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Ising model on a quasiperiodic chain

Yaakov Achiam, ' T. C. I.ubensky, and E. %. Marshall
Department ofPhysics, University ofPennsylvania, Philadelphia, Pennsylvania 1N 04

(Received 19 August 1985)

The thermodynamic properties of a spin system with two different nearest-neighbor interactions
which are ordered in a quasiperiodic pattern along a one-dimensional chain are studied. An exact
renormalization technique is used which mimics the deflation rule for a quasiperiodic lattice. The
system has a phase transition at zero temperature with the usual scaling form of the thermodynamic
functions. These functions have corrections to scaling which do not appear in an ordinary system,
and there is a spatial dependence in the correlation function.

I. INTRODUCTION Pn=Nt. /Ns ——1+P(„ i) .(n) (n) —1 (1.2)

Quasiperiodic lattices are defined' by their lack of
periodicity under translation, the incommensurate length
scales of their elementary units, their self-similarity under
certain inflation and defiation rules, and their long-range
orientational order (in two dimensions and higher). The
physical properties of such systems whose elementary
units represent spins, atoms, potentials, etc. are objects of
active investigation. Recent experiments have demon-
strated the existence of materials whose symmetries fall
outside classical crystallographic theory but which are
predicted by quasicrystal models.

A commonly studied one-dimensional quasicrystal is
the Fibonacci tiling. This sequence is generated from two
elementary incommensurate units, for example, L and S,
which we will regard as bonds on a lattice as shown in
Fig. 1. The tiling can be infiated or grown from a seed
(e.g., an L) by the following inflation or production rule:
Each existing S is replaced by L, while each existing L is
replaced by LS. This substitution is iterated until the se-
quence has the desired length. For instance, a growth se-
quence over five steps would be

L ~LS~LSL~LSLLS~LSLLSLSL .

This lattice after n iterations has Nj"' L bonds and
Nz'"' Sbonds. The infiation rule implies

~(n) ~(n —1) 1 ~(n —1) ~(n) ~(n —1)
L L + S & S L

Note that the ratio of the number of L bonds to S bonds
is the nth rational approximant to the golden mean,
p„—=F„/F„ i (pp =0), and F„are the Fibonacci numbers
(F(p) =0, Fi =1; and F~„~

——Fi„ i~+F~„ t~ f«)n2). p„
obeys the relation

L t S pL sL q 8 pL ~ S g Lg ~~~ 0 0 g ~~Q g ~~~@

FIG. 1. The quasiperiodic Ising chain. The I. interactions
are denoted by a solid hne. The S interactions are denoted by a
broken line. The section in the figure corresponds to the fifth
iteration of the inflation rule.

When n ~ ee, p„~r, where ~ is the golden mean,
r=(1+~5)/2. The approach of p„ to i is, however, os-
cillatory with

1
5pn = —

~ 6pn i & &pn —p—n —'r (1.3)

H =g (r, ~, t7, +, +h"'o";) . (1.4)

The Fibonacci tiling generates the types of spins and their
interactions. There are two kinds of nearest-neighbor in-
teractions, or bonds, between the spins, K; =L or K; =S.
The ordering of interactions along the chain is determined
by the previous chain and the Fibonacci inflation rule: At
each iteration stage n, any interaction L is replaced by the
couple of interactions, LS (with a spin o,' between them),
and each interaction S is replaced by an L interaction.

Three types of spins can be distinguished according to
their two nearest-neighbor couplings (Fig. 1). We have
defined tr' which interacts to the right by an S interac-
tion. A o. interacts by S and L interactions, but now the
S interaction is on the left. A tT interacts via two L in-
teractions. The h'"' is the (reduced) field which couples
to spin of type k, tT".

Successive application of the inflation rule results in a
chain of L and S bonds in which the following is true.

(a) The S bond is always surrounded by two L's.
(b) There are no more than two successive L bonds.
Under the renormalization-group (RG) transformation,

a system with N bonds at the nth stage of inflation is
transformed into a similar system with N' bonds at the

From (1.1) it follows that rNL,"'+Ns"'-r". We will see in
what follows that these properties of the Fibonacci se-
quence are reflected in the physical properties of the
quasiperiodic Ising chain.

The linear quasiperiodic Ising model is a chain of spina,
o.;. The spins take the values cr; = + 1. The index
i=1, . . . , N describes the location of a spin along the
chain, and the index k =1,2, 3 describes its local symme-
try, i.e., the way it interacts with its neighbors. The re-
duced Hamiltonian (in units of minus the thermal energy)
which describes the system is
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II. RG TRANSFORMATION AT ZERO
MAGNETIC FIELD

At zero magnetic field the system can be described by a
product of transfer matrices with factors

exp(K;o;o;+i)=coshK;[1+o;o;+itanhK;] . (2.1)

The decimation of the o' spin between the L and the S
transfer matrices leads to the renormalized L' transfer
matrix,

coshL'[1+pj((zj+itanhL'] .
L' is given by the recursion relation

YL ——Fl Yg,

(2.2)

(2.3a)

where I'» =—tanhK;. The second recursion relation is ob-

tained by the substitution of an S' for the rest of the L
bonds,

Yg ——YL . (2.3b)

Taking logarithms of (2.3) leads to recursion relations
identical to those satisfied by N»[Eq. (1.1)]. The, solution

of these recursion relations, after n renormalizations, is

Ir(n) P(&z
' '

&n P(&z
' ' '

&n —(
L L S

Y{n) Y(n —1)
S L

(2A)

The recursion relations (2.3) have two fixed points, the
high-temperature fixed point,

(2.5)

and the critical zero-temperature ( T, =0) fixed point,

YL ——Yg ——l . (2 6)

The linear recursion relations, around the zero tempera-
ture fixed point, are

1 1

(ez)' 1 0 es
(2.7)

(n —1)fh stage of inflation. In the limit n ~ oo,

iV /N' =r. The RG transformation is a decimation
transformation. Each crt is traced out of the normalized

probability distribution, P((o J ) =( I/Z)exp(H), leaving
the other spins untouched. This decimation transforma-
tion mimics defiation: L goes to S' and LS goes to L'.
The transformation can be formally written as

P(tpI)=tr [T(o,p)P(to J }].

The RG operator T is

T(o,(u)= 11 5(„(o;,p,')5i„(oj~' ',Izj)5(„(oP",pi), (1.6)
i,j,l

and 5& is the Kronecker 5 function. The symbol o ' ' is
used to characterize o by its neighbor to the right, cr

1

and

in%'

lnb
(2.9)

where we have identified rexp( —2L)+exp( —2S) as the
temperaturelike parameter since the system exhibits an
essential singularity at T=0 similar to that of the period-
ic Ising model. Another critical exponent, g, can be ob-
tained immediately. Under the decimation transforma-
tion the spin's scale factor is 1. Hence, as in all other
models with this scale factor,

D —2+q=0, (2.10)

where D =1 is the dimensionality of the system. This re-
lation leads to the known one-dimensional result, namely,
q= l.

The effect of quasiperiodicity on the thermodynamic
properties of the system can be observed by studying the
correlation function, G(R,K;)=(o„cr„+»). Without a
magnetic field, the transfer matrices (2.1) commute. By
grouping all the S transfer matrices and all the L ones,
and by using the expression for the ordinary periodic
chain, (o;o;+» ) =tanh K, we obtain the exact expression
for the quasiperiodic chain,

(o„o„+g ) =tanh Stanh L, (2.11}

where Nz and NI (Ns+NI. ——8) are the number of Sand
L bonds in the segment between x and x+R, respective-
1y. The asymptotic limits for Xz and NL, are

The system displays several interesting features. Only the
first eigenvector is physically accessible to the initial
choice of parameters, since the e'» must be non-negative.

l

Although the second eigenvector describes stable flow in
parameter space toward the fixed point, initial conditions
in its direction require a negative value of the e» .

The small eigenvalue is negative. This is not a common
feature of periodic lattices. The negative sign is a conse-
quence of the second recursion relation, (2.3b), which
identifies the new value S' with the old value L. It causes
oscillations in the ratio L/S around r which decay rapid-
ly as the parameters leave the unstable fixed point. We
note that the recursion relation (2.7) and the inflation rule
(1.1) are identical. The oscillations in the direction of the
second eigenvector are the same as the oscillations of p„
around the limit r as n~oo, (1.3). The value —1/v in
(1.3) is the ratio between the two eigenvalues in (2.8}. The
largest eigenvalue of (2.8} describes the growth of the Fi-
bonacci numbers under the inflation rule (1.1).

In the N ~ oo system the number of spins in the system
is rescaled by a factor of b=~. This fact is combined
with the usual relation ' between the one positive eigen-
value and the rescaling factor to calculate the critical ex-

ponent v which characterizes the dependence of the
correlation length on the temperature. From the linear-
ized recursion relations we find

where e» —=1 —I'». The linearized RG transformation
I

has the fo1lowing eigenvalues and eigenvectors:

1s~ R XL~ R as Rl+~ ' 1+v
(2.12)
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Thus, close to T~ (R Sir '(.(1)i

G(R~oo, S,L)=1—2 (re +e ) . (213)
1+~

Mentifying the correlation length, g
' =rexp( 2L—)

+exp( —2S) (the component of the temperaturelike field
in the direction of the relevant eigenvector of the linear-
ized recursion relations), we re:over the scaling form of
G(R,L,S)=G[R /g(T)].

By taking the limit (2.12}we only examine the behavior
of the system in the direction of the relevant eigenvector.
Returning to the exact expression (2.11) and using (2.12),
we can write it as

( Y'~~Y' ')"=exp(—Rg„'), g„'=(1/r )ln(YSYL} .

(2.14}

If the limit (2.12}is not taken, and if R =F„+i, g becomes

—1 —1

'=ln(F " "+' F "+'
)

Equation (2.17), using the above scaling of R and (2.4), is
consistent with (2.16) and reveals the same oscillatory
behavior which has been discussed previously. The space
scale factor becomes a nonlinear function of R, and re-
peating the RG transformation n times does not lead to a
power of the scale factor as in translationally invariant
systems.

III. TRANSFORMATION OF THE MAGNETIC FIELD

The RG transformation creates different magnetic
fields on different sites. Hence, although we start with a
homogeneous magnetic field, three kind of fields should
be studied. We denote these fields by h +, k=1,2, 3,
where k is the index of the site type k in rr"

The contributions to the two untraced neighbor spina,
h i and hi, from a field h'" on a spin o'" which is traced
out in the RG transformation are obtained by the relation,

Tr i [exp(rrirriL)exp(rr2h'")exp(o2rrP)]
—g„'+5p„+iln(FS /FL ), (2.15) = Aexp(rrih i )exp(o io3L')exp(aiba) . (3.1)

G(R'"',S'"',L'"')=G(R,S,L) . (2.16)

In the infinite chain the total number of bonds scales
under the RG transformation as N'"'=N/P. Inserting
this scaling into (2.16) leads to (2.13). However, if R be-
comes less than infinity, the scahng becomes nonhnear
and spatially dependent. If R is the nth number in the
Fibonacci series, the scale factor is p„, as opposed to-r
The correlation function calculated in the renormalized
system is

G(R'"',S'"',L'"')=t~ ' S'"'t~h ' I.'"'. (2.17)
I

where Sp„oscillates according to (1.3).
The above argument is applicable if Ns and NL are

two successive numbers in the Fibonacci sequence, F~
and Err, respectively. However, the segment between 1

and R may not have beret obtained by the inflation rule
from a single ancestral S. In this case the ratio Ns/NL
is not defined by R alone, but depends also on the location
of the segment along the chain. One can expect fluctua-
tions in these numbers, of order 1/R, which are large at
short distances. Thus, even in the infinite system at the
thermodynamic limit in the linear regime near T, the lack
of translational invariance is manifest.

This result can be compared with the one obtained by
RG arguments. The value rl = 1 [Eq.(2.10)] implies

These contributions are added to the original fields,

(h'")'=h, +h"',
(3.2)

, 2 23's+& 1PL, &1+PS3'I.
(x'i) =x2

~13S+3L &+~13S31.
'

2 +13S+3L +1+3S3L
(x2) =xi

3 s++13L l ++13'L

&1+3'SPL,
xi =x2 1+x iysPL

(3.3a)

(3.3b)

(3.3c)

3s+xi3L xi3s+3L
3'L, 3's =PL1+x i3's3'L x i+PS3'L

(3.3d)

where exp( —2Ã~) =yx and x; =exp( —2h"). The recur-

sion relation for the constant term ¹ of the free energy
in terms of the variable rc—:exp( —4c ) is

leading to exact recursion relations in the entire parameter
space,

& 1PSPL,

(1+xes3L)(x i+3syL)(3S+xi3L)(xi3S+3L)
(3.3e)

n is defined by the number of bonds, N, before and after
the RG transformation, N/N =ps+i which has the limit
P„-+1~7', Pl ~ {X).

The fixed points of the full nonlinear recursion rela-
tions consist of the points (2.5}and (2.6) and their general-
ization in the entire parameter space,

3'I. =3's =&~ =O

33'L =ps =0, X.= 1

gl =ps =1, x1 =xg =x3

(3.4a)

(3.4b)

(3.4c)
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These recursion relations can be linearized in the fields us-

ing

hi= 2h"'(I'i+s+I'r. -s»
h2 ———,

' h"'(1'L+s —YL s), (3.&)

and (3.2). Equation (3.5) can be further linearized in e;
near the ferromagnetic fixed point (3 4a). By substituting
back into (3.2), the following transformation is obtained:

(h'")' 1 —m 1 O

m O 1 h"' (3.6)
(h(3))~ 1 1 () h(3)

where m = I /( I+eL, /es ) . This recursion relation has
the following eigenvalue and eigenvectors (left and right):

(r, w, 1) r w —1+m

(1 r, r— , —1) —— 1 —m+——2 —1 1
(3.7)

(m —1, —m, 1) —m —12

0

Near the zero-temperature fixed point, all the spins
align in the same direction. Hence the recursion relation
(3.6) is just the transformation of points of different local
symmetry under the Fibonacci inflation rule, which will

now be presented. We denote the number of points with
local symmetry as that af cr" by N(k). Under the inflation
rule (1.1), N(k)~N(k). One can associate with each old
point a new one, (1)~(2)', (2)~(3)', (3)—+(2)'. Al-
though

rule: There is one eigenvalue ~ which describes the
growth of F„. There is another eigenvalue, smaller by
—I/r, which describes the fluctuations of p„around r.
There is one more eigenvalue associated with the extra de-

gree of freedom, m, which in the case of the quasiperiodic
Ising chain is determined by the initial values of the cou-
pling before the RG transformation.

There is a similarity between the flow trajectories in the
quasiperiodic system and the periodic one. In zero mag-
netic field the fixed points are S = L ( 0 or oo). Thus, all
the lattice sites become indistinguishable, as in the period-
ic case. At the fixed line the values of the fields are thase
of a homogeneous system, again as in the periodic system.
The fixed points (3.4a) and (3.4b) describe the ferromag-
netic h"=0, and the "frozen" h"= 00 points, respective-
ly. The third fixed point (3.4c) is the paramagnetic criti-
cal line. In the quasiperiodic system the parameter space
is composed of five components, a fact which makes the
flow trajectories more complicated than in the periodic
case. The lack of translational invariance means that the
unstable direction of flow in the vicinity of the ferromag-
netic point is not given by a homogeneous field,
h'"=h' '=h"'. The initial homogeneous field flows to-
ward the unstable direction accompanied by rapidly de-

caying fluctuations around this direction. This oscillation
is caused by two irrelevant "staggered fields. " The oscil-
lations have the same origin and nature as those found in
the flow away from the ferromagnetic point in the S L—
plane which were discussed in the previous section. The
exact compositions of the critical and the "staggered"
fields depend on the ratio eL /es [through the factor m in
(3.6)]. This ratio depends on the initial values of L and S,
and it changes with the iterations of the RG transforma-
tion and causes a nonlinear effect even in the "linear" re-
gime. However, this is a fast transient, and the ratio can-
verges rapidly to F„and then to ~. The set of eigenvalues
and eigenvectors which correspond to eL /es rare——

1

(T,r, 1) r 1

X(+(I)) En+2++(k)
I k

(3.&) (r,r, —1)
—1 —2f

'r —2

(3.10)

0 1 X(2)
1 0 pf(3

(3.9)

where n is the iteration stage of the inflation rule, there is
no one-to-one correspondence between (cr')' and the spins
at the previous stage. A part of the new points (1)' can be
associated with the old point (3). The other part of them
can be associated with either (1) or (2). We can introduce
a weight function c and describe the transformation
X~X' as

T

m 1

(r 1, r, 1) ——r—

At the ferromagnetic fixed point m = 1/2. Hence there
are two irrelevant "staggered" fields, (1,—V 5/2, 1 —r/2)
and (1,—1,0). Leaving the linear regime, the trajectories
flow to the stable paramagnetic line where the magnetic
field is uniform.

IV. CONCLUSION

This transformation is the same as (3.6) in which the left
and the right eigenvectors have been interchanged. This
identification of (3.6) as the inflation rule for the points
allows us to verify the known properties of the inflation

In the absence of a magnetic field, the quasiperiodic
one-dimensional Ising model is exactly solvable. The
transfer matrices with different E; interactions commute.
The system can be mapped into two different periodic Is-
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ing chains whose properties are well known. The immedi-
ate conclusions are that the system has a zero-temperature
critical point with discontinuous spontaneous magnetiza-
tion which scales with the volume of the system. This
behavior, which is characterized by the critical exponents
v=g = l, has also been found using an exact RG decima-
tion transformation in the absence, as well as in the pres-
ence, of a magnetic field.

Any physical property which depends on a limited dis-
tance R, such as the two-point spin-spin correlation func-
tion, depends on the number of S and 1. bonds in this in-
terval. The quasiperiodicity of the chain causes these
numbers to vary. However, the average of these quanti-
ties over the infinite chain is unique. This fact, together
with the knowledge of the full RG recursion relation, can
be used to study the thermodynamics of the system. For

instance, the magnetization has corrections to scaling with
exponents equal to —l and —2 resulting from the larger
parameter space, which is a manifestation of the quasi-
periodic nature of the system. The corrections to scaling
have oscillating amplitudes. This oscillatory behavior is
found to be an essential property of the quasicrystal infla-
tion rule.
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