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Finite-length calculations of q and phase diagrams of quantum spin chains
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%'e present a novel means of calculating the exponent q for massless phases of quantum spin chains

based on Luck's formula. Convergence is illustrated by comparison to exact results for spin 2, and the

method is used to estimate phase boundaries of the spin-1 chain ~ith single-site and exchange anisotropy.

Clear evidence is found in favor of a fluctuation-induced gap for the isotropic antiferromagnet. '+e eluci-

date the transition between t~o different planar phases at large negative D.

There is currently great interest and even controversy as
to the nature of the ground state and excitations of one-
dimensional quantum magnets. In particular, Haldane' has
argued that for integral spin, but not half-integral, zero-
point fluctuations are sufficiently strong in much of the
phase close to the isotropic Heisenberg antiferromagnet not
only to restore the spontaneously broken symmetry but, in

addition, to generate a gap in the excitation spectrum, As
the models for spin greater than ~ do not satisfy conditions
for integrability by the Bethe ansatz, one must look to nu-
merical means of verifying these predictions, either by solv-
ing short chains exactly or by Monte Carlo simulation for
slightly longer systems. While such an approach has provid-
ed suggestive evidence for Haldane's picture' this evi-
dence is not compelling, essentially because of the limitation
of the finite extent of the chains. It is important, therefore,
to develop unambiguous means of determining phase boun-
daries which are less sensitive to such restrictions. It is with
this aim that we present a novel method of calculating the
critical exponent q in a critical phase of a one-dimensional
quantum system. The significance of the exponent q is
twofold: First, it is the single parameter that determines the
analytic form of static and dynamic correlation functions for
long wavelength and low frequencies, as calculated in the
continuum limit for spin 1 by Timonen and Luther, and,
second, it defines the scaling dimension for the operators to
which the phase becomes unstable. 6 Thus, calculation of q
determines the mapping from the model defined on a lattice
to the continuum limit in which correlation functions and
stability are more easily understood.

In many cases, massless phases in one-dimensional sys-
tems can be described in the long-wavelength limit, by the
Hamiltonian

0 =
J~ dx [(1/2p )7r'(x ) + c/2(By/Bx )'] (1)

Here @ is a Bose field, 7r(x) is its conjugate momentum
density, and p and c are effective-mass density and elastic
constant, respectively. On a strip of finite width L and
periodic boundary conditions, the correlation function of the
operator O(x, i) =exp[i@(xi) J is,
(0 (O, r )0 (0, 0)) = exp —i

. 2myvt 1-exp —i
. 2m'et

L L

with u= Jc/p, y= , rrup. Fo—r IvrI ((L and in the ther-

modynamic limit L ~, this decays as IutI ", i.e. , y is

the scaling dimension of 0. On the other hand, for finite L
the lowest Fourier component in Eq. (2) gives the energy
gap b E between the ground state and the first excited state
contributing to the correlation function. Consequently, one
has

y = L hE/2n u (3)

where r is the site index. For IJ, I ( 1, in the continuum
limit this model is indeed described by a Hamiltonian of
the form of Eq. (1) and, for L = ~(SoS, ) a: Ir I

(SOS,*)~ Ir I
~+ C( —1)'r "z with

~ = 1/(~, ) = (1/7r )arcos(J, )

We calculate 71 (=2y) numerically using the energy gap
(AE) between the ground state (of magnetization M=0,
ko = 0) and the lowest excited state with M = 1, k = 0,
whereas for q, the excited state has M =0, k =m. In all

This is the analog of "Luck's relation" for one-
dimensional quantum systems. Contrary to isotropic classi-
cal two-dimensional systems, it involves not only the energy
gap, but also the "sound velocity" u, which describes the
inherent anisotropy between space and time. As expected,
Eq. (3) is independent of an overall multiplicative factor in

the Hamiltonian.
We note, following Cardy, ' that Eqs. (2) and (3) can be

obtained assuming conformal invariance of correlation func-
tions, which is explicit for our Hamiltonian (1) but is be-
lieved to exist quite generally at critical points.

The sound velocity v can be evaluated from the energy
difference 4Ek between the ground state, which has wave
number ko ——0, and the lowest excited state of wave number
k = 2rr/L. This gives v = L AEk/2rr, and

y = hE/DER

We have used Eq. (4) to obtain numerical estimates of
the scaling dimensions of various operators from finite-

length calculations. As a test case we consider the spin- —,

"XLZ" Hamiltonian

H = —$ (S,"S,"+ ) + S~S,'+ ) + J,S,'S;+ ) )
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cases v is determined using the lowest excited state with

M=0, k=2'/L .Results for L =12, L =16, and, for a
few cases, L = 20 are shown in Fig. 1. The general agree-
ment between our numerical results for q and the exact
values is good. The deviation in the vicinity of the isotropic
ferromagnet point (J, =1) is mainly due to the important
curvature of the spin-wave dispersion curve in this region
and the consequent inaccuracy of v. This problem can be
avoided by fitting numerical values of v(L) to the form
v (L ) = v+ a/L + b/L', and using the extrapolated value of
v in Eq. (3). This procedure leads to good agreement near
the point J, =1. Close to the isotropic antiferromagnet the
calculated values of q apparently cannot follow the cusplike
singularity of the exact curve when approached from the
massless side, nor the jump to the constant value of 2 which
the apparent value of vi [twice the expression (4)], takes in

the antiferromagnetic phase. Nevertheless, the discrepan-
cies are not large at J, = —1. We find g=0.87 instead of
unity, and using q=1 as a criterion for the Kosterlitz-
Thouless transition to the Neel state, the critical value of J,
would be —1.3 instead of —1. The agreement between exact
and calculated values for q, is not as good; however, the
exact relation q= 1/q, is obeyed over a large part of the
parameter range. Note that for J, ( —1 the definition (4)
will lead to zero for 7b, and thus 1/q, must diverge. We fi-
nally remark that much longer lengths can be handled nu-
merically using the Bethe ansatz equations. Integration of
the Kosterlitz-Thouless flow equations would suggest that
convergence to the asymptotic values is logarithmic at the
critical coupling. '

We now turn to the anisotropic spin-1 chain with Hamil-
tonian

H = —$[S,"S,"+) +SfS~ii + J,S,*S,'+i —D(S, ) ] . (7)

S*(x)~ + ( —1) cos(J2@+)cos( J2@ )

tlat+

Qx
(9b)

with —(1/m)ttO+/Bx = m+. As a result of the separation
of the Hamiltonian into (+) and (—) parts, spin-correlation
functions are products of (+) and (—) components.

Specifically, for D or J, not too negative, the Ising model
(H' ') is in its disordered phase. Consequently, correla-
tion functions involving only 0 (which is a disorder field)
are constant at large distances, whereas P correlations de-
cay exponentially. A massless phase is then possible if the
"cos" term in 0'+' is irrelevant, and this implies q ~ ~ in

the massless phase, with q = ~ at the boundary to a massive

singlet phase. 6

In Fig. 2 we show the length dependence of q, calculated
as just described for S = ~, for different values of J, and D.
For ferromagnetic coupling most of the length dependence
comes from v. This can be eliminated using the extrapola-

(b)

A continuum representation of this model has been given in

Refs. 5 and 11 in terms of 2 scalar Bose fields @+ and g
The dynamics of @+ is governed by the Hamiltonian

H'+ ' = Ho+ a) dx cosJ8$+ (8)

with Ho given by Eq. (1), while H' ' is a continuum limit
of the two-dimensional Ising model. The spin operators are

S+(x)~ cos(0 /J2)exp( —iO+/J2) + ( —1)"cos

x (0 /v 2+J2) )exp[ —i (0 +/J2 +J2g+ )], (9a)
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FIG. 1. Comparison of calculated values of q and 1jq, to the ex-
act values for S = 2, for lengths L = 12, 16, and 20. If for J, ( —1

we define q to be t~ice the expression (4), then q-2, q, =0.
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FIG. 2. Calculated values of q for S =1 for (a) J, = 1, D varying
and {b) D = 0, J, varying. Crosses indicate values for gaps and
velocities estimated from a single length; solid circles with the velo-
city extrapolated from L = 8, 10, and 12.
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tion procedure described above, and the resulting values of
q are nearly length independent as long as q & 4. On the

1

other hand, if rt ) T [D = 1.2 in Fig. 2(a)], no obvious con-

vergence with increasing L is found, This behavior is clear-
ly in agreement with a massless-singlet transition at q= 4.
The situation is somewhat less clear along the line D =0
[Fig. 2(b)] and an increase of rt with increasing length as
for D =1.2 in Fig. 2(a) is only obvious for rt & 0.30. How-
ever, it is quite clear that the massless phase does not ex-
tend up to J, = —1, in agreement with Haldane's predic-
tion. " The crucial point, which we believe makes this state-
ment more convincing than naive finite-size scaling, is that
as well as asking whether gaps diminish more slowly than
1/length, which amounts, essentially, to looking for an ap-
parent increase in the estimates of q (since the estimated
velocity varies more slowly than the scaled gap), we have an
absolute value, T, to compare it to. Thus, we may compare
scaled gaps to absolute numerical values and not simply ob-
serve their "trends. " This is the gain to be had by calculat-
ing velocities. ' We note that an attempt'~ to implement
Luck's formula that, incorrectly, did not include the velocity
led to erroneous conclusions.

Using q = ~ as the criterion for the massless phase, we

find the phase boundary shown in Fig. 3, This boundary
closely resembles that found by Botet and Jullien' using
finite-size scaling, but we feel, for the reasons outlined, that
the present results make it much more convincing. Also
shown is a contour plot of rl(J„D) within the massless
phase. From the weak length dependence displayed in Fig.

Singlet Planar 1

2 we expect our values of q to be accurate to within a few
percent, with largest uncertainties close to the massless-
singlet boundary. Note that q=0 at the boundary of the
ferromagnetic region (calculated by the crossing of the ener-
gies of the M =0 and M =L states) at J, = 1, D =0, but in
general q & 0 along this line.

Defining an exponent F2 by (So+'S, ') —Ir I

' from Eq.
(9a) one expects r12=4rt. We have found numerically (us-
ing the M = 2 to M = 0 gap) that the relation is well obeyed.
In contrast, and unlike the 5= ~ case within the massless

region, we do not find convergent values of q„indicating
that the alternating part of the (SaS;) correlation function
decays exponentially, in agreement with Eq. (9b) and subse-
quent discussion.

Along a line in the J, —D plane, D = —J, in a continuum
approximation, the operator driving the massless-singlet
transition vanishes, so that the model remains critical. In
finite scaling this line appears as a fingerlike protrusion
from the massless phase, the width of which, however, de-
creases rapidly for longer lengths and seems to extrapolate
to zero for L ~. This line extrapolated from finite-size
scaling with lengths 10 and 12 is shown in Fig. 3 together
with calculated values of q. The line meets the singlet-
antiferromagnetic transition at a multicritical point at J, = 3,
D = 2.7, ~here we find q = 0.67.

Up to now we have restricted our discussion to values
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FIG. 3. Contours of q and the phase diagram for spin 1. The
contours drawn are with gaps for length 12; the velocities extrapo-
lated from L = 8, 10, and 12. The "finger" is shown for gap scaling
for 10-12 as well as the line estimated for infinite L. The singlet to
antiferromagnetic line is taken for scaling of the k = n- gap for
lengths 10 and 12; the ferromagnetic boundary from crossing of the
lowest eigenvalues of M = L = 12 and M = 0 subspaces. The
"planar-2" phase is bounded on the left by the contour q2= 1; see
Fig. 4 for further detail of D & 0.
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FIG. 4. The phase diagram for —5 & D & 0, IJ, I
» 0.4. The con-

tour q =
4 is shown dash-dotted that of q2

——1 with short dashes.
The long-dashed line satisfies F2=1/g„ the dash-crossed line scal-
ing for the M = 1 to M = 0 gap (L = 10 and 12), %'e expect that
the difference between the three lines separating planar-1 and -2
phases is a finite-size effect: They should collapse to a single line
intersecting the q2= 1 contour at the multicritical point A.
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D ) —1. For large negative D the model can be
transformed by perturbation expansion in I/O into an effec-
tive spin-~ chain. The lowest excited states have M=2,
not M = 1 as above and a direct massless-antiferromagnetic
transition where no intermediate singlet phase occurs. In
Fig. 4 we show contours of q =

4 and q2= 1 for D & 0. For1

D ) —1.4, q2 —4q as discussed above. Ho~ever, below
this value there appears a finite gap in the M = 1 excitations
so that formally q = ~, whereas q2 remains continuous and
well defined. Moreover, below D = —2.4 we again find a
well-defined value of q, with q, = I/q2. This is precisely the
behavior expected for the effective spin-~ model. In the

thermodynamic limit we expect a sharp transition between
the two types of massless phases (F2 ——4q, rt, '=0 and

q = ~, gg = I/q2) and the boundary to join continuously the
singlet-antiferromagnet transition. In this region the limita-
tions of finite chains evidently preclude precise location of
the boundaries: For infinite chains we would expect the
three lines separating the planar-1 and planar-2 phases to
coincide. In the continuum representation this transition

occurs when the Ising sector (H' ') goes into the ordered
phase. Then P correlations are long ranged, whereas 0
correlations decay exponentially. As long as the 0'+' sec-
tor remains massless, from Eqs. (9) one then expects
power-law correlations of 5' and (5+ )', whereas S+ corre-

lations decay exponentially in agreement with our numerical
results. Finally, if A ' becomes massive, an antiferromag-

netic state with long-range order is realized [cf. Eq. (9b)].
From this discussion, we expect the transition between the
two massless phases to be Ising-like, similar to that found
by Lee and Grinstein. " %e remark that both the massless-
antiferromagnet boundaries are characterized by q2=1. In
consequence, the boundary of the massless phases towards
negative J, may be assumed to be continuous through the
multicritical point A of Fig. 4.
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