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Stress effects on the ESR spectra of rare earths in polycrystalline thin films
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A method for calculating the independent parameters in the spin-lattice Hamiltonian from ESR experi-
ments performed in diamagnetic thin metallic films doped with rare-earth ions is given. One independent

parameter is obtained as a function of the orientation of the fdm when the film is a single crystal. %'hen

the film is a polycrystal, one additional parameter is obtained. In the light of the present calculation, the

existing data are analyzed as is the validity of previous interpretations. Finally, comments on the future of
the technique are presented.

I. INTRODUC'f ION

The orbit-lattice interaction, which is responsible for the
spin-lattice relaxation of magnetic ions in solids, is usually
studied using stress techniques. ' The stress shifts the ESR
lines of magnetic impurities diluted in the solid, and, by fit-
ting the spin-lattice Hamiltonian to the experimental results,
the phenomenological parameters are obtained. A great
deal of information has been gained through this kind of
experiment for magnetic ions diluted in insulators. For the
case of metals, however, the stresses necessary to shift the
broad lines by half a linewidth are huge, and a modified
technique has been used in the last decade. ' This new
technique uses the fact that when a film is formed on a sub-
strate which has a different thermal expansion coefficient, a
change in temperature will induce a planar strain (i.e., iso-
tropic in the interface plane) in the former. The nature of
the film allows the strains to be very large within the elastic
limit of the film (sometimes with values as high as some
units percent), ' and the ESR spectra of the impurities is
modified as in the previous method, so that the parameters
of the orbit-lattice interaction can be evaluated.

One important difficulty inherent to the method is the
growth of single crystalline films with a chosen orientation
with respect to the substrate (i.e., with respect to the princi-
pal directions of the strain). One oriented sample is neces-
sary for each parameter, and in the simplest case, for cubic
metals ~here two second-order parameters are allo~ed by
symmetry, at least two different orientations are necessary.
Epitaxial growth has been used to obtain such samples, but
this method has not always been successful.

In this Brief Report we present a calculation which gives a
linear combination of the spin-lattice parameters when the
film is a polycrystai, whether oriented at random or with
preferential orientation. This result can be helpful for the
experimentalists, because it allows one to obtain the
second-order parameters with samples that are not neces-
sarily single crystals (e.g. , one polycrystal and one single
crystal, or two polycrystals with different, but known pre-
ferred orientations), and at the same time clarifies the inter-
pretation of already published data.

A

Hamiltonian HSL. This operator is a linear function of the
components of the strain tensor ~&, and must be invariant
under the operations of the point group 6 of the ion. The
HsL is a function of the magnetic field H and of the effec-
tive spin operator S, so that 2 &&

~ S ~
+ 1 gives the degeneracy

of the magnetic ion's ground state. For Kramers' doublets„
~S( = ~ and we write

HsL=~a X a"' "f.O~'-(S. H)
l, a, f, f

where ef are the normal strains, which are linear combina-
tions of the six components of the strain tensor that
transform like the n component of the ith irreducible

representation of the group G, and the O&t (S, H) are spin-
I

and-field operators, transforming likewise. The g ~ ~ ' are
the spin-lattice coefficients to be obtained from the experi-
ments. The indexes f and (' in Eq. (1) are necessary when
there is more than one normal strain or spin-and-field
operator allowed by the transformation rules. The e~~ are
tabulated in Ref. S for the cubic point groups, and p, a is the
Bohr rnagneton.

Two different right-handed Cartesian coordinate frames
are used in this work. One is the crysta1 frame, with axes x,
y, and z attached to the crystal. For a cubic crystal, we take
x, y, and z along the [100], [010], and [001] cubic axes,
respectively. The other is the laboratory frame, with the z'

axis perpendicular to the film-substrate interface, and the x'
and y' axes in the plane of the interface. There is a pre-
ferential direction for the x' and y' axes, as discussed below.

To proceed with the calculation, the following working hy-
potheses are necessary:

(a) The film is firmly attached to the substrate at the in-
terface plane. Changes in temperature do not affect the
strength of the bond.

(b) Both the film and the substrate have isotropic thermal
expansion coefficients nr„(T) and n,„b„„„(T)(i.e., they
are cubic crystals or amorphous materials) and the film
strain ~' and ~~ are given at T~ by

e' =a~=„' rD [n„„(T)—n,„„„„,(T)]dT,

II. CALCULATION

The effect of the strain on the ground state of the mag-
netic ion is described with the phenomeno1ogical spin-1attice

~here TD is the deposition temperature.
(c) Shear strains are null in the laboratory frame.
(d) The surface of the film is free from stresses.
(e) The strains across the film are homogeneous.
With the hypotheses above we calculate the strain tensor
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which makes the stress tensor diagonal too. These direc-
tions of x' and y' on the interface were chosen as principal
axes for the laboratory frame. Both the strain and the stress
tensors are therefore diagonal in this laboratory frame.

The normal stresses o.& are defined in the same way as
the normal strains, and with the same normalization. ' This
simplifies the transformation of operators, allowing the use
of tables published for the point groups. ' Three Euler's
angle rotations: i[i around the z' axis, 8 around the y axis
after the first rotation, and qh around the new z, are neces-
sary to transform the stress tensor to the crystal frame,
where the elastic compliances Stf are known. The normal
stresses in the crystal frame, multiplied by the elastic com-
pliance matrix, give the normal strains:

gig = (Sii+ 2$12)o'ig

t3' = (Si 1 S12)(r 3gi ( 1 = 8, vl )

gSg=$44osgi (j=K,h, p)

(3)

The inverse rotation of Eq. (4) to the laboratory frame
gives

g3gg
= —(T) (o~+ o~)

x [F3(&,@)($11—S12) + Fs(&, $)$44]

g,'g= ($1, +2S„)(o ' +o~)
with

F3(8, @)= (T ) [(3cos 8 —1) + 3 sin 8 cos (2$) ]

Fs(&.Q) = (T) [sin2(2&) + sin'e sin2(2it ) ]

(4a)

(4b)

(5a)

(Sb)

Combining Eqs. (4a) and (4b), the relationship between
the three components of the strain tensor in the laboratory
frame is

y(e, @)= 26~
I I

&xr + &yy

4($11+2$12) 2F3($11 $12) 2F5$44

4($11+2$12) + F3($11 S12) + F5$44

witli F3 and FS defined in Eq. (5). Thus the entire set of
normal strains is therefore known as a function of ~' or ~~.

To calculate the shift caused by the strain in the energy
separation of the doublet, we diagonalize the spin-lattice
Hamiltonian. Its eigenvalues are

g' (y —1)E + i)2 —p BH (g3g F3 + gsg Fs ) Q (3 cos 8 —1 )

in the laboratory frame: Only its diagonal components are
different from zero in this frame. The stress tensor P in

the substrate frame can have three nonzero components,
depending on the orientation of the crystal with respect to
the substrate. They are a-', o-~, and ~~. As any rotation
around the z' axis leaves V unchanged, we can rotate

p = (~)arctan[o-~/(o. ' + o~) ]

which corresponds to the maximum energy difference in Eq.
(7). The effect of the hydrostatic strain in Eqs. (7) and (8),
that is, the g&~ parameter, has not been taken into con-
sideration since it cannot be observed in any experiment.

Let us consider our film as composed of many small ran-
domly oriented crystallites. The contribution to the angular
variation of the g value of each crystallite will depend on the
crystallite orientation as given by Eq. (8). Assuming that
the g shift for each crystallite is independent of its neigh-
bors, the measured g shift will be the average of Eq. (8)
over all orientations. The result is

(~g)lg (g3 i2) (( Y 1)F3) + (~5 ~2) (( Y 1)FS)

(9)

where ( ) indicates the average over all the orientations in
space.

There are several methods that can be used to calculate
the mean values on the right side of Eq. (9)." As there is

always a large number of crystallites in a sample, a continu-
ous probability frequency function (PFF) can be assumed
for the orientations. If we take a randomly oriented sample,
the PFF for any function F(8, P) is

rg' 2e'

W(F) = dQ' 5(F(8,$) —F(8', @'))sin8'd8'

(10)

where 8 is the Dirac delta function. Applying Eq. (10) to
F= (y —1)F3 and to F= (y —1)F5, the corresponding
PFF's are obtained, and from them we can get the corre-
sponding mean values.

This simple analytical calculation, however, cannot be ap-
plied when the sample has preferred orientations. In that
case different orientations have different weights which are
sample dependent. The weights can be obtained using a di-
agram of poles" which is obtained through x-ray experi-
ments. The easiest way to obtain the PFF's for (y —1)F3
and (y —1)FS is to perform the calculation numerically. "
This has been done in this work and it allows one to get the
PFF's and the mean values in every case.

The PFF's of (y —1)F3 and (y —1)FS are dependent on
the elastic compliances of the metal forming the film [see
Eq. (7)], as are the mean values, which are tabulated in
Table I for Ag, Al, and Au. To show the relative impor-
tance of the different values of the variables on the statis-
tics, the PFF's for (y —1)F3 and (y —l)FS obtained from
the numerical calculation are shown in Fig. 1 for a random
sample of silver. The integration necessary to calculate the
mean values was also done numerically.

To include anisotropic crystals or substrates in the calcula-
tion, the corresponding anisotropy must be included in the
induced strains g' and e~ in Eq. (2); Eq. (2) to Eq. (9)
remain valid.

TABLE I. Mean values for the angular dependence of the I 3 and
I 5 modes in cubic thin films.

and we write the g shift for the ESR linc, as

e' (y —1)
(g3gF3+ gSgFS)

(7)
Sample

Al

Ag
Au

{(3' 1)F3)

1.126
1.203
1.190

((3 —l)FS)

1.235
1.248
1.368
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FIG. 1. Probability frequency functions of (y —I ) F3 and

(y —1)F5 for silver.

III. RESULTS AND ANALYSIS

independent of the film structure. In order to relate hg in

Eq. (11) to a particular phenomenological or microscopic
parameter, it is necessary to introduce the structure of the
film in the calculation. This requires knowledge of that
structure, which can be obtained through x-ray experiments.
This is taken into account in the analysis belo~ for all the

To show the usefulness of the present calculation we shall

apply it to existing data and show how it helps to under-

stand the physics relevant to the experiment.
Each experiment is made in a particular film and sub-

strate. As the stress is planar, when the magneitc field is

rotated in a plane perpendicular to the film, the angular

dependence of the ESR line is given by

g = go+ kg ~ (3 c s'0o—1)

films where it was reported.
Table II contains a summary of the experimental data, to-

gether with some results of the calculation. The experimen-
tal hg's have been divided by the strain values as estimated
from Eq. (2), assuming that there are no sliding effects at
the interfaces. This assumption is very reasonable when
many different samples have been reported, as in Ref. 7. In
this case, the largest hg/e' reported corresponds with the
smallest sliding of the film [as e' is always calculated using
Eq. (2)]. The bg/e' value given in Table II is the largest
of the reported data. In other cases, the only reported
values are presented in this table. %hen the films were
oriented, as is the case of Au:Er and Ag:Er samples, the use
of Eq. (8), with the corresponding values for 8 and P, gave
us the spin-lattice Hamiltonian parameters sho~n in Table
II. If both g3 and g5 were obtained from the experiments,
the (bg)/~' could be calculated from these data and Eq.
(10). This is the case for Au:Er, Ag:Er, Au:Yb, and
Ag:Dy, ~here the predicted values are listed in the last
column of Table II.

There are only two cases (Ag:Er and Ag:Dy) where there
are both calculated and experimental data for the randomly
oriented polycrystalline samples. A fairly good agreement is
found for Ag:Er, but for Ag:Dy the experimental number is
about 40'/0 bigger than the calculated one. As the experi-
ment reported in Ref. 8 does not contain any reference to
the experimental (x-ray) film structure, the author is tempt-
ed to assume that the film was preferentially [111]oriented,
which is also supported by the fact that the reported value is
20% smaller than the experimental Ag5/e' (see Table II,
and also Ref. 5). Large sliding effects could also have been
present in this case.

The full strength of the calculation is used for Al films.
It is especially difficult to grow Al films with the [100] axis
perpendicular to the substrate; most samples grow with
[111]orientation. The Ag/e

'
values are obtained from ex-

periments on the latter samples and, using Eq. (8), one is
able to obtain the g5 parameter. Cooling down the sub-
strates to temperatures around that of liquid N2, it is possi-
ble to grow randomly oriented samples. Experiments done
on these last samples give one the (Ag}/e' values, which,
together with the g5 parameter and the use of Eq. (9), give
one the g3 parameter. The obtained parameters are listed in
Table II.

Equation (9) was employed directly for Au films. The
values reported in this case correspond to oriented films,

TABLE II. Comparison between calculated values and existing experimental data. All the nonreferenced
data were obtained through the calculation developed in the text.

Film

Al:Dy
Al:Er

Ag:Dy
Ag:Er
Au:Er
Au:Yb

29.6
133.5

—1.73'
—10.6~
—0.64'

70.2'
—218.0"

83.8'
—24.3d

20.0
15.5'

4.35~

28.5"
1.74'

Experimental

~&5 /~xr

170.0'
530.0'

56.8~
—51.9"
—40.2'

i~g}/~ '

(poly. )

—120.0'
119.0'

—153.3'
33.3'

Theory

(~g )/~
'

—111.9
32.4

—14.7
—20.4

'Reference 9.
bReference 5.
'Reference 8.

dReference 7.
'Reference 6.
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both with the [100] and [ill] axes perpendicular to the in-

terface, and the present calculation predicts the values of
(Ag)/e' which would be expected from experiments per-
formed in randomly oriented Au:Er and Au:Yb thin films.

The author believes that the present calculation shows the
correct manner to use the existing experimental results to
predict the values for different film structures, and that
complete knowledge of the film structure is necessary to ob-
tain valid conclusions.

The author is not optimistic about the future use of thin
films as strain gauges as the authors of Ref. 2 are, for there
is a great experimental difficulty to know the actual value of

and to avoid sliding of the film relative to the substrate;
nevertheless, we have found some good agreement between
predictions and experiments.
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