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Dipole-dipole interactions and two-dimensional magnetism
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The effect of the dipole-dipole interaction on the magnetism of a two-dimensional lattice of spins

coupled by isotropic short-range exchange interactions is investigated. In the noninteracting spin-

mave approximation it is sho~n that for positive J the system becomes ferromagnetic.

The temperature dependence of the magnetization of
thin magnetic films has recently been of considerable in-

terest. A review of the experimental situation is given in a

paper by Bayreuther. ' Recent experiments on Gd-Y su-

perlattices show a very gradual decrease of the magnetiza-
tion M(T) with temperature T for Gd arrays only three
atomic layers thick but in a magnetic field H of 12.8 kG.
In such a field, the behavior of M(T) can be understood
to follow simply from the gap introduced by H into the
spin-wave spectrum at k =0. More generally, however,
the understanding of the temperature dependence of the
magnetization in nearly two-dimensional systems is diffi-
cult because a detailed understanding of the anisotropy is

not available and the measurements are made in a mag-
netic field of the order of kG. In particular, the role of
dipole-dipole interactions on two-dimensional magnetism

has, to our knowledge, not really been clarified. As is well

known, an infinite two-dimensional lattice of spins cou-

pled by isotropic exchange cannot sustain long-range or-
der. To ensure the existence of a magnetization it has
therefore been necessary to assume a finite-sized speci-
men, or to introduce an external field or an anisotropy
field. Yet because of its anisotropy and long-range char-
acter, the dipole-dipole interaction may itself stabilize
long-range order and the effect may be particularly im-

portant in Gd which has a large spin S = —,.
Surprisingly, little seems to have been done on this sub-

ject: Brodkorb included the dipole-dipole interaction in a
Green's-function treatment and concluded that its effect
was negligible. In a later paper on thin film magnetism,
Navarro and de Jongh replaced the dipole-dipole interac-
tion by an effective anisotropy field. However, it can be
seen from the work of Holstein and Primakoff that this
is not a valid approximation for calculating the spin-wave
spectruin near k =0, and this spectrum is what deter-
mines whether long-range order can exist.

In this paper we calculate, using simple spin-wave
theory, the low-temperature magnetization of a two-
dimensional lattice of ferromagnetically coupled spins in
the presence of dipole-dipole interactions. We show that
the latter remove the divergence of hill (T}, the deviation
of the magnetization from saturation that results from
thermal excitation of spin waves, and hence lead to fer-
romagnetic ordering. For large S, the calculated b,M(T)
is smaller than that obtained in Refs. 4 and 5 and is com-
parable with the experimental result.

An estimate of the relative strength of the dipolar to

the exchange energy can be obtained by comparing a typi-
cal dipolar energy ED ——4mPMii where P is the Bohr mag-
neton and Mz the saturation magnetization, with the
stiffness constant u of the spin waves. Excluding the po-
larization of the conduction band (a 10% effect), the value
of (ED/kri } is found to be 1.66 K. For nearest-neighbor
interactions the exchange integral J is related to the Curie
temperature Tc by the relation'

kg Tc =—,'6 (z —1)[11S(S+1)—1],

where z is the number of nearest neighbors. Gd has
Tc ——292 K which gives (J/kii) =3 K, a value less than
twice that of ED. Actually the physically meaningful pa-
rameter with which to compare ED is a=4SJ in terms of
which the spin-wave energy for small wave vector k is
aE . Here the dimensionless quantity K is ka, a being
the lattice constant of the hexagonal plane. The ratio
(En/a) is then —,', , which is not very small. For a spin
of —,

' and the same Tc, this ratio would have the much
smaller value of ~. It is clear then that the effect of the
dipolar interactions can be important when S is large.

The formalism for including HD in the calculation of
m ( T) at low temperatures has been given in Ref. 9 and all
that has to be done is to carry out the same calculation in
two dimensions. We follow the notation of Ref. 9 and
refer to that paper for the meaning of the symbols. Mo
being the saturation magnetization (magnetic moment per
unit area), Eq. (23) of Ref. 9 gives

LDf ( T)
Mo

A(K)
(2n ) S [A (K) —

~

g (K)
~

2]'~2

[g (K)~—
~
8(K)

~

]'
exp —1

kgT

(As in three dimensions, the deviation of the ground-state
magnetization from saturation is negligible. )

The quantities A (K) and 8 (K}are
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3 ( K)= 2SJ g [1—exp(iK I}]+2PH

4p's
u3 /3 /2

2P'S
1 — exp(iK I),

a I I I

6P'SB(K)= g —exp(/K I) .

(3a)

(3b)

where P is the angle between I and K and 8 is the angle
between K and the magnetization. Making use of the re-
lation"

exp(ix cosP) =Jo(x)+2 g i "J„(x)cos(nP),
n=1

we obtain

oo

F( K}=irf —2[JO(K/)+cos(28) J2(K/)] .I'

Here xz is the plane of the layer, which for simplicity
has been taken to be a square net of mesh a, z is the direc-
tion of the magnetization and I is a vector whose com-
ponents are integer /~, lz, l„ the point at the origin being
excluded. The external field H will be taken to be zero
until later. Note that replacing the dipolar interaction by
an effective field is equivalent to leaving out the terms in
exp(i K I ), which would result in B(K)=0 and hence in a
gap 2pHd;~ in the spin-wave spectrum. Retaining the
dynamical character of the interaction gets rid of this gap
since, from Eq. (3), for lattices with sufficient symmetry,
A (K)=B(K}in the limit K=O. Further examination is
therefore needed to determine whether the divergence of
ddf (T) is removed.

The contribution to b,m(T) from small K values,
b,m ( T)I is obtained by expanding the Bose factor:

(2n) S 0 0 A(K) —~B(K) i

The choice of the upper limit q will be discussed later.
The dependence of the denominator on K will determine
whether m (T) converges. To find this dependence we

must calculate the lattice sums in Eq. (3}. We do this in

two steps. First, we calculate the sums for K=O. Then,
by symmetry,

y„(/„'/I') =y (/,'//') = —,
' y (1//') .

l I l

The sum g (1//i) is just a measure of the local field at a
lattice site when the spins point along the normal to the
layer. For a thin film (three dimensional) this sum would
be equal to the difference between the demagnetizing coef-
ficient 4m and the coefficient of the Lorentz field, 4n/3
for the square net the calculated sum is equal to (8m/3)e
where the numerical factor e =1.078 is close to unity.
For the triangular lattice e =1.318, the larger value re-
flecting the close packing of this lattice. Second, for
K&0, we replace the sum over lattice points by an in-

tegral over / which can be done analytically. A cutoff ro
at the lower limit of / is chosen such as to reproduce the
calculated value of the sum at K=0. The validity of this
approximation for K&0 has been checked numerically
and found to be excellent. For the square lattice the sum
in B(K) becomes

Furthermore, noting that" [dJO(x)/dx]= —Ji(x) and
pJ&xxx= l, we inallyobtain to erst order inE,

8 (K)=aK +2pH+4rrpM&f 1 — [1+cos(28}]
4

(7a)

B(K)=4mPMsf 1 — [3—cos(28}]E
(7b)

which for aq/Esr « 1 reduces to

For the simple-cubic lattice, the factor f=e =1.078,
while for the hcp lattice f=(e/v 2) =0.932, and in addi-
tion the terms linear in K acquire a factor Y2/3. Letting
Esr ——4irPMs, we obtain for H =0,

A(K) —~B(K)
~

= aK +2EM

X I 1 —(K/4f )[1+cos(28) ] I

+Esr (K/f) [1—cos(28)] . (8)

This expression has a term linear in K which is surprising
at first glance since each I term in Eqs. (3) depends on K
through cos(K I) which contains only even powers of K.
[The terms in sin(K I) drop out by inversion symmetry. ]
This linear dependence is due to the long-range character
of the dipolar interaction: Eq. (5) was integrated for finite
K but an infinite lattice. If the lattice were taken to be fi-
nite but very large, say l. )&L, then the linear dependence
of Eqs. (3) on K would hold for KL p~1; in the opposite
limit KL «1, the dependence on K would be -K L.
Even though KL=n for the smallest K in the physical
case, it is easy to see that the correct way of calculating
hm (T) is to assume an infinite lattice as we have done.
Thus, the long-range character of the dipolar interaction
is what is ultimately responsible for the modification of
the spin-wave spectrum near k =0.

In the limit of small K, the integrand reduces to

t 2aK+(Esr/f)K [1—cos(28)] I
', and doing the angular

integration first we find

AThm(T)I= 1n[(1+aqf!Esr)'~ +(aqf/E~)'~ ]2mSa

12
F( K ) =g —exp(i K I )

I5
1 kaT

Lh. m (T)i= in2~S (4 pM, a)'" (10}

oo dI 2~I —
2 I sin (8+$}exp(iK/cosg)dg, (5 The convergence of the integral shows that, at least in the
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the corresponding value is 0.88. For a three-layer film
and S = —,

' the curve of m (T} is very close to that of the
bulk and bears httle resemblance to a linear T law. Cal-
culations for S = —', have been done with an applied mag-
netic field and the results are shown in Figs. 3 and 4,
respectively, for one- and three-layer films. In Ref. 2,
measurements of m(T) in a superlattice having three
atomic layers of Gd alternating with ten layers of Y gave
the value m(T}=0.91 at T=0.3' in a field of 12.8 kG.
For comparison, the calculated value of m(T) at these
values of T and H can be read in Fig. 4; it is
m (T)=0.925. The agreement is very good but it should
not be taken literally because Gd and Y interdiffuse dur-

ing sample preparation. Furthermore, in the presence of a
field as strong as 12 kG the dipolar interaction is nearly
negligible (see below for the simulation of the dipolar in-
teraction by an external field} so that the agreement with
experiment cannot be viewed as a test of the present
theory. Such a test would require measurements of m (T)
in low magnetic fields.

Finally it seemed of interest to perform a calculation
omitting the dipolar interaction HD but including an
external field, with its magnitude adjusted such as to give
the same temperature dependence of the magnetization as
that calculated with the dipolar interaction alone. The re-

sult, for a single layer and S = —', is H =740 G which can
be compared with 4nMq ——2.6X 10 G. The large differ-
ence between these values makes it clear that HD cannot
be treated as an effective field.

The simulation of HD by an external field has also been
done for S= —,', in which case a field of only 23 G repro-
duces the magnetization curve a of Fig. l. So, in sub-
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E
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0.90-

0.0 0.2
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FIG. 4. Magnetization versus reduced temperature of a
three-layer array in an applied field: H =5, 10, 15 kG. S =

2 .

stances with small values of S (as in Ni films) and espe-
cially if Tc is high (large J) the effect of the dipolar in-
teraction can be simulated by a very small magnetic field
which in practice can always be rationalized as an aniso-
tropy field.

To conclude, we have shown that for localized spins
coupled by short-range interactions, the dipole-dipole in-
teraction leads to ferromagnetism in two-dimensional sys-
tems, and that this effect is especially important in sub-
stances with a large value of the spin and not too high Cu-
rie temperatures.
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