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Site-bond correlated model for disordered magnets: Mean-field theory
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A site-bond correlated model for randomly diluted magnetic systems is presented. The model Hamiltoni-
an takes into account that the strength of the exchange interaction between two nearest-neighbor magnetic
atoms is also dependent upon the magnetic occupancy of their own nearest neighbors, along the line joining
the two atoms. An effective-field theory is used to obtain the critical curves in temperature-concentration

space.

Randomly diluted magnetic systems have been extensive-
ly investigated in both their theoretical and experimental as-
pects."? Particular attention has been given to the way in
which the transition temperature is reduced as one de-
creases the concentration of magnetic atoms. Also, the crit-
ical concentration at which magnetic order ceases to exist at
finite temperature is of considerable interest.

The shape of the critical curve (transition temperature
versus concentration of magnetic atoms) depends upon the
lattice structure and the symmetry of the interaction Hamil-
tonian.>~> On the other hand, a well-known result of Elliott
and Heap®’ and of Rushbrooke and Morgan®>* demon-
strates that for three-dimensional ferromagnetic lattices with
only nearest-neighbor interactions, the critical concentration
at which the transition temperature vanishes is independent
of the symmetry of the Hamiltonian or the spin value. That
is, the critical concentration seems to be a topological prop-
erty and coincides with the percolation concentration of the
lattice.

Recent NMR studies® of the randomly diluted Heisenberg
magnet KNi,Mg,_,F; show striking differences in the
behavior of this system compared to that of KMn,Mg,_,F;.
As the concentration is reduced, the transition temperature
decreases faster for KNi,Mg,_,F; than for the isostructural
system containing Mn?* ions. In addition, the critical curve
for KNi,Mg,_,F; exhibits an upward curvature, whereas
the opposite is observed in KMn,Mg, _,F;.

Attempting to explain these differences, de Aguiar,
Engelsberg, and Guggenheim® proposed a dilution model
which is quite different from the usual site-dilution percola-
tion scheme. In this model, which is expected to be more
appropriate for KNi,Mg,_,F;, the coupling between two
nearest-neighbor magnetic atoms is assumed to be depen-
dent upon the occupancy of the other nearest-neighbor
sites.

To understand this dilution effect, we first consider the
exchange paths in the pure compounds. In Mn?* with a
3d° electron configuration, all five of the one-electron orbi-
tals are half filled (L =0), having the unpaired spins avail-
able to form both ¢ and 7= bonds with the fluorine ligands.
However, in Ni?*, with a 34® configuration, the orbitals
dyy,dy,d,, are completely filled while the dxz_yz and dzz orbi-
tals are half filled; these unpaired electrons can only form o
bonds. In fact, as suggested by Anderson’s theory of su-
perexchange,’ this is the reason why Ni?* has a stronger ex-
change coupling in this system. On the other hand, in the
related randomly diluted magnets, the directionality of the o
bonds suggests that the substitution of a Ni** ion by a non-
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magnetic species has a stronger effect on the exchange cou-
pling of a nearest-neighbor magnetic pair situated along the
line joining the three atoms. For Mn?* the directionality of
this effect should be less and the overall perturbation of the
coupling weaker.

In this paper we introduce a model Hamiltonian which ex-
plicitly takes these ideas into account. For the nearest-
neighbor Ising model the proposed Hamiltonian is

H=_7]‘21i.;+50i0'i+a » (1)
L8

where 8 is the lattice vector and J;; +3 denotes the exchange
interaction between the ions at site / and / + 8, and is given
by (J > 0)

Ji_-+5=Je,«ei+,[(l—a)e,v-.'i’a] . (2)

The parameter « (0 < a < 1) correlates the interaction
between site /i and / +8 with the occupancy of site i — 8.
The limiting cases of a=1 and 0 correspond, respectively,
to the usual site dilution and to what we call a completely
correlated site-bond model. The random variables €; can
take the values one, with probability p, and zero, with pro-
bability 1—p, where p is the concentration of magnetic
atoms.

We next treat the Hamiltonian (1) within the scope of
mean-field theory. Using the Callen identity,® the magneti-
zation can be written as

(<0'i)T)cc=((tanh(ﬂE:»T)cc , 3)

where 8=1/KT, ( - - - )r denotes the canonical thermal
average, ( * -+ ) the conditional configurational average
and

Eizzji,i+60'i+6 . 4)
[)

First, we consider the standard mean-field treatment, which
consists of taking the averages in Eq. (3) as

m =tanh({BE;) 1) cc=tanh(BJm) , (5)

where J=2zJp[(1—a)p +al, and z denotes the coordina-
tion number of the lattice.

The dependence of the reduced critical temperature
T.(p)/T.(1) upon magnetic concentration p is plotted in
Fig. 1, for several values of the parameter «. It is worth
noticing that the upward curvature of the critical curve is al-
ready apparent, even within the framework of simple
mean-field theory, provided site-bond correlation is included
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(a<1). The curves for a <0 show that this model can
also exhibit to some degree the effect of frustration.

In order to improve the above results we next consider
the effective-field theory developed by Honmura and
Kaneyoshi,” which has been applied to a great variety of
disordered magnetic systems.'® By applying the differential
operator technique, namely, e*’f(x)=f(x+\), where
J

D =9/8x is the differential operator, to Eq. (3) we get
((UI)T)CC=((exp(BEiD)>T)cctanhx|x=0 » (6)

substituting (4) into (6), expanding the exponential, and us-

ing the following identities: (o;)*=1, (o;)*"*'=g,,

(e;)"=¢;, and (e;€e;)"=¢€;¢;, for all n, one obtains the exact
relation

(o)1)= <<H {{l1+ee+a(f1+oi+sS) 1 +eei—peira(fr+ 01+552)“>T>cclaﬂhx|x=o . @)
)

Here we used the notation f;= — 1 +cosh(K;D) and S;=sinh(K,;D) with K,=aBJ and K;=(1—a)gJ.
In what follows we shall consider the application of (7) to a square lattice with periodic boundary conditions. For a cluster
with five sites, where we need to consider only those configurations for which the central site is occupied by a magnetic

atom, we get

4
({o0) 1) ec= << II (1 +eoe; (f1 + oS 11 +€o€;€1+2(f2+(T,-Sz)]>r>9ctanhx‘x.—.o . (8)

i=1

Performing the thermal and conditional configurational (i.e.,
(€0)c=1) averages, neglecting multispin correlations, and
using the fact that (e;).=p for i=0, one can obtain the
phase diagram displayed in Fig. 2.

The results of Fig. 2 show some of the characteristic
features of the site-bond correlated Hamiltonian (1). For
instance, even for the Ising model considered here we ob-
serve for a®1,0 an upward curvature of the 7.(p) curves,
whereas for the usual site-dilution problem (a=1) this is
expected only for the Heisenberg model.>* Further-
more, the initial slope of the critical curve S=(1/
T.)(dT./dp)|,=1 increases continuously as one increases
the degree of correlation, taking the values S,=1.345 for
a=1 and S¢(=2.483 for «a=0. The present approximation
gives a critical concentration p.;=0.428 for a=1, and
Peo=0.765 for a=0. The above results should be compared
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FIG. 1. Reduced temperature vs concentration for different
values of a, obtained by standard mean-field theory.

[
with the known exact values S;=1.329 (Ref. 11) and
pe1=0.5 for bond dilution. In fact, in performing the condi-
tional configurational average in Eq. (8) the concentration
of connected bonds must be interpreted as the concentration
of magnetic atoms. Indeed, within the framework of the
percolation problem only two different values p.o and p;
corresponding to a« =0 and 1 should be expected. The value
pe =0.381 somewhat below p.; (Fig. 2), obtained here for
intermediate values of «, should then be considered as a
spurious result. Also, the numerical values obtained for 7,
in the p=1 case are dependent upon the parameter «
(0 < a < 1). This result is certainly not expected from the
starting Hamiltonian [Eq. (1)] and should be attributed, as
should the spurious p.*, to the neglect of spin-spin correla-
tions within the differential operator technique.

The conclusions to be drawn from this approach are
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FIG. 2. Transition temperature as a function of concentration of
magnetic atoms for different values of «, obtained by the effective-
field theory of Honmura and Kaneyoshi.
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mainly of qualitative value. Nevertheless, they are believed
to be general. Although our calculations were restricted to
the spin-%— Ising model in a square lattice, we expect that
the effect of site-bond correlation is to increase the initial
slope of the critical curve and eventually also yield an up-
ward curvature in more general cases. In particular, the
three-dimensional Heisenberg magnets KNi,Mg;_,F; and
KMn,Mg,-,F; may be examples of systems which could be

described by a Hamiltonian similar to the one employed
here [Eq. (1)1, with a near zero and one, respectively.
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