian reads

#=—J 3 [5(sFsm+smst) +sistal ey

i=1

with periodic boundary conditions, and J < 0 in the antifer-
romagnetic case. Denoting by |/}, |j), ..., the 3" basis
states in which the sf are diagonal, we introduce a matrix H
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with elements
Hi=(i|#liy—n)]J
Hy=—(il#1j)/J, Gi=j) . ()

The matrix A has no negative elements, and its eigenvalues
A are linearly related to those of #°;, the latter equal
(A—n)J3 Furthermore, H is block diagonal; each block is
characterized by the eigenvalue S of S?, the z component of
the total spin. The dominant eigenvalues of these blocks
are denoted by A{” and the corresponding eigenvectors by
us, where spin and size indices are sometimes suppressed.
The lowest levels E<™ of # are related to the correspond-
ing eigenvalues of H by A§"” = E{”/J + n. The ground state
and first excited state have S=0 and S =1, respectively, in
systems up to n =141 and there are no indications that
this should be any different for the spectra of longer chains.

The dominant eigenvalues of H were found by employing
a simplified version of the Green’s-function Monte Carlo
method:!! a stochastic implementation of direct iteration.
In the basic relation, which produces the leading eigenvector
for large k,

v gy 3)

the vectors are replaced by stochastic vectors N*® with com-
ponents that are the integer-valued, stochastic variables
N;%_ The latter are realized in subsequent generations of
random walkers, each of which can be in any one of the
basis states. For the kth generation N,® is the number of
random walkers that are in state |i). To implement the ma-
trix multiplication, one generation of random walkers is
transformed into the next as follows. We write

L{'_"_].{“) +1—{(2) , 4)

where H'! contains the diagonal elements of H and H?
the off-diagonal ones.!> Now H™ (m =1,2) is written as

1_1(m)=fkg(m),g(m) , ©)

where fj is a running estimate of the current leading eigen-
value of H. D™ is a diagonal matrix such that the sum of
the elements in each column of C™ equals one. Multiply-
ing N® by H stochastically is done in two parallel steps
(corresponding to m =1,2) of two steps each [correspond-
ing to C™ and D). Each random walker in state |i) is
replaced independently by [D;]+1 random walkers in the
same state, with probability D; — [D; ], and by [D;] random
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walkers otherwise, where [r] is the integer part of a real
number r. In this way, each random walker will be replaced
by D, of such on average.

Next, the multiplication by C‘™, which is nontrivial only
for m=2, is simulated using the fact that C™ is a Markov
matrix where C§™ is the probability of a transition from
state j to i The iterated stochastic process N(¥ — N*+»)
by its very construction, is equivalent to multiplication by
H?/M,,, where M, =TI} 2f~'f, in the sense that the ex-
pectation value (N**P M, ,) is given by

(NC*DM, )y = HP-N® (6)

As usual for direct iteration, for large p, (N**?M, ) ap-
propriately normalized converges to u, the eigenvector cor-
responding to the dominant eigenvalue. One may take ad-
vantage of the adjustability of the f; to keep the numbers of
random walkers N® the size of the kth generation of ran-
dom walkers, approximately constant at some target num-
ber N.

The dominant eigenvalue A can be estimated from a se-
quence of pairs of numbers (N®,£), k=0,...,7T, in a
variety of ways. One is tempted to use the following esti-
mator

Aest = (N(T)/N(O)Mo,r)‘/r . (7)

However, for a finite number of random walkers this leads
to a bias. The average (\es) Of Aest OVer a large number of
runs of T steps each can be calculated making the following
observations. First, using Eq. (6), (A%) =A7. Second,
loghess has a Gaussian distribution, as guaranteed by the
central limit theorem for large 7. Denoting by A and X the
mean and standard deviation of this Gaussian, one finds
)\=exp(A0+%—T22). Up to terms negligible compared with
T3?, therefore Ag=10g({\est). This immediately yields an
expression corrected for bias A= (ew) + 5T 0% (Aest),
where o = AZ is the standard deviation of Aeg.

Alternatively, the statistical errors can be reduced by
means of a modified estimator involving an approximate
eigenvector for the desired energy level.!! From Eq. (6) it
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follows that

T
3 V' H M, N®
== : ®)

A=
2 V'Mk—p,pN(k)
k=0

for large p and T. This, of course, is true for almost all v,
but the better v approximates the true ground state the
greater the reduction in variance will usually be. The inner
products in Eq. (8) of v with N® and H - N‘® are tractable,
since N® has only few nonvanishing components.

As a variational form of the ground state for a given
quantum number S of the z component of the total spin, we
choose, again using the representation in which the s are
diagonal,

h
v(sy, ... ,s) =TT 4(s;,541)8
i=1

U AP ©
where 4 is a 3 X 3 matrix symmetric about both the diagonal
and the antidiagonal.'* Consequently, 4 has three free
parameters, not counting the overall normalization constant,
and the best estimate is obtained by maximizing v- H - v/
v-v. For the purpose of calculating the sum over states
with the restriction that S?=S, we employ the identity

n

exp[Zvriq[ S s,-—S] / (2n+1)

i=1

where 3 is the restricted sum over states. Thus, for arbi-
trary n the Rayleigh quotient can readily be expressed in
terms of the eigenvalues and eigenvectors of the matrices

an

By (si,si+1) =€, (5)A4 (5,541 €0 (5i41)

where ¢,(s;) =expl2mig(si—S/n)/(2n +1)]. The varia-
tional form (9) is interesting for its own sake as it can be
systematically improved.!* In the Monte Carlo calculation

TABLE 1. Monte Carlo results for ground-state energies Ey/J of finite spin-1 antiferromagnetic Heisen-
berg chains, together with the lowest energy levels in the blocks with S?=1 (E,/J) and S,=2 (E,/J), and
some numerically exact results for comparison, Refs. 3 and 10. Statistical errors in the least significant digits
are shown in parentheses. Also displayed (in units of 107 steps) are the effective lengths T, of the runs, ie.,
the target number of random walkers times the number of iterations. Top, results obtained directly from the
number of random walkers. Here the target number of random walkers was 2000. Bottom, results obtained
employing a variationally approximated eigenvector with a target number of random walkers of 10%.

n 10-7T, Ey/J 10-7T, E\/J 10-7T, E,/J
12 4 16.8713(44) 4 16.3805(28)

12 Exact 16.8696 Exact 16.3854

16 12 22.4400(39) 12 22.0059(26) 4 21.2946(42)
24 20 33.6326(99) 20 33.2208(74) 4 32.6359(94)
32 24 44.828(15) 20 44.420(12) 8 43.921(13)
14 14 19.6554(11) 10 19.1968(6) 10 18.4214(8)
14 Exact 19.6551 Exact 19.1962 Exact 18.4227

16 15 22.4463(14) 15 22.0049(7) 10 21.2906(10)
20 15 28.0453(24) 15 27.6138(13) 12 26.9836(15)
24 16 33.6433(38) 15 33.2194(22) 13 33.6483(22)
32 31 44.8497(52) 24 44.4364(40) 24 44.9200(29)
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FIG. 1. Finite-system gaps (E,—E;)/J (circles) and D

(Ey— E,)/2J (squares) vs 1/n. The curves are a guide to the eye.
Data for n up to 14 taken from Refs. 3 and 13. The error bars are
twice the statistical errors as shown in Table I.

for each N® we exactly calculated v-N® and v-H -N®,
in Eq. (8). Here T and p were chosen so large that the sys-
tematic errors due to their being finite were no longer sta-
tistically significant.

Results for various energy levels as obtained with these
methods are shown in Table I. The estimates obtained for
n=12 and n =14 compare well with the exact numerical
results.>!® The Monte Carlo results obtained using the
(size-dependent) optimal wave functions were found to
have a variance reduced roughly by an order of magnitude
compared to those obtained directly from the numbers of
random walkers. Comparison of the results in Table I sug-
gests that the energy estimates in the top part of Table I
possibly have a remnant (downward) bias of the same order
as the statistical error. Long-time correlations between suc-
cessive estimates of A could lead to a slight underestimation
of the standard deviation o. The resulting decrease of the
calculated bias correction would produce this effect. By
variation of the target number of random walkers we veri-
fied that no statistically significant bias is present in the
numbers in Table I(b).

The finite-system gaps G = (E{™ — E{" )/J are plotted
in Fig. 1 versus 1/n. The data for n=6 through 14 were
obtained by conventional methods.>!® The new data strong-
ly suggest a gap G=)=0.41 for the infinite chain. No
trend toward downward curvature (such as exists for spin

FIG. 2. Finite-system ground-state energies vs 1/n?. Data for n
up to 14 taken from Refs. 3 and 11. The error bars are twice the
statistical errors as shown in Table 1.

+) indicating G — 0 for n— o is observable. Our con-
clusion, in agreement with previous finite-size calculations,
is that a gap probably exists for » — oo. Another measure
of the gap is the quantity (E{® — E5™ )/2J, also plotted in
Fig. 1. It converges more slowly than G‘™; otherwise its
behavior is similar, and extrapolates to about the same
value.

Figure 2 contains the ground-state energy of the finite
systems, plotted on a 1/n? scale. Extrapolation of the new
data gives E{™/nJ=1.4015+0.0005, in agreement with
earlier work.

Note added in proof. Problems associated with having a
finite number of random walkers are discussed in depth by
Hetherington.!*
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