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We study the integrability by means of the Bethe ansatz of a model which consists of two 4f con-

figurations of total angular momentum Jo and J» hybridized through the promotion of an electron

of total angular momentum j, to a conduction band. For Jo——0 the model reduces to the degenerate

Anderson model, while for JOJ ~ +0 it describes valence fluctuators between two magnetic configura-

tions. %'e find that in addition to the case JOJ& ——0, and any j„the model is also exactly solvable for

j,= ~ and any JO,Jl ——Jo+ 2 . We present several static ground-state properties for the latter case.

I. INTRODUCTION

In 1980 Andrei' and Wiegmann independently disgo-
nalized the spin- —,

' Kondo model by means of the Bethe
ansatz. Since then, the Bethe hypothesis and integrability
conditions have been shown to be valid for several models
for magnetic impurities in metals, allowing them to be
solved exactly.

These models include the nondegenerate and orbital
degenerate Anderson model. ' Using the exact solution,
several properties of these intermediate-valence (IV}
models have been calculated: energy, valence, and magne-
toresistance at zero temperature, and specific heat and
magnetic susceptibility at arbitrary temperatures. A
modified version of the periodic Anderson Hamiltonian
has also been solved exactly.

While the nondegenerste Anderson model describes
qualitatively the properties of IV systems (IVS) fluctuat-
ing between a magnetic and a nonmagnetic configuration,
and the degenerate Anderson model is more realistic for
Ce or Yb systems, none of the so far Bethe-ansatz solved
model for IVS describe valence fluctuators between two
magnetic configurations, as Tm or Pr systems.

The magnetic properties of IV compounds and alloys in
which the two accessible configurations are magnetic are
quite different from those of the other known IVS: the
magnetic susceptibility of TmSe (Ref. 8) and Tm, Yi,Se
(Ref. 9), the existence of magnetic order at low tempera-
tures in TmSe (Ref. 10}, the spin-glass behavior in
Tm» Yi «Se (Ref. 11), and the specific heat of TmSe and
its dependence on magnetic field (Ref. 12) suggest that the
ground state of these systems is magnetic in contrast to
what is observed in the Ce, Eu, Sm, or Yb systems and to
the result of a nonmagnetic ground state for the above
mentioned exactly solved Anderson models. ' ' The
magnetic neutron spectrum of IV Tm systems shows a
narrow elastic line and an inelastic line at low tempera-
tures' instead of the broad quasielastic line observed in
the other rare-earth IVS.'

In Ref. 16 a model for valence fluctuations between two
magnetic configurations has been proposed to explain

qualitatively the main properties of Tm systems in the IV
as well as in the exchange regimes. The total angular mo-
menta of the 4f configurations are —,

'
and 1 and the f

states are hybridized with band states of total angular
momentum j,= —,'. Though the model does not include a
realistic description of both 4f configurations, it provides
an explanation of the peculiar neutron spectrum of IV Tm
systems. ' Wilson's renormalization-group calculations
show that the ground state of the model is degenerate
leading to a divergent magnetic susceptibility for vanish-

ing temperature' in agreement with the experimental re-
sults.

A simplification of this model that allowed it to be
solved exactly' without use of the Bethe hypothesis and
its extension to s lattice' explains qualitatively the
ground-state magnetic order, insulator or metallic charac-
ter, static and dynamical magnetic susceptibility, magne-
toresistance, and specific heat of dilute IV Tm sys-
tems. ' '

In this paper we consider an isotropic impurity model
which includes two configurations of arbitrary angular
momentum Jc and Ji hybridized through the promotion
of an electron of total angular momentum jc to a conduc-
tion band. It contains as particular cases the Anderson
model of arbitrary degeneracy and the model of Ref. 16.
Preliminary results about the exact solution of the latter
and its thermodynamics ' were presented elsewhere.

In Sec. II we describe the model and its exchange limits.
In Sec. III we develop the Bethe-ansatz formalism for the
model. In Sec. IV we show that the model is not inte-
grable by means of the Bethe ansatz for j, & —,

' if both
configurations are magnetic (JcJi & 0). In Sec. V we diag-
onalize the model for j,= —,

'
and calculate the zero-

temperature impurity energy, valence, and impurity mag-
netization. Section VI contains the conclusions and a dis-
cussion.

II. MODEL

The intermediate valence rare-earth impurities can be
described in terms of the Hamiltonian
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H = g E~
~ JpMp ) (JoMp

~
+ g(Eg +6)

~
JiMi ) (JiMi

~
+ g ekj cg~ ~ckj.

Mo Ml k, m

+V
k, m, Mo, ~)

(Jpj Mom
~
JiMi )(c/g

~ JoMo)(JiMi
~
+H. c. ) . (2.1)

Here the first (second) term represents the energy of the
Hund's rule ground multiplet of the 4f" (4f"+') configu-
ration. Jp (Ji) is the total angular momentum of this
multiplet and Mp (M, ) is its projection over the quantiza-
tion axis. The third term describes a conduction band in
terms of Bloch states with wave number k, total angular
momentum j and projection m. The last term represents
the hybridization energy. The angular brackets denote
Clebsh-Gordan coefficients.

The main hypothesis involved in (2.1) as a realistic
model for rare-earth impurities are the following.

(1) Due to the large 4f intra-atomic Coulomb repulsion
energy, only two neighboring configurations 4f" and
4f"+' are considered.

(2) The excited multiplets of each configuration are
neglected because of the strong spin-orbit coupling.

(3) Crystal-field splittings are neglected.
(4) For rare-earth impurities J', = i or 2. J', =

2
(—

dominates the hybridization effects in light (heavy) rare
earths and only one of these terms is included.

(5) The hybridization is assumed k independent.
Hamiltonian (2.1) is invariant under rotations. Another

symmetry property is that the model that associates the
angular momentum Jp ( J, ) to the 4f"+ '(4f") configura-
tion can be mapped into Hamiltonian (2.1) by means of
the transformation

g &kj Ckj mCkj m

k, m

Mo Mo

(Jpj, Mom'
~ Pg, ~

Joj,Mpm )

hack~ ckj I
JoMo)(JoMo

I

(2.3)

where PJ is the projection operator over total angular

momentum J~.

(2.4)

and the coupling constant is given by

(2.&)

In the derivation of Hamiltonian (2.3), V /(5 —e'k) has
been approximated by E and constant terms were neglect-
ed.

Model (2.3) generalizes the usual Kondo interaction,
which is obtained for j,= —,. In this case calling rr =j, we
have23

Jo —Jl+2j +m
ckJ ~~( —1) CkJ —m ~ (2.2a)

(2.2b)

sgn(Ji —Jp)
I'J ———+ ( —'+2ir Jo) .

2Jo
(2.6)

2J)+1
V—+V

2Jp+ 1
(2.2c)

For
~

b, —eF
~

&&mp(eF) V, where eF is the Fermi ener-

gy and p(e) the unperturbed density of band states, the
model reduces to exchange like Hamiltonians. Due to the
symmetry transformation (2.2) we can restrict ourselves to
b —e~ &0 and project out of the space of interest the con-
figuration with angular momentum Ji. In this case, a
canonical transformation of the Schrieffer-Wolff type
on Hamiltonian (2.1) leads to the exchange interaction
model

The first term of Eq. (2.6) gives a potential scattering
term after replacement in Eq. (2.3). The second term
gives an s-d antiferromagnetic (ferromagnetic) interaction
if Ji ——Jo ——,

' (Jo+ —,
' ). Thus, disregarding potential

scattering and using transformation (2.2), we see that for
j,= —,

'
in the limit

~

b —e'F
~

&&np(e~)V, model (2.1)
reduces to a spin J,„ if the configuration of greater an-
gular momentum J is the ground-state configuration,
and to a ferromagnetic s-d exchange model with spin
J;„=J,„——, in the opposite situation. In both situa-
tions the magnitude of the exchange coupling constant is
given by 2

~

E
~
/(2Jo+ 1).

III. BETHE HYPOTHESIS

The steps and assumptions necessary to describe the system in terms of a wave function of the Bethe-ansatz form are
similar to those followed in the solution of the Anderson model.

Linearizing the dispersion relation about the Fermi energy, the Hamiltonian can be put in the form (dropping the sub-

index j, of the band operators)
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H=EJ y I JoMo) & JoMo
I
+(EJ +5)y I

J(M( ) & J(Mi
I

Mp

+ f dx —i gc (x) c (x)+ V5(x)
Bx

& Joi.Mom
I J(Mi &lcm(x)

I
JoMo & & JiMi I

+H c ]
m, M0, MI

(3.1)

The eigenstates of H with N particles and total angular momentum projection M are of the form

X' f IId., ~,.-... -.(-.-' '- ) H -', (-) IJ.M. &

Mpim] ym2y ~ ~ ~ y mpf

M]ym I ym2y ~ ~ ~ y mg

X—1

Hd
1 2 2 N —1i=1

X —1

II c,(x;)
i=1

L

I JiMi), (3.2)

where the prime over the summation indicates that only states with total angular momentum projection M are included.
Inserting Eq. (3.2) into the Schrodinger equation

HIy&=EIq)
we obtain first quantization equations relating the functions g and e:

(3.3)

N

~! i g +Eq —E gM . . . (xi,x2, . . . , xN)0 0 ( 2 Nj=1 j
+ V g ( 1) &Joj MomPN I

JiMi &5«PN) M, „„"„„(x»xP2 xP(N-2»=0
Pi, Mi

(3 4)

N —i

i g-
j=1 j

+EJ0+~ E eM(m(m2 ~ mN ((x i «x2««xN —1)

+ VX g &Joj,MomN
I J(Mi)gM, , , . . . „(xi,x2, . . . , xN i 0)=0, (3 5)

Mp, m~

where P is a permutation of the I«i numbers 1,2, . . . , I(I.
As explained by %iegmann the space should be divid-

ed into (i((('+1)! regions defined by the different permuta-
tions Q of the numbers 1,2,3, . . .N:

Xg = Ixgo &xgi ( (xgN l «

where xo ——0 is the impurity position. According to Bethe
hypothesis the function g that satisfies Eqs. (3.4) and (3.5)
has the following form in each region Xg.

gM m m m (Xl«X2« ~ ~ «XN)0 j. 2 N

N
= +AM m . . . (Q;P)exp i g kpxj, (3.6)

P j=l
where the k; are X different numbers that give the energy
of the state

I g)

E =EJ,+ g kj (3.7)

(3.g)

Equations (3.4) and (3.5) relate the coefficients A (Q;I)
of neighboring regions Xg and X~. The equations for the
discontinuities at xj ——0 (j&0) take the form of a one-
particle problem since the remaining coordinates can be
kept fixed. Consequently, the corresponding coefficients
are related by a matrix involving only two pairs of indices,

and P labels a permutation of these numbers.
The antisymmetry of g relates the coefficients A for

any P to those corresponding to P =1 (identity permuta-
tion) by

I

AM, . . . m . . . (Q I)= g (Rjo), A, , (Q I) with Xg ——
I

. &0&xj & I; Xg ——
I &xj &0& .

Mo, m

(3.9)

The equations for the discontinuities at x; =xJ (i,j&0) involve two particles and the impurity. It is essential for the
validity of Bethe hypothesis that the corresponding matrix relating the coefficients of both neighboring regions does not
depend on the impurity indices. In this case we can ~rite
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withX& ——[. . &x;&xj& . . ]; X~ ——(. &xj&x;&. . . j. (3.10)

There are many ways of expressing the coefficients
A(Q, I) in terms of the A (Q;I}for two arbitrary regions

X& and X& by repeated application of Eqs. (3.9) and

(3.10). The requirement that all these ways should lead to
an identical result leads to the unitary and triangular con-
ditions. With the imposition of periodic boundary con-
ditions, the whole problem is reduced to the solution of N
eigenvalue equations similar to those found in other
Bethe-ansatz-solved problems:

(e ' —TJ)A(I', I)=0, j=1,2, . . . , N, (3.11)

~here
A, A A. A A
T) ——SJ+( JSJ+g J S~)RoJS)JSg) . SJ ) J . (3.12)

iLJ.
R)o I+ . ——PJ, ,

J
{3.13)

where I is the identity matrix, PJ, is given by Eq. (2.4),
and

V
EJ —— (3.14)

In the exchange limit given by Hamiltonian (2.3) the
states of the system are described by the function g only,
and making the same approximations that lead to (2.3),
the matrix R~p is given the same expression (3.13) with KJ
replaced by K [Eqs. (2.5)].

The calculation of the matrices SJ; is more involved as
we shall see in Sec. V. Nevertheless its general form can
be determined by the condition of continuity of the func-
tion g at the boundaries x; =xj (i,j&0) Using Eq. .(3.8),
these conditions are seen to be satisfied if and only if the
matrix SJ; has the following form

Here and in what follows the angular momentum pro-
jection indices are omitted for simplicity and in all multi-
plications the sum over repeated indices is understood.

The matrix RJ o and its inverse can be calculated replac-
ing Eq. (3.6) in Eqs. (3.4) and (3.5). One obtains a set of
linear equations for the A(g;I) which has the same form
for any value of N. As in Ref. 29 we take the value of a
function at a discontinuity as half the sum of both limit-
ing values. The solution of this system gives us

metric form for the function g in each region of space.
In this case, using the antisymmetry conditions (3.8) we
have

Sji =PJ'i, {3.17)

This form of the matrix SJ,. can be easily seen to satisfy
the unitary and triangular conditions for any form of RJ p.
Then, the coordinate Bethe ansatz is valid in the exchange
limit for any total angular momenta Jo, Ji,j,. Diagonal-
ization of Hamiltonian (2.3) is reduced to solving a prob-
lem of a linear chain of interacting spins given by (3.11) to
(3.14) and (3.17) with KJ K. ——

This is not the case for JoJ~ &0, j, p —,
'

in the inter-
mediate valence regime, as we show in Sec. IV.

IV. THE INTEGRABILITY OF THE MODEL

Eigenvalue problems of the form (3.11) and (3.12) have
been solved using a so-called second Bethe ansatz or the
related quantum inverse-scattering method. To apply
this method, the matrices R~p and SJ; should be general-
ized to a family of matrices Rjp(a} and Sji.(a) depending
on one parameter a. These matrices should coincide with
the previous ones for certain values of their parameters:

RJ0 ——RJo(ajp),

S,; =Si; (ai ). '

(4.1)

(4.2)

For the model to be integrable, the new matrices should
satisfy parametric equations that generalize the unitary
and triangular conditions

Rjp(a)R o( a)=I, — (4.3)

SJ, (a)SJ, ( u) =I, — (4.4)

Sji «)Rjo(rz+rr )Rao(rz ) =Rko(&')RJ p(a+a')Sjk(a),

(4.5)

Sjk (a)S~;(o,+a')Sk;(a'}=Sk;(a')SJ, (a+a')Sjk(a) .

(4.6)

For those equations to imply the unitary and triangular
conditions as a particular case one should have

SJ., bj,I+ (1 bj, )PJ, —,— — (3.15)
Ro~ =RJo( —ajp» (4.7)

I

(P;) ' ', =5,b (3.16)

where bj,. is a complex constant and Pz, interchanges the
momentum projections of both particles:

S;~ =Sp( —aj,.),
io=~jk+&ko

&JI —O'gk +&ks ~

(4 8)

(4.9)

(4.10)

In the exchange limit, since the matrices R do not de-
pend on wave vector, one can choose a totally antisym-

The solution of Eqs. (4.4) and (4.6) in terms of I and P~J.

is (within a factor irrelevant of our discussion )
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SJ; (a) =b(a)I+ [1 b—(a)]PJ,.

with

(4.11}

b(a)=
a+ig ' (4.12)

where g is a constant. This matrix satisfies (4.2) for SJ;-

given by (3.15) or (3.17) and some aj;.
Similarly, the solution of Eq. (4.3) with the condition

(4.1) with (3.13) in terms of I and PJ is (within other

unimportant factors)

failure of this condition for JoJi & 0, j, & —, and a&0 im-

plies for these angular momenta, that (1), the Bethe hy-
pothesis is not valid in the intermediate valence regime
and (2) in the exchange limit, though that hypothesis
works, the model is not integrable with the parametriza-
tion (4.11) and (4.13) of the matrices Rjp and SJ;.

Using Eqs. (4.11) and (4.13), Eq. (4.5) takes the form

2b (a)h(a')h(a+a')Oi

+ [1—b (a)][h (a+a') —h (a')]02 ——0, (4.16)

2f(a)
Rjo(a) =I+

where the function f(a) satisfies

(4 13) where

h (a)=
1 —f(a)

(4.17)

f(a)p) =iKJ l2,
f( —a) = —f(a),

(4.14)

(4.15)

and the operators Oi and 02 are given by

0 1 2
(4.18)

being otherwise arbitrary.
To satisfy all the parametric equations it remains to

check if the triangular condition (4.5) is satisfied for ma-
trices of the form (4.11) and (4.13). We show below that

I

with

Mom&m2 Mom&mg 0
( 2)~~ i i =(Qz)M« i (Qz)~im~, m,

(4.19)

~,m, m,(Qi). . . =5M ~. . . (JoM(j,m( ~PJ, ~
Jp(Mp+ml —m()j, mi)

X(JoMo+mz —mz)j mi IPJ, I
JoMo j m2~ (4.20)

(Q2)~ —5 (JpMpjgmi
~
PJ

~
JpMo j,m2 ) (4.21)

For Eq. (4.16) to be satisfied for any values of the pa-

rameters, the operators Oi and 02 should be proportion-
al. This is not the case for JpJ, & 0, j, & —,

' since one can

find particular nonvanishing matrix elements of Oi, while

the corresponding ones of Oi do vanish. Hence the
parametric equation (4.5) is not satisfied for these total
angular moments.

We also see from the foregoing discussion that if the
triangular condition implied by Eq. (4.5) with (4.1) and
(4.2) holds for JpJ, &0, j, & —,', the coefficients of the

operators 0; in Eq. (4.16) should vanish for the parame-
ters asap and aj;.. Using Eqs. (4.5), (4.12), and (4.14) we see
that this happens if and only if ajk ——0. This is the case in
the exchange limit [compare Eqs. (3.17) and (4.11)],but in
the intermediate valence regime since we have K~+Kk
[see Eq. (3.14}] because all the k numbers are different,
Eq. (4.14} implies aj~akp and then from Eq. (4.9) we
have ajk&0.

We conclude that for two magnetic configurations and

j, & —,, the Bethe hypothesis is not valid for model (2.1) in

the intermediate valence regime. In the exchange limit we
believe that the model is not integrable by means of the
quantum inverse-scattering method, since a parametriza-
tion of the matrices R&p and S~; including other operators
as those involved in (4.11) and (4.13) and satisfying Eqs.
(4.3) to (4.6) does not seem physically plausible (we were
not able to prove it).

The remaining cases are integrable and can be classified
as follows.

(1) For a nonmagnetic 4f" configuration (Jp ——0) the
model reduces to the SU(2j, +1) Anderson model solved

in Refs. 5 and 6. The operator PJ, is equivalent to the

identity and the matrices Rpj and Rp&(a) reduce to scalars
[see Eqs. (3.13) and (4.13)]. Equation (4.5) reduces to an

identity and Rpi enters the problem only as a phase shift
in Eq. (3.12).

(2) For a nonmagnetic 4f"+' configuration (Ji ——0) we
can apply transformation (2.2) and we return to the

preceding case. For Ji ——0 we have 02 ——(2j, + 1) Oi and
Eq. (4.5) can also be satisfied.

(3) For j,=0 the impurity angular momentum is con-
served. For each projection Mo ——M& the model takes the
form of a one-particle problem and can then be solved ex-
actly without use of the Bethe method. For Jp ——Ji ———,

'

the model is equivalent to that studied in Ref. 18.
(4) For JpJ( &0, j,= —,'. The Bethe ansatz solution of

the model for j,= —,', including these cases and the nonde-

generate Anderson model, is presented in Sec. V.
To close this section we note that, as we have shown in

Sec. II, for j,= —,
' the exchange limits of our inodel are

similar to usual spin-S s-d exchange models which have
been solved exactly. ' ' The solution of the parametric
triangular equations is presented in Ref. 31. Following
our sch~~e, for j,= 2, we ha
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O2 ———(2JO+1)sgn( Ji —Jo)Oi . (4.22)

Replacing this, (4.12), and (4.17) in Eq. (4.16) we obtain

1 1 2a
f(a+a') f(a') ig(ZJO+1)

The solution of this equation with condition (4.15) is

(4.23)

sgn( J, —Jo) .

V. EXACT SOLUTION FOR j,= 2

ig (2Jo+ 1)
f(~)= (4.24)

2Q

Thus, for j,= —,', the parametric equations (4.3) to (4.6)
are satisfied by the matrices given by (4.11) and (4.13)
with (4.12) and (4.24).

X2
+ /

3 X)

FIG. I. The 3. regions X~ in which the space is divided to set

up the Bethe hypothesis for two particles.

We restrict ourselves to I] ——2o+ —,. The case

J, =Jo ——,
' can be reduced to the former using transfor-

mation (2.2).

A. The matrix S;;

As explained in Sec. III, the matrix SJ, is determined by
the equations for the discontinuities of the coefficients
A(Q, I) at x;=xj (I,j&0) obtained replacing (3.6) into

(3.4) and (3.5). These take the form of a problem with
two particles and the impurity. Thus, for simplicity we
perform the calculations for N =2. The result is indepen-
dent of N &2. We number the permutations Q defining
the different regions of the two-dimensional space accord-
ing to Fig. 1.

Replacing (3.6) into (3.4) and equating to zero the coef-
ficients of 5(xi ) we obtain (taking j,= —, , m; =o;)

V(JO —,Metrq
~ JiMi)eM, ~ (x)=2+exp(ikpix) I[AM ~ (2;P)—AM (3;P)]8(—x)

+[A. . .(6;P)—A. . .( 5; P)] 8( x)), (5.1)

where the unit step function 8(x) is defined as

0 if x~0
8(x)= —,

' if x=0 (5.2)

1 if x&0.
Shen replacing Eq. (5.1) into (3.5) we obtain terms with factors exp(ikjx)8(+x) (j=1,2) and other terms in 5(x). The

former terms give four equations for the discontinuities at xj =0, the solution of which is given by (3.9) and (3.13) with
(3.8). Equating to zero the terms in 5(x) and using (3.8) we obtain

Asi ~,~ (6;I)+Asi, ,(3;I) A~, ,(5;I) —Asr, ,(2;I)—
+ AM. . .(5;I)+A~. . (2;I) AM. . .(1;I) A—sr, , (4;I)=0—. (5.3)

All these coefficients can be expressed in terms of those
of regions 3 and 4 for exainple (one could also choose re-

gions 1 and 6) using the matrices Rio. If the triangular
conditions are satisfied, the result for S~; does not depend
on the choice of regions.

The resulting equations and particular continuity condi-
tions

SJ; =SJ,(k; —kj ), (5.5)

For Jo&0 aild ~M,
~

&Jo, Eqs. (5.3) are not all in-

dependent since some discontinuities of the A (Q;P)
across the boundaries xJ =0 are related with others.

Solving the system of linear equations and using Eq.
(3.10) we find, after a lengthy algebraic analysis, that for
all values of M, the matrix SJ;, can be represented by

A~ (3;I)=AM (4;I) (5 4) where

determine SJ, for each value of the total angular momen-
tum M, .

aI +igI'J,
SJ, (iz) =

A+ lg
(5.6)
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V2

2Jp+ 1

8. The Bethe ansatz equations

approximation

iV Jo iV
A —6+

i.V'Jp i V'

2J, +1 4Jp+2

V2
A~ —6+i

V2
A —5—i

Rp ——R p(h —k )J J J

with

(5.8)

In analogy to Eqs. (5.5) to (5.7), we can write Eq. (3.13)
in the form

we get the Bethe ansatz equations of a spin- Jp+ —,
' Kondo

model.
In both cases the magnitude of the coupling constant is

2 V /[(2Jp+1)
~

5—eF
~ ] in agreement with the results of

the canonical transformation on model (2.1) (Sec. II).

ig (2Jp+ 1)
PJ (5.9)

C. The ground-state densities of k's and A' s

ill.e

V2
k —b, +iJ

V2
k —5—iJ

iV

rr
M P+ J+4J 2

V2
Ap —kJ —i

0+

V2
A~ —Ap+i

rr
A~ —Ap —i

V2

2Jo

V Jo
A~ —A+

0+
iV Jp

A~ —5—

j=1,2, . . . , N (5.10)

V2
A~ —kJ +i

=1
4Jp+2

a=1,2, . . . , M . (5.11)

For Jo ——0, these equations are identical to those corre-
sponding to the nondegenerate Anderson model in the
limit of infinite 4f intra-atomic Coulomb repulsion. '

In the exchange limit 5—e~&~ V, making the same
approximations that led to (2.3) we should take kj ——eF,j= 1 to N, in the right-hand side of Eqs. (5.10) and
(5.11). Replacing A~ for e~+ V A~/(2Jp+1) and
neglecting a constant shift of all levels, these equations
take the form of the Bethe ansatz equations for an s-d ex-
change model with ferromagnetic coupling between a lo-
calized spin of magnitude Jp and conduction-electron
spins 2 '

For
~

b,
~

&&V and b, ~0, we take N+1 particles and
kN+i ——6 in the right-hand side of Eqs. (5.10) and (5.11).
Following the same procedure as before and making the

We have seen in the preceding section that the matrices

SJ,(a) and RJ, (a) satisfy the parametric equations (4.3) to
(4.6). Taking particular values of the parameters these
equations imply the validity of the Bethe hypothesis.
Then, the model is integrable.

Using a procedure similar to that employed for the
Kondo model with arbitrary spin3 we obtain that for total
angular momentum J=Jp + N/2 M, the —N different
numbers kj and M different numbers Ar satisfy the set of
coupled equations

As in the Anderson models ' the electrons with oppo-
site spin of our system tend to bind and form bound pairs.
These are described by pairs of complex conjugated k
numbers.

Similarly to Ref. 13, the ground state of our system for
total angular momentum J=Jp+N/2 —M is described
by 2M complex k's, N —2M real k's (corresponding to
unpaired electrons) and M real A' s.

If kj is complex, the first member of Eq. (5.10) van-
ishes or diverges in the thermodynamic limit L~00.
Thus, one of the factors in the numerator or denominator,
respectively, of the second member of the equation should
vanish. This implies that each pair of complex conjugated
k's are associated with one of the numbers A~ and we can
write choosing a particular order for the kj (the real with
the smallest subindices).

kx —2m+2p —i =Ap+ I +~p2

kx —m+2p= Ap —I +a p ~

2

(5.12)

dk p(k)
(A —k) +g /4

(5.13)

V2
I = =g(Jp+ -, ) .

2
(5.14)

where g is given by (5.7), P=1,2, . . . , M, and ap is a
complex number that vanishes in the thermodynamic lim-
it which we henceforth assume. a~ is the complex conju-
gate of ap.

Dividing member by member Eqs. (5.10) for
j =X—2M+2a —1 and j =X—2M+2a we obtain an
expression for

~

a
~

which shows that it is exponentially
small.

Replacing (5.12) in (5.10) and (5.11), neglecting ex-
ponentially small terms, and taking logarithms we obtain,
in the continuous limit,

(Jp+1)g/~
cr(A) =—+-

L (A —&) +(Jp+1)'g
Q g/K

(A —A') +g



33 INTEGRABILITY OF A GENERAL MODEL FOR. . . 6483

Analogously, Eq. (5.10) for j= 1 to X —2M takes the 3.3

1 1 I /~
p(k) =

2m. L (k —Q)2+I ~

—I d A' cr(A')
(A' —k) +g

(5.15)

= I tT(A)d A, (5.16)

D is a cutoff that bounds the energy spectrum from
below, and the upper limits Q and 8 are determined by
the number of spin-paired (2M) and unpaired (E —2M)
electrons

2.9

—2.7—

—2.9

l

I

I

I

I

I

r
I

I

I

I

I

I

~ ~
\

= I p(k)dk . (5.17}
3.6

--8

Due to the assumption of a linear dispersion relation in
Hamiltonian (3.1), the spectrum of k and A is unbounded.
The cutoff D is introduced to make the integrals conver-
gent and simulates the bottom of a square conduction
band.

The densities tT(A) and p(k) are split into host (order 1}
impurity (order 1/L) parts. The former [oi,(A) and

pi, (k)] are the only ones that contribute significantly to
Eq. (5.16) and (5.17) and then determine the integration
limits. The impurity contributions cr;(A)/L and p;(k)/L
determine the physical properties of the impurity.

The results for the host and impurity densities obtained
solving numerically Eqs. (5.13) to (5.17) are represented in
Figs. 2 and 3, respectively, for several values of the pa-
rameters. The host densities depend only on X/L, M/L,
and g. at, (A) and pa(k) are similar to the unperturbed
spectral densities per spin of spin-paired and unpaired
conduction electrons, respectively. The only significant
differences are in intervals of energy of width of order g
at the Fermi energy and at the bottom of the band. For
g =0 we have the unperturbed structure.

We take the zero of energy as (Q +D)/2 with the value
of Q corresponding to % =2M. For this value of M/N,
the host densities are even functions of their arguments in
the interval [D,Q].

The structure of the densities near D is an artifact of
the finite cutoff. It leads to a spontaneous host magneti-
zation which is obviously wrong. To avoid this problem,
in our numerical calculations we have placed the host
densities for their unperturbed values for negative values
of their respective arguments. In this way we reproduce
the correct Pauli susceptibility within our precision.

As seen in Fig. 3, 2o;(A) has a resonant-level-like form
of intermediate width between I and I +g /2 for
A —8 ~ I . It decreases for increasing 8 and vanishes for
8 —A&yl. p;(k) has always a resonant-level-like form
of width I . Both impurity densities have a small struc-
ture at their respective upper integration limits.

For Jo~ an, g goes to zero and Eqs. (5.13) and (5.15)
can be solved analytically. We obtain for 1 « Jo «L in
the interval of interest [D, max (B,Q)]

3.0

(b)
I

I

l

I

0.3

l
I

I

I

I

I

I

Oh (6)
0.& I/~ ~0.2

P„(K)

0.5 l

Is
/

~

/
f ~ ~

C.'=g:

I ] 1 I l I

4 ~ ~ 4 Q 8
B—~=8+/, r

~ ~ ~ e
~ ~ ~

~ ~

~ ~r ~
e' '

P ~

~ ~
~ ~

/ ~

Q. 5 0 2. 0 P (g) 3.S

FIG. 3. Impurity densities for Jo——z, I =0.1, B=Q—6I,
Q =3.0526 [as in Fig. 2(a)] and different values of h.

FIG. 2. Host densities or X=2L, g =0.1, and (a)
X—2M=0, (b) X —2M=0. 1L. The dashed lines show the
densities per spin of spin-paired (left) and unpaired (left) and un-

paired (right) unperturbed electrons for a rectangular band. The
dotted lines in (a) show the densities beyond their respective
upper limits of integration.
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1 1 I /m.

2m 2L (A —Q)i

k= 'ek — ) —'+L (A

(5.18)

(5.19)

In terms of these quantities, Eqs. (5.13) and (5.15} for
D= —ao take the form

1 + 00

X(p) = +—ozi +2(p+ &)— dp' X(p')o i(p —p')
L 0

B—f dq R(q)a i(p+q), (5.22)

D. The ground-state properties

Since the physical properties do not depend on the pari-

ty of N, we can assume N even. We find that for zero
magnetic field (H =0} the energy given by (3.7) is
minimum for M=X/2 Th.is means that the ground
state has total angular momentum Jo, and then except for
the Anderson model (JO=0) it is degenerate. This agrees
with the predictions made by Andersoniz and Mazzaferro
et al. ' with the renormalization-group calculations for
Jo ———,

' (Ref. 17) and with the results for the spin-Jo+ —,
'

Kondo model (Refs. 29 and 31), which corresponds to the
limit eF b, » I —of our model as explained in Sec. III.

For H =0, 8 =D for the ground state and Eqs. (5.13)
and (5.15) can be solved analytically for D= —ao. To do
this it is convenient to introduce the quantities

A —Q k —Q — b, —Q — 8—Qp=- , q=, b= 8=
g

(5.20)

and the densities of p, and q

X(p)=go'( —pI'+Q), &(q)=gp(ql +Q) . (5.21}

where

1 n/2a„(x)=-
~x+n /4

(5.24)

For 8= —00, Eq. (5.22) is solved by the Wiener-Hopf
method. ii The result in terms of the Fourier transforms
of the functions

X+-(p, ) =e(+p)X(p, ) = f e ' "X+(a))-de
2'lT

(5.25)

is given by

Xo
—(~)— 'g +—

i&i G (co)I(co),
2~ co iO —L (2m) ~

(5.26)

where the subindex 0 indicates that the result is for zero

magnetic field (8 = —~) and

g 1 00

R(q)= +—azf +, (q —b, ) — dpX(p)a&(p+q),
2m L 0

(5.23)

(~)= (2n)'~ [(i'/2m+0)/e]'"~i
I [—,

' + (ice/2m)]
(5.27)

I ( ,'+i~ )[(0-iso')/e]e—xp[ 2mia)'~, +—(Jo+ , )
~

~
~

]—
I(~)= de'

co + i 0 co/21T—
(5.28)

X+(co) is obtained from X (r0) by Fourier transforming
(5.22). In terms of this analytical solution one obtains an
integral expression for the number of 4f electrons at zero
field:

0 8
nf =n+2 f n;(A)dA+ f p;(k)dk

=n+1 —
3

I(co=0) . (5.29)

The expression generalizes the result for the nondegen-
erate Anderson model [Eq. (8.2.56) of Ref. 3 for U~ ao].
~n varies smoothly from n +1 for b, && —J, to n for
5»Ji ——Jo+1/2 as shown in Fig. 4(a). To compare the
values of nf for the same b and different Jo we have cal-
culated Q solving numerically Eqs. (5.13) and (5.16) for
oi, (A) with a finite cutoff and M=X/2=L. (We have
used these values in all numerical calculations. )

The impurity energy is given by

Q 8
E;=2 f Acr;(A)d A+ f kp(k)dk +EJ, . (5.30)

For H =0 the second term vanishes. Since this expres-
sion diverges for D~ —ao, we cannot use the Wiener-
Hopf expression for o;(A). The numerical results for a
finite cutoff are shown in Fig. 4(b). The asymptotic limits
for E; are Ez for 6—eF » I and Ez +b, ez for—
6—6F Q( —I .

An external magnetic field H removes the ground-state
degeneracy. For small H, the impurity magnetization can
be calculated analytically following similar arguments to
those employed in Ref. 3 to calculate the magnetic suscep-
tibility of the degenerate Anderson model.

Replacing the result for X+(u) obtained by means of
the Fourier transform of Eq. (5.22) into (5.23} we obtain
an equation with an integrable inhomogeneous term for
D= —ao. It is
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R(q) =R'(q 8—) .

This equation takes the form

(5.31)

R'(k) = S—2J ~i (k+8 6)+—f(k)

+ I dk Sq(k k')—R'(k')dk', (5.32)

where

f(k)= I Si(co)e'"' +~'X (co)dco
2 fT'

and

(5.33)

(5.34)
E -E

i )0
I

l I I 1 i l t

f(k)=

where

g~
m8 C m8+- ek

(2m.ie)' I- 2m&(2e)
(5.35)

Neglecting terms in H [see Eq. (5.41}]we can replace
X (co) in Eq. (5.33) by Xo (co) given by (5.26). The result-

ing integrand is analytical in the lower half plane. For
8~—00 the integral can be evaluated by residues using a
contour that encircles only the pole in in o—f the in-

tegrand. Neglecting terms in H the result is

0
f/2

5 6-E 5

t

FIG. 4. (a) Valence and (b) impurity energy as functions of 5
for H =0, I =0.1, and different values of Jo. The straight line
in (b) shows the asymptotic behavior for er —5 &&I .

0—EN
1 ( —, +&'co)

e
exp I 2n [icoh—+ (Jo+ —,

'
)

I
co

I ] I

1

2
—LN

(5.36)

Applying the Wiener-Hopf method to Eqs. (5.32) and (5.35) we obtain

ge
'IF8 G

—
(~ )

one ico+n

+~ G
—

( co } exp[&co'(a 8} (Jo—+T—)
I

co
I ] c e~ G-( )6 (co) d co' +

2&1 —ce N —N —l 0 l+e —i~'i L 2eV'(2m. ) ico+~
(5.37)

%ith this expression we can evaluate the host and im-
purity magnetizations (we take gp(i ——1 for all states) by

2S nS
em

(5.41)

M„
1 (—

2 p(, (k)dk= —,R(', (co=0),

Mi=Jo+ z J pc(k)dk=Jo+ &Rc (co=0)—.

(5.38)

(5.39)

(5.40)

From Eqs. (5.38), (5.39), and (5.41) one can determine 8
as a function of H by

Equations (5.26)—(5.29} and (5.37) and (5.39) are used
in the calculation of the low-temperature expansion of the
thermodynamic potential. '

To leading order in 1/I. the magnetization of the sys-
tem should be that of a free conduction band.

~I( +
8& m.g

where C is given by (5.36) and

1 exp[2icoln( T(, /H) ]
M; =Jo+ 3

dN
N+Eo

(5.42)

)&1 ( 2 +ice)e [(0 i co)/e] ico, ——

(5.43)

Replacing the term in 1/I. (5.37) in (5.39) and using (5.41)
we finally obtain
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(5.44}
cally for any magnetic field using Eqs. (5.29) and (5.30).
The results are

Since C behaves as e for b,~—oo, M; gives the im-

purity magnetization in the limit 6 eF—« I. In fact
(5.43) is the expression for the impurity magnetization of
a spin-Jo+ —, Kondo model ' with Kondo temperature

given by

eF b,—+H/2
nf ———

l' r +n, Jo &)1

(5.46)
' 1/2

(5.45)
I +(EF b+—H/2)

E;=conf+ ln
2 2 +EJO Jo))1

2~ r'+(D

n, (H)

-nq (0}

0.5
1

e~ao o ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

~O-4
) O-5

FIG. 5. {a}Impurity magnetization and {b) change of valence
as functions of magnetic fie/d for Jo ——2, I =0.1, and different

values of Z = [b —Q(H =0}]/1.

For Jo ——0 the magnetic susceptibility of the nondegen-
erate Anderson model is reproduced. The impurity mag-
netization varies from Jo for H~O to Jo+ —,

' for large
fields. For b, eF «—I' (Z«Jo+ —,), Eq. (5.43) gives the
impurity magnetization for all fields and for Jo&0 the in-
termediate values of M; occur for fields of order Ta.

In the intermediate valence region, for intermediate or
large values of the field and for Jo of the order of 1, the
Eqs. (5.13) and (5.15) cannot be solvixl analytically with
standard methods. The numerical result for M; for the
simplest case for valence fluctuations between two mag-
netic configurations (Jo ———,) is represented in Fig. 5(a).
The intermediate values of M; take place at fields of order
I /2 or b, 6p for b,——ez —I or 5—CF » I', respectively.

In the latter case the change in M~ is associated with a
change in the number of 4f electrons as illustrated in Fig.
5(b) in which we show the variation of n with magnetic
field.

For Jo »1, the number of 4f electrons, impurity ener-

gy and impurity magnetization can be calculated analyti-

M =Jo+ ,'(n/ —n),—Jo»1
(5.47)

(5.48)

where 4 is the arctangent function. In this limit Tk~0
[see Eqs. (5.45), (5.44), and (5.7)] and the Kondo effect
disappears. Then for 6 FF «—I, M =Jo+ i for any
nonzero magnetic field. M, is given directly by the num-
ber of 4f electrons.

VI. CONCLUSIONS AND DISCUSSION

We have studied the Bethe ansatz integrability of a gen-
eral isotropic impurity model for valence fluctuations
which hybridizes two 4f configurations of angular
momentum Jo and J, & Jo by means of the promotion of
an electron or a hole of angular momentum j, to a con-
duction band.

The first Bethe ansatz solved model for valence fluctua-
tions, the nondegenerate Anderson Hamiltonian, in the
limit of infinite 4f intra-atomic Coulomb repulsion corre-
sPonds to Jo ——0 and j,= —,

'
(imPlying Ji ———,') in the

model studied here. Its exact solution has been general-
ized for any j, keeping Jo ——0. '

In this work we have generalized the Bethe ansatz solu-
tion of the nondegenerate Anderson model for any Jo
keeping j,= —,

' and we have shown that excluding the sim-

plest case j,=0, the above-mentioned particular cases ex-
haust the values of total angular momenta for which the
general model is Bethe ansatz solvable in the intermediate
valence regime. In the exchange limit, the Bethe hy-
pothesis is always valid, but the resulting eigenvalue prob-
lem (3.11) is not solvable either for JoJi&0, j, & —, by
means of the quantum inverse scattering method or
second Bethe ansatz, using the simplest parametrization
of the matrices R and 5 [Eqs. (4.11) and (4.13}]. One
could solve the eigenvalue equations (3.11), which only in-

volve angular momenta variables by numerical or approxi-
mate methods.

Our solution for j,= —,
'

and any Jo include a family of
models for valence fluctuations between two magnetic
configurations. The simplest one (Jo ———,', Ji ——1), though
does not realistically describe the 4f ' and 4f ' configura-
tions, explains qualitatively the main properties of Tm
systems. '

For Jo&0, contrary to the result for the other Bethe an-
satz solved models for valence fluctuations, the ground
state is magnetic leading to a divergent magnetic suscepti-
bility for vanishing temperature.

If the configuration of total angular momentum
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J, =Jo+ —,
' is energetically favored the model reduces to a

spin-J& Kondo model, while in the opposite limit it is
equivalent to an s-d exchange model with ferromagnetic
coupling between the spins of the conduction electrons
and a localized spin of magnitude Jo.

In the intermediate valence regime, the variation of the
number of 4f electrons and the impurity energy with the
4f level is qualitatively similar to that of the nondegen-
erate Anderson model. The impurity magnetization M; is
Jo for vanishing magnetic fields. For high fields

i
MI. =~O+ 2

Among these models, that with Jc=0 (nondegenerate
Anderson model) has long ago been recognized to describe
qualitatively the properties of intermediate valence sys-
tems fluctuating between one magnetic and one nonmag-
netic configurations. In the same way, though these
models do not contain the angular momenta that corre-

spond to real rare-earth ions, many of the properties of in-
termediate valence Tm, Pr, and also some U systems can
be understood qualitatively in terms of the models with

JoJ) ~O, J, = —,.¹readded: After submission of this paper we received
a copy of a paper by P. Schlottmann (unpublished) with
some of the result of Chap. V and thermodynamic equa-
tions for j,= —,'.
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