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Percolation at the surface of semi-infinite two-dimensional lattices
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The method of Monte Carlo invariant imbedding is developed to calculate the probability that a

site on the surface of a semi-infinite, two-dimensional lattice belongs to the bulk infinite cluster. For
the square and triangular lattices, the surface percolation exponent is found to be P~ ——0.398+0.005.
This result is compared with those found indirectly using scaling relations on different surface ex-

ponents obtained by other methods.

I. INTRODUCTION

When an infinite system is terminated by a surface to
form a semi-infinite system, some features of its critical
behavior are modified. A case in point is a lattice that has
a fraction p of its sites randomly occupied, the rest being
vacant. The fraction of sites that belong to the infinite
cluster is called the percolation probability P(p). It is

commonly known' that P(p) is nonzero only if p is
greater than a critical concentration p, and that in a criti-
cal region above p, the percolation probability has the
power-law form

P(p) ~ (p —p, )~ .

For a lattice with a free surface, Pi(p) is the probability
that a site on the surface belongs to the infinite cluster;
for ease of reference, such percolating sites are often
called wet. By analogy with Eq. (1),

Pi(p) -(p-p. i)" (2)

It is commonly assumed that p, i
——P, and since the results

confirm it, no further distinction will be made between

the critical concentrations.
That Pi(P) & P(p) can be understood by visualizing the

serpentine nature of the infinite cluster near the percola-
tion threshold: Figure 1 illustrates how some wet sites
will bxeme dry when an infinite system is cut to form a
surface. While the inequality could be satisfied by sup-

posing different proportionality constants for Eqs. (1) and

(2), it is the case that Pi & P, and so the percolation transi-
tion at the surface is softer than that of the bulk.

Critical behavior at surfaces and methods for calculat-
ing the host of associated critical exponents have been re-
viewed by Binder. The surface exponents are related to
each other and to the bulk exponents by a collection of
scaling relations such that if only one of the surface ex-
ponents is known the others may be determined. Series
expansions and renormalization-group methods have
been used to obtain the susceptibility (mean-size) ex-
ponents y, and y», and from these Pi may be found.
Mean-field theoriess s yield pi ———', . Carton has derived a
first-order e expansion for P, which, however, can hardly
be very accurate in two dimensions. At present, values for
Pi are known less accurately than for the bulk counter-

parts and the best values are obtained only indirectly via

the scaling relations.
I present here a new method for directly calculating

precise values for the surface percolation probability ex-
ponent Pi. I apply the method to the semi-infinite square
and triangular lattices and compare the results with those
obtained indirectly by other methods.

II. INVARIANT IMBEDDING

The method of invariant imbedding has great power for
calculating surface properties of semi-infinite systems.
Problems in fields as diverse as electron backscattering
and transmission-line impedance have found solutions by
this approach. For a review, see Ref. 10. For the present
problem the basic idea is shown in Fig. 2. A set of func-

FIG. 1. A stylized piece of the infinite cluster. The hatched

area shows the portion that becomes detached when the cluster

is cut along the dashed line.
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FIG. 2. Schematic representation of invariant imbedding at a
surface.
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PJ'=f;(IP; j, Ix j), (3)

but the addition of the layer leaves the system still semi-
infinite, so we require that each of the surface functians
be unchanged, and

(4)

for each j. Equations (3) and (4) are the central ideas of
invariant imbedding in the present context.

The relations expressed in Eq. (3) depend on the details
of the structure of the layer and how the layer interacts
with the old surface. Constructing these relations is usu-
ally a formidable task, and it is not often obvious at the
outset what to choose as the set IP; j. Consider the semi-
infinite, two-dimensional square lattice, each site of which
is occupied with probability p. The goal is to determine
Pi(p), the probability that a surface site is wet. In this
case there is only one independent intensive variable, the
occupation probability p. An attempt to write down Eq.
(3) for Pi will necessarily involve a whale collection of
surface correlation functions each of which is related to
the others by invariant-type equatians. So that the
method may be illustrated, these complexities are swept
aside by ignoring correlations among wet sites: In what
follows it is assumed that the wet sites are randomly dis-
tributed on the surface.

Figure 3 shows the possible configurations of wet sites
for a small portion of the surface three sites wide. Con-
nections to sites that border this portion are ignored. Sites
on the old surface are wet with prabability P&. To the
right of the dashed line a new column of sites (with occu-
pation probability p) is appended to make a new surface.
By enumerating the configurations and writing down their
probability of occurrence, one obtains the probability that
the center site of the new surface is wet:

Pi =Pip+Pi(l —Pi)(2p' —p'Pi)

The first term in Eq. (5) is just the probability that the in-

tions ((P; j is defined which completely characterizes the
surface of a semi-infinite system. Each P; depends in an
unknown way (which we wish to discover) upon a set of
independent intensive variables [xj. A new surface is
created by adding to the old surface a thin layer of materi-
al having the same values for (x j. Each function PJ of
the new surface is then assumed to be related to the old
set I P; j and to Ix j:

p (I-p}
JL
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FIG. 3. Propagation of the wet cluster for a three-site portion
of the surface. ~, wet site; 0, non-wet site; X, occupied site on
new surface; , site of irrelevant status. Expressions in left-
hand column are probabilities for topologically distinct configu-
rations of sites on the old surface. Expressions below each dia-
gram give probabilities for site configuration on the new surface.

finite cluster is propagated directly forward as shown in
the first row of Fig. 3. The second term results from add-
ing all of the probabilities for the remaining configura-
tions.

Upon setting Pi P„Eq. (5)——may be simplified to ob-
tain a quadratic equation in Pi whose coefficients are po-
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FIG. 4. Variation of surface percolation probability with site
concentration for the square lattice. Solid line is the result of
the analytical model of Eq. (6). Data points show typical Monte
Carlo simulations of Sec. III.



B. P. %ATSON

lynomials in p. The solution is

P (P +2) (P4 4P3+4P )1j2
I') ——

2p
(6)

a.e -,

08

which is plotted as the solid line in Fig. 4. Equation (6)
has the correct behavior of I'& -p in the limit @~1 where
correlations can be ignored, and it provides a reasonable
approximation to the true surface percolation probability
outside of the critical region. But it fails, not unexpected-
ly, to yield the correct critical concentration or power-law
behavior.

By using surface portions larger than three sites it is
possible to write down higher-order approximations but
they quickly become unwieldy. Furthermore, such ap-
proximations are bound to fail in the critical region unless
they are based on a very wide surface and account for
correlations. A more promising approach is to carry out
the invariant imbedding procedure by computer simula-
tion.
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FIG. 5. Convergence of fraction of wet surface sites to an in-
variant value. (a) p ~p, and (b) p gp, .

III. MONTE CARLO INVARIANT IMBEDDING

The goal is to model Eqs. (3) and (4) numerically. The
basic strategy is very simple. If a surface has the correct
fraction of wet sites properly correlated then a new layer
added to the surface will attain the same fraction of wet
sites. This information is, of course, unavailable at the
outset. However, by starting with an arbitrary concentra-
tion and distribution of wet sites we hope that, after add-
ing many new layers, the distribution will converge to the
correct one. Whether this does occur may be judged by
the numerical results presented here.

Consider an initial column of N surface sites which is
randomly populated with a fraction P(P, O) of wet sites.
A new column, occupied with sites with probability p, is
adjoined to the initial column. The wet cluster and other
finit clusters are propagated forward into the new
column wetting a fraction P(p, 1) of the sites on the new
surface. The process is repeated through K iterations,
giving a sequence P(p, 1),P(p, 2), . . . ,P(p,K). This pro-
cedure was implemented with a cluster-propagation algo-
rithm based on the Hoshen-Ko elman technique and
similar to that given by Stauffer. ' ' There were several
differences, however. Rather than just determining if the
new column was connected to the first column, the num-
ber of sites so connected was counted. Cluster numbers
were recycled. Rapaport' has shown that periodic
boundary conditions produce more accurate cluster-size
distributions than free-boundary conditions. In this work,
it was convenient to use almost-periodic boundary condi-
tions in which the ¹hsite of the Kth column abuts the
first site of the (K+1)th column. This introduces a
screw dislocation of pitch 1/X which can be ignored for
the large column lengths used here.

For finite X, the value of P(P,K) does not converge to
a fixed value but Auctuate about an average value which
approximates Pi(p). Most of the difficulties with the
method concern knowing when the sequence has con-
verged to the vicinity of this average value. In prelimi-
nary simulations, an initial column of N =1000 was pop-
ulated randomly with P(P, O) =p. For each value of p, en-

sembles of twelve runs were averaged. Typical ensemble
averages (P(P,K) ) are plotted against iteration number in
Fig. 5(a) for p ~P, and Fig. 5(b) for p &p, . Below P„ the
original "infinite" cluster refuses to propagate. Above p„
there is an initial steep, relatively smooth decrease fol-
lowed by a more gradual, fluctuating decline and eventu-
ally by a fluctuation about an average value.

Starting with P(p, O)=p is a good approximation for
high concentrations, but in the critical region this choice
means starting from a very-high-concentration fluctuation
in the infinite cluster. In addition, a diverging correlation
length also slows convergence dramatically as p, is ap-
proached. To speed convergence, a trial function
f(p)=A(P —p, ) was fitted to preliminary data in the
critical region. Then more extensive data were taken us-
ing the starting condition P(p, 0)=f(P). The effect is to
start the system near its average value but without regard
to correlations. That the proper correlations develop by
themselves as the sequence progresses is probably a valid
assumption provided that the sequence number K is car-
ried at least past the mean cluster-size radius. Represen-
tative data for the square lattice are shown in Fig. 4.

A column length of % =10000 was chosen for final
simulations on the square and triangular lattices. ' The
surface percolation probability was approximated by the
sequence average

Kf
( P i (p) ) = g P (p,K) l(Kf K; +1), —

K =K.
I

where K~ ——1001 and Kf =5000. The first 1000 sequence
values were omitted to assure convergence to an approxi-
roately invariant distribution. Estimates for the variance
in (Pi ) were obtained by taking averages over subsets of
the data.

IY. RESULTS

Data for the square and triangular lattices are presented
in Fig. 6, where for each lattice p,' was chosen which pro-
duced the least weighted X for an assumed hnear rela-
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0.0 TABLE II. Summary of results for the surface percolation
probability exponent.

-0.2-

04

-06

This work

Series expansions
(triangular lattice)

Renormalization group
{square lattice)

0.398+0.005'

0.382+0.005b

0.43+0.02'

0.48

CL

o-GB
O

-1.0-

'Average of values of Table I.
Equation (9a); y» ——0.57+0.01 (Ref. 4).

'Equation (9b); y ~

——2. 10+0.02 (Ref. 4).
Equation (9c); 5& ——yI', /y~ =0.71/0. 61,

(Ref. 3).

vb ——1/y~~= 1/0. 61
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FIG. 6. Power-law behavior of (Pi(p)) for the square and
triangular lattices. p, was chosen to achieve best linear fit.

-4.0

tionship between logio(Pi ) and logio(p —p,') over a criti-
cal range of p —p,'—=s'(0.06. The data exhibit linear
behavior over nearly two-and-a-half decades of logioe.
Weighted least-squares analysis was used to find the best
values for the constants in the fitting function

P, (p) =A i(p —p,') '. These are listed in Table I with the
most precise values for p, obtained by other methods.
The values for the exponent Pi are very nearly the same
for the two lattices. However, the numbers obtained de-
pend slightly on the range of data used in fitting and on
the value of p,'. If these additional uncertainties are tak-
en into account the data support the universality hy-
pothesis that the two lattices have the same exponent.

For each lattice, p,
' is greater than p, by about 0.12%.

This difference was found to be twice as large for another
series of runs on the triangular lattice using a column
length of only 1000, so the difference is probably due to
the effect of finite sample size. In each instance
logio(Pi ) begins to lie slightly above the straight-line fit
for log&oe & —2.5. This signals the onset of a correlation

Pi
Ai
pc

pc

'Reference 15.
Exact result.

Square lattice

0.392+0.005
1.57+0.02

0.5935+0.0002
0.592 77+0.00005'

Triangular lattice

0.403+0.004
1.38+0.02

0.5006+0.0002
&

b

TABLE I. Least-squares values for the fitting function

PI(P)=Hi(P —P, ) '.

y„=a,—2+2m, ,

Yl as 2 +~b +~l ~

2 —a, = (d —1)vi ——(d —1)vb,

where the subscript b denotes values of the bulk ex-
ponents. '6 For d =2 dimensions these equations can be
manipulated to give

1Pi= T(&b —r»» (9a)

and

I3i =~b ri— (9b)

(9c)

The values v~ ———', and A~
———„' are presumed to be known

exactly. "' ' The mean-size exponents y~ and y» have
been obtained from series expansions. The exponent 6i
can be obtained from renormalization-group calculations.

In Table II, I compare the values of Pi obtained by
these other methods with the result of Monte Carlo in-

variant imbedding. None of the ranges for P& overlap.
However, the two series-expansion results do span the
present value. The discrepancies are probably systematic:
The renormalization-group calculation used a small cell
size and the series expansions may have been too short.
The invariant iinbedding value is subject to finite-size ef-
fects and a convergence uncertainty.

length approaching the value of E; in Eq. (7) and indi-

cates that convergence may not have been obtained. The
toe evident at p &p, in Fig. 4 is a more dramatic result of
convergence failure. Other deviations from simple
power-law behavior, barely discernible on Fig. 6, occur for
e & 0.07. These merely mark the end of the critical region
for which Eq. (2) is valid.

These results for Pi are the first obtained directly for
two-dimensional lattices. However, Pi can be calculated
from the knowledge of one of the other surface exponents
and the following scaling relations:

P, =2 —a, —a, ,
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V. CONCLUSION

The method of Monte Carlo invariant imbedding pro-
vides a new approach for calculating precise values of the
surface percolation exponent. The results for the square
and triangular lattices are very close and have an average
of P& ——0.398+0.005, which is probably more accurate
than values obtained indirectly by other methods. The in-
variant imbedding approach need not be limited to calcu-
lating percolation probabilities. %ork is currently under-
way to calculate the mean-size exponents y& and y». Ef-

fort will be directed toward extension to three and higher
dimensions where the surface scaling relations are untest-

ed.
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