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Zener tunneling and dissipation in small loops
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Small and one-dimensional metallic loops, without leads, and only with elastic scattering, have been

sho~n to have Josephson-like behavior, and should not exhibit a resistance, when excited by a time-

dependent magnetic flux. Electrons in this loop behave like electrons in a superlattice whose potential vari-

ation, within a superlattice period, matches that found in the circuit around the ring. The earlier work

neglected the Zener tunneling in this effective superlattice band structure. It is shown that transitions to

higher-lying bands, arising from this Zener tunneling, can be undone, and represent energy storage, not

dissipation.

Two earlier papers" discussed the current flow in small,
normal, and one-dimensional loops of metals, induced by a

magnetic flux. A somewhat separate series'~ treated the
transmission behavior and resistance of loops with leads,
eventually going beyond the one-dimensional case.' Sub-
sequently, these results were given a striking experimental
confirmation by Webb, Washburn, Umbach, and Laibo-
witz, ' elaborated by other investigations. The present arti-
cle, once again, specializes to the case of a loop without
leads and, again, limits the discussion to a strictly one-
dimensional ring. Thus, we examine the case where the
wave function has a variation only along the ring and need
not discuss its transverse variation, This is, therefore, a pa-

per of conceptual significance, and not directly comparable
to experiment. However, just as Ref. 5 extended the dis-
cussion of Ref. 4 from the idealized one-dimensional case to
a more realistic case, this present discussion may be subject
to further extension. Here, we will provide an extension of
Ref. 1, and first summarize the results of Rcf. 1.

Reference 1 pointed out that the single-electron states of
a ring can be obtained from the band structure of a crystal
with W'(x) =&(x+L), where &(x) is the potential around
the loop with circumference L. The electronic states of the
loop are obtained from the bands, U„(k), of this periodic
loop potential via the rule k = —(2vr/L)4/4&p, where
4p = Ac/e is the single-electron flux quantum. For each flux
4, there is a ladder of states, U„(4), shown in Fig. 1. The
electronic states are periodic in flux, with period 40. For a
time-independent flux 4, we find a zero-temperature
current j = —(e/E) g„u„=c Q„BU„/84&. The summation
includes all occupied states, up to the Fermi energy. Thus,
Ref. 1 predicts a persistent current, which is a periodic func-
tion of the flux, with period 40. In the presence of a flux
which increases linearly in time the induced electromotive
force E = (1/cL)d4/dt drives the ladder of states through
the Brillouin zone, according to hk = —eE. If we assume
that E is small enough so that Zener tunneling between
"bands" is negligible, then the field produces an oscillating
current with frequency co = eV/t, i.e., a Josephson frequen-
cy with a single electronic charge. Here we have taken
V = EL. The time-average current vanishes.

Reference 2 extended the discussion of Ref. 1 to allow for
inelastic scattering, and an alternative approach to that was
also provided in Ref. 9. In this note wc will, instead, ex-
tend Ref. 1 in a different direction. Reference 1 assumed
that the applied acceleration force, acting on the electrons,

was small enough to make Zener tunneling between the
bands of Fig. 1 unlikely. Here, we discuss Zener tunneling
more explicitly. In particular, we take issue with an analysis
provided by Lenstra and van Haeringen' " who interpret
Zener tunneling as a source of energy dissipation. It is true,
of course, that tunneling permits electrons to go into
higher-lying bands, requiring an energy input from the
source of the time-dependent flux. We maintain, however,
that this increase in electronic energy is energy storage, not
dissipation, and that by a suitable choice of the time depen-
dence of the applied flux, the energy can be recovered.
That is the principal point of this note. Matrix elements in-

terconnecting the bands of Fig. 1 also appear in a recent
analysis by Imry and Shiren, " dealing with the behavior of a
ring in the presence of a small oscillatory flux. (The oscilla-
tory flux problem is also treated in Ref. 3 with conclusions
which are at variance with Ref. 13.) The analysis of Ref. 13
does not, at least in any explicit way, emphasize Zener tun-
neling. In contrast to Ref. 13, Refs. 10-12 carefully choose
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FIG. 1. One-electron energies of the ring as a function of flux.
The dashed lines are free electrons without elastic scattering.
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their representation so that off-diagonal matrix elements do
not occur from the simple time evolution of the wave func-
tion which occurs as a result of the motion of k, along the
bands of Fig. 1. Our view is essentially identical to that of
Refs. 10-12, with a difference only in the final physical in-
terpretation.

References 10-12 were not motivated by a physical ring
structure, but introduce periodic boundary conditions only
as a mathematical convenience. (Whether it is a justified
convenience in the representation of a length of conductor
attached, through leads, to a power source, is a question we
will not, again, take up here. The distinction between a
closed ring and a length of conductor connected to reser-
voirs was, after all, our key point in Ref. 1.) We have little
argument with most of the analysis of Refs. 10-12, which
mirrors a number of other classic conductivity papers, cited
by Lenstra and van Haeringen, particularly that of Green-
wood. ' It is only Lenstra and van Haeringen's physical in-
terpretation of Zener tunneling as a source of dissipation,
which we question. Indeed, Ref. 10 anticipated the results
presented in Ref. 1, but without our conclusion that a
closed Hamiltonian loop cannot exhibit a resistance.

For our subsequent argument we will need an auxiliary
result: Under a given applied field magnitude the probabili-
ty of Zener tunneling between two adjacent bands is in-
dependent of the choice of initial band. This result is estab-
lished, for special cases, in Eqs. (43) and (45) of Ref. 10. It
can also be deduced with complete generality from Eq. (30)
of Ref. 10. Here, instead, we provide a simple alternative
physica1 argument. Figure 2 shows two adjacent bands, in a
field, coupled by Zener tunneling. Readers who dislike an
unlimited range of motion may want to picture an additional
impenetrable barrier at the far right of the diagram. (In that
case, however, let the barrier be inelastic, so that it does not
induce quantization and Stark ladders. ) Consider the nar-
row energy range b U, shown in Fig. 2. To avoid exclusion
principle considerations, assume that the energy range is in
the sparsely occupied tail of the Fermi distribution. In ther-
mal equilibrium, as many electrons within this range, must
tunnel from the lower band, to the higher, as in the other
direction. The electrons in the 1ower band, moving to the
right at x~, and toward the zone boundary, transmit a
current across the gap proportional to the density of states,
the velocity, and the transmission probability. As usual, the
product of the first two factors is a constant, independent of
the details of the situation. Thus the equality of the two op-
posing tunneling currents, in the steady state, requires an
equality of transmission coefficients.

Now consider an electron initially in the lower band, at A,

in Fig. 3, and accelerated to the right, in k space. After
passing the zone boundary, we can expect a field-dependent
Zener tunneling probability, T, for appearance in the upper
band, say at D, in Fig. 3. Thus, the probability that we are
left in the lower band at 8 will be 1 —T. Clearly the tunnel-
ing event has increased the expectation value of the elec-
tronic energy.

Now, after reaching 8 and D, let us maintain a constant
flux through the ring, i.e., cease the acceleration. We fur-
thermore assume that at the value of k corresponding to 8
and D the tunneling is essentially complete. 8 and D have
differing energies, and if we let the electrons stay at that
value of k, the relative phase of the respective contribution
to the wave function, from the two bands, can be adjusted
as desired by a suitable choice of "inactive" time at that
particular value of k. Then reverse the field, driving k to-
ward the left, with the same magnitude of field as was used
originally in driving k to the right. Now let us follow,
separately, the wave function contributions from 8 and D,
starting with 8. This component, of amplitude 41 —T, will

tunnel to the upper band, during the return trip with proba-
bility T. Thus, the total probability that we stayed in the
lower band on the original forward trip and tunneled into
the upper band during the return is T(1 —T). Now consid-
er the component at D, of relative amplitude JT. On the
return trip it will stay in. the upper band with probability
(I —T), thus leading to a contribution of relative probability
T(1 —T) in the upper band after the return trip. There-
fore, we are left with two contributions arriving at C, one
via D and one via 8, which are of the same magnitude. By
suitable choice of the relative phase of these two contribu-
tions, they can be made to cancel. The required phase con-
trol is, in turn, obtained by correctly selecting the "inac-
tive" time. We have, therefore, shown that Zener tunnel-
ing can be reversed, and the electron brought back to its
original band and original energy. This shows that the ener-
gy put into the electron in Zener tunneling is energy
storage. Indeed, as we let the energy gaps in Fig. 1 become
narrower, and Zener tunneling more likely, we approach
free-electron behavior. In that limit it is very clear that
electron acceleration is energy storage, reflected in an in-
crease in the loop's effective self-inductance. Our disagree-
ment with Ref. 12 arises because we have invoked a
viewpoint allowing for quantum mechanical coherence,
~hereas Ref. 12 uses Zener tunneling probabilities, as if
successive tunneling events were incoherent statistical
events.

We have, of course, only analyzed the case of a single
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FIG. 2. Two adjacent energy bands, tilted by applied field. AU is
a small range in which we consider the net electron exchange
between the two bands.

FIG. 3. Adjacent bands, with applied field initially causing k to
move to the right, and later back to the left. A, 8, C, and D are
outside of the range in which Zener tunneling occurs.
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electron, tunneling into the next band. %e have not ad-

dressed the case of a number of successive Zener tunneling

events, nor the case where the electron tunneling out of a

band may be partially replaced by tunneling from the next
lower band. %e believe, ho~ever, that when we deal with a

closed Hamiltonian system, uncoupled to a reservoir, the

presumption must be that this is a conservative system.
The burden of demonstrating resistive effects, clearly and

unambiguously, is upon those who claim such behavior.
The fact that energy can be put into such a system, as in the
case of a reactance in an electrical circuit, is hardly proof of
dissipation. This comment applies not only to Refs. 10-12,
but also to other treatments of the one-dimensional closed
loop, without leads. "'

The treatment of a closed loop with a real cross section
does not yet exist. %e would expect, ho~ever, that its

qualitative behavior would mirror that found in Ref. 1 for
the one-dimensional case. In the complete absence of ine-
lastic effects we should have no reason to expect resistive
behavior. In the presence of a flux through the loop, in-

creasing linearly with time, we would expect no dc current.
As in Ref. 2 it would be expected that such a current would

appear in a continuous way, as the probability for inelastic

events is allowed to increase.
Our discussion, as in the case of all treatments of Zener

tunneling, has ignored self-consistency. The interband ma-
trix elements involved in Zener tunneling, however,
represent charge rearrangements within the unit cell.
(Here, we use ordinary solid-state terminology, rather than
that appropriate to our loops. ) The possibility of such
charge rearrangements is very likely affected by electrostatic
energy considerations, and this raises questions related to
the duration of the tunneling event" and its comparison to
other time scales related to screening and to the dielectric
constant.

M. Buttiker has been an indispensable partner, whose
contributions throughout this subject have been hard to del-
ineate and separate from my own. I am also indebted to Y.
Gefen, who has been concerned with the role of inelastic
events in Zener tunneling. Zener tunneling arises in a
number of connections, other than the classical solid-state
case, and the small loops of Ref. 1. It also arises, for exam-
ple, in the quantum oscillations in small tunnel junctions
discussed by Ben-Jacob and Gefen, " as well as in "Bloch
oscillations" in Josephson junctions. '
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