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%e evaluate third-order bounds on the effective conductivity o, and effective bulk modulus E, of
a random dispersion of equal-sized impenetrable spheres in a matrix up to sphere volume fractions

near the random close-packing value. The third-order bounds, which incorporate an integral (2 that

depends upon the three-point probability function of the two-phase medium, are shown to signifi-

cantly improve upon second-order Hashin-Shtrikman bounds, which do not utilize this information,

for a wide range of phase property values and volume fractions. The physical significance of the

microstructural parameter $2 for general microstructures is briefly discussed. The third-order

bounds on o, and E, are found to be sharp enough to yield good estimates of the bulk properties for
a wide range of sphere volume fractions, even when the phase property values differ by as much as

two orders of magnitude. Moreover, when the spheres are highly conducting or highly rigid relative

to the matrix, the third-order lower bound on the respective effective property provides a useful esti-

mate of it for a wide range of sphere volume fractions.

I, INTRODUCTION

In a previous article' (henceforth referred to as I) in this
series of studies of the effective properties of two-phase
disordered composite media, we simplified the key mul-
tidimensional cluster integral that arises in both the
third-order bounds on the effective conductivity cr, and
bulk modulus K, due to Beran and to Beran and
Molyneuxi (BM), respectively, for the model of impene-
trable spherical inclusions randomly and isotropically dis-
tributed throughout a matrix. In this article, we employ
the simplified integrals to evaluate these bounds on o,
and K, and another third-order bound on a, derived by
Milton ' for the same model.

The phase volume fractions, conductivities, bulk modu-

li, and shear moduli are denoted, respectively, by Pi and

$2, cri and o2, Ki and K2, and Gi and G2, where phase 1

is the matrix phase and phase 2 is the included phase. In
Sec. II we present the simplified forms of the Beran, Mil-
ton, and BM bounds for an isotropic suspension of im-
penetrable spheres. In Sec. III we evaluate (2, the key in-

tegral that is involved in all of these bounds, for this
model up to a sphere volume fraction $2 ——0.6. The im-

portant microstructural parameter (2, which depends
upon a certain three-paint probability function of the
composite, that is calculated here, is compared to the cor-
responding values associated with other model geometries.
This comparison enables us to shed some light on the
physical significance of $2. Using the results of Sec. III,
the third-order bounds on o, and K, are then computed
in Sec. IV, for a dispersion of impenetrable spheres up to
densities near the random close-packing value. Here, we

also compare our conductivity results to experimental
data. In Sec. V we make some concluding remarks.
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II. SIMPLIFIED BOUNDS FOR DISPERSIONS
OF IMPENETRABLE SPHERES

The third-order Beran bounds on the effective conduc-
tivity cr, have been shown to depend upon o i, cr2, $2, and
a single integral gi (defined below) which depends upon
the three-point probability function S (rs, ts), ' a quantity
that gives the probability of finding in phase 1 the vertices
of a triangle of edge lengths r, s, and t. The third-order
BM (Ref. 3) bounds on the effective bulk modulus K, de-

pend upon K~, Kq, 6&, 62, and also upon the same in-
tegral gi that appears in the Beran bounds. (Third-order
bounds are exact through third order in the difference in
the phase property values. ) The Beran bounds on o, and
the BM bounds on K, are, respectively,

2&1/~)+(I/ &,
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For any property b, we write (b ) =b 1 p 1 +b 2/2,
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Here Sz is the two-point probability function,
r,z

——
~
r; —rj (,r,j r,j /——
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and I'2 is the Legendre poly-
nomial of order two. The form of Eq. (2.4) ensures that
I1 [S3],and therefore g„ is absolutely convergent.

The fact that gi and hence gz lie in the closed interval
[0,1] implies that the third-order Beran and BM bounds
always improve upon the second-order bounds on o, and
K, due to Hashin and Shtrikman (HS). ' Since the latter
are realized for a certain composite sphere assemblage,
they are the best bounds on these effective properties for a
statistically isotropic two-phase composite material, given
only the phase property values and $2, the simplest of the
microstructural parameters of the medium. The HS
upper bound on o, for oz & o 1, for example, corresponds
to a two-phase system composed of "composite" spheres
consisting of a core of conductivity ui and radius R„sur-
rounded by a concentric shell of conductivity oz and ra-
dius Ro. The ratio R, /Ro ——$1 and so the composite
spheres fill all space, implying that there is a distribution
in their size ranging to the infinitesimally small. For
gi

——0 or, equivalently, for gz
—1, the bounds (2.1) coincide

with and are equal to the HS upper bound for oz&o, .
Hence, gi is 0 and gz is 1 for the composite sphere assem-
blage (CSA) described above. On the other hand, the HS
lower bound on rr, for oz & a 1 corresponds to the CSA but

with phase 1 interchanged with phase 2. For gi
——1 or

gz
——0, the bounds (2.1) coincide with and are ixlual to the

HS lower bound when oz&oi. Therefore, for the CSA
model corresponding to the HS lower bound, gi ——1 and

The HS bounds on K, also become exact for the
analogous CSA geometries. Note that the HS lower
bound for o z & cr 1 is equivalent to the well-known
Maxwell' (or in the dielectric context, the Clausius-
Mossotti") formula. The Maxwell formula therefore cor-
responds to a dispersion in which the average distance be-
tween polydispersed particles is of the order R,gz

'

Milton ' has derived the following third-order lower
bound on the effective conductivity for 0 z & cr i.

(o'1+2o'2)(~rz+2(o) ) —2@1/2(oz —o 1)'
0~ )0')

(cr 1+2 irz)(2 ~ri+(cr ) ) —2/1(z(oz —o 1)

(2.6)
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This bound is exactly realized for a material composed of
composite spheres consisting of a core of conductivity o,
and radius R„surrounded by a concentric shell of con-
ductivity crz and outer radius Ro, which is in turn sur-
rounded by a concentric shell of conductivity cr, and outer
radius R. The ratio R, /Ro is equal to the constant pi(2
and the composite spheres fill all space, implying that
there is a distribution in their sizes ranging to the infini-
tesimally small. Therefore, bound (2.6) is the best possible
lower bound on cr, given 01,02, 1I)z, and gz, and is always
better than the Beran lower bound (2.1) for 0 & gz & l.

In order to evaluate the bounds described above one
must calculate I 1 [S3]and hence gi for the microgeometry
of interest. In I we simplified the cluster integral Ii [S3]
for the case of a suspension of impenetrable spherical in-
clusions and found that for spheres of unit radius

r g(r) 0z Pi(cos&213)K= f2 2
dr

2 3 + 2 g l(l —1) dr2dr3[g3(rl2, r13,r23) —g(riz)g(ri3)](r' —1)' P']2 7" ]3
(2.8)

Here, g(r) is the pair distribution function, g3(riz, r13 723)
is the three-particle distribution function, eos8213
—r 12

' r 13 and I
&

is the Legendre polynomial of order l.
The integrals of K had been obtained earlier by Fel-
derhof' ' using an approach which is completely dif-
ferent from the one outlined in I.

III. THREE-POINT PARAMETER $2
FOR IMPENETRABLE SPHERES

A. Calculation of gz

Here we calculate the three-point microstructural pa-
rameter gz for a suspension of impenetrable spherical in-

clusions. As noted in Eq. (2.8), for this we need the pair
and triplet distribution functions' of hard spheres of di-
ameter 2. The first of these is conveniently obtainable

from the accurate fit of Verlet and Weis. ' This parame-
trization, however, appears to break down as the random
close-packing density is approached and so the highest
density reported here corresponds to a sphere volume
fraction Pz ——0.6, for which the Verlet-Weis results still
show their expected internal consistency.

As usual, the calculation of the triplet correlation func-
tion is more problematica1. Lacking any more fundamen-
tal alternative, we have resorted to the familiar Kirkwood
superposition approximation,

g3(rlz~r13~ 23 } g(r12 }g(r13}g(r23) (3.1)

to evaluate this quantity.
For numerical work, it is advantageous to replace g(r)

in the first integral of (2.8) with 1+ h(r) and evaluate
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analytically the first of the two integrals that result. We
have then

2 " r'g(r) 5 ] 2
" r'h (r)

kz —=7 dr
2 3

——,4
——„ln3+ —, dr

(r 1)'— 2 (r —1)
(3.2)

where now the integrand with h(r) vanishes rapidly for
large r. This integral was evaluated using the trapezoidal
rule with 1024 points, an interval br =0.01 and, as noted,
the Verlet-Weis f]t' to g (r).

In superposition approximation, the second integral of
(2.8) becomes
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where
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2=2 2 0

and rz3 ——r ]z+r]3 —2r]zr]3cos8213. It was shown m Ap-
pendix A of I that the coefficient Hi could also be written

21 +1
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where h(k) is the Fourier transform of h(r) and jl the
spherical Bessel function of order l. With this result, (3.3)
becomes

k3 —— g l(l —1) f dk kzh(k)[F](k)]2,
2tr

(3.6)

with

j,(kr)
Fl(k) = f dr g (r)

jl,(2k) ~ j l(kr)

2 'k + drh(r)
pI

(3.7)

B. Results and discussion

In Table I the three-point parameter gz 1 —g] for the-—
model of impenetrable spherical inclusions randomly and
isotropically distributed throughout a matrix is tabulated
at selected values of Pz in the range 0($2 & 0.6. It should
be noted that recent findings' *' strongly indicate that the
use of the superposition approximation in the second in-
tegral of E, Eq. (2.8), underestimates the actual value of
gz for arbitrary pz, with the largest deviation occurring at
the maximum value of $2-0.64 (i.e., the random close-

Equation (3.6) is also the final form used by Felderhof. '3

The integrals in (3.6) and (3.7) were again evaluated using
the trapezoidal rule with 1024 points, b,r =0.01, and
hk =ir/(10246, r). The summation in (3.6) was continued
until new terms did not affect the fifth decimal place of
the sum; this requires up to ten terms in the sum at the
highest density reported.

TABLE I. Three-point parameter gz for an equilibrium dis-
tribution of equal-sized impenetrable spheres in a matrix.

0.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.0
0.01041
0.020 53
0.030 33
0.039 83
0.04916
0.058 75
0.069 54
0.083 56
0.1051
0.1407
0.2051
0.3277

packing value's). The error introduced in using the super-
position approximation to evaluate E and thus gz cannot
be fully determined for all Pz until the nontrivial three-
body integral is evaluated using computer simulation
techniques. At any rate, the use of a lower bound on gz in
third-order bounds still gives rigorous bounds on the ef-
fective properties, albeit bounds weaker than ones employ-
ing the exact gz.

The physical significance of the three-point parameter

gz has yet to be fully elucidated for arbitrary composite
media. Some physical insight can be gained by comparing
our results for random impenetrable spheres to the rela-
tively few calculations of gz for other microstructures.
For Bruggeman's' symmetric effective-medium approxi-
mation (EMA), gz

——Pz for spherical grains. Recently,
Milton '2' has shown that the EMA is exact, after certain
limits have been taken, for a class of granular aggregates,
such that there is no correlation between the location of
the two types of grains and that grains of comparable size
are well separated. Milton ' also has noted that this class
of two-phase media is related to Miller's symmetric-cell
materials for which gz is also equal to Pz for spherical
cells. These materials are constructed by tessellating
space into cells of various shapes and sizes, with cells ran-
domly and independently designated as phase 1 or phase 2
with probabilities P] and Pz, respectively. The three-point
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FIG. 1. Three-point parameter gz for three periodic arrays of
spheres (Ref. 23) [simple cubic (sc), body-centered cubic (bcc),
and face-centered cubic (fcc)j, fully penetrable spheres (Refs. 6
and 24), the class of models corresponding to the EMA, and the
random impenetrable-sphere model calculated here.

parameter has also been determined for periodic arrays of
spheres and for fully penetrable spheres ' " (i.e., random-

ly centered spheres).
In Fig. 1 the three-point parameter gz is given as a

function of Pz for (i) three cubic arrays of spheres (up to
Pz very near the close-packing values), (ii) fully penetrable
spheres, s' s (iii) granular materials corresponding to the
EMA (which is equal to the one for symmetric-cell ma-
terials), and (iv) the equilibrium distribution of impene-
trable spheres studied here. Recall that the deviation of gz
from 0 and 1 is a measure of the microstructural differ-
ences between the model of interest and the Hashin-
Shtrikman CSA geometries in which phase 2 and phase 1

are the dispersed phases, respectively.
Note that for all the models depicted in Fig. 1, gz is a

monotonically increasing function of Pz with gz ——0 at

Pz ——0. For general dispersions, gz(Pz ——0) depends only
upon the shape of the inclusion ' and hence is indepen-
dent of the size distribution.

Torquato has shown that the slope of gz at Pz
——0,

gz(Pz ——0), for dispersions depends not only upon the
shape of the inclusion but upon the zero-density limit of
the radial distribution function gc(r), which can be writ-
ten as a sum of the zero-density limits of the pair-
blocking gc (r} and pair-connectedness go+(r) functions.
(The pair-blocking and pair-connectedness functions are
the probability densities associated with finding two
sphere centers, separated by a distance r, not belonging
and belonging to the same cluster, respectively. ) More
precisely, gz(Pz ——0) depends upon multidimensional in-
tegrals possessing positive integrands proportional to
gc(r)=gc(r)+gz+(r). Unlike the case of random im-
penetrable spheres for which go(r)=gi'i(r), both gc (r)
and gc+(r) are nonzero and positive for fully penetrable

spheres. It is for this reason that gz(Pz —0}for the former
(0.21068) is smaller than the corresponding slope for the
latter (0.56146). Similarly, since for a dilute dispersion of
random impenetrable spheres (Pz «1) the second sphere
relative to the first occupies all allowable positions with
equal probability [i.e., gc(r)=go (r) is equal to unity if
r &2a and zero otherwise, where a is the sphere radiusj
and for periodic arrays of impenetrable spheres
go(r)=go(r)=0 for r less than distances of the order
aPz ', then gz(Pz ——0)=0 for periodic arrays since

aPz
' »1. Hence, because the impenetrable particles of

periodic systems are well separated at low sphere concen-
trations, the expansion of gz through first order in ((lz for
these models is equal to that of the CSA model in which
phase 2 is the dispersed phase. Although the microstruc-
tures of the family of models corresponding to the EMA
and the fully penetrable-sphere inodel are characterized by
a high degree of "randomness, " the former, unlike the
latter, is composed of grains with a distribution of sizes
such that grains of comparable size are well separated.
This difference will clearly be refiected in gc(r) and

gc (r) for these two cases and presumably is the reason
why gz(Pz ——0) for the EMA is larger than gz((('iz ——0) for
fully penetrable spheres. These two-body correlation
functions for EMA geometries have yet to be determined,
however.

It is interesting to note that gz for the EMA is exactly
linear in Pz and hence is completely determined by the
zero-density limits of the pair-blocking and pair-
connectedness functions. Moreover, gz for fully pene-
trable spheres is nearly linear over the entire range of Pz.
It is noteworthy and perhaps significant that the percola-
tion threshold occurs at Pz

———,
' for the EMA models (in

which phase 2 is the perfectly conducting phase) and at
Pz-0. 3 for fully penetrable spheres. In contrast, for the
models involving equal-sized impenetrable spheres (i.e.,
random and periodic systems), the percolation thresholds
occur at the respective close-packing sphere volume frac-
tions where gz is a maximum. Unlike regular arrays of
spheres, gz for random impenetrable spheres is approxi-
mately linear for 0&biz&0. 4. It is apparently exclusion-
volume effects present in the random and periodic ar-
rangements of impenetrable spheres that causes gz to
sharply rise as Pz approaches its close-packing value.

IV. EVALUATION OF BOUNDS
ON THE CONDUCTIVITY AND BULK MODULUS
OF A DISPERSION OF IMPENETRABLE SPHERES
Third-order bounds on cr, and on K, are evaluated for

a distribution of equal-sized random impenetrable spheres
in a matrix for 0&gz&0.6 using the results summarized
in Table I. It is useful to first comment on the general
utility of bounds when the phase property values widely
differ. For the case of conduction, all nth-order lower
bounds (where n is finite) tend to zero as a~0 and all
nth-order upper bounds tend to infinity as a~oo, where
o, =o.2/o. &. Similarly, for the elasticity problem, all nth-
order lower bounds tend to zero as Gz/Gi ~0 (i.e., when
phase 2 is a void phase) and all nth-order upper bounds
tend to infinity as Gz/Gi ~ ao (i.e., when phase 2 is infin-
itely more rigid than phase 1). This does not mean that
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bounds cannot be employed to estimate o„however. For
example, Torquato' has recently observed that lower-
order lower bounds (such as second-, third-, and fourth-
order bounds) should yield good estimates of cr, /cr~ for
a »1, provided that Pz is below its percolation-threshold
value and the mean cluster size of phase 2, At, is much
smaller than the scaled characteristic length of the com-
posite sample I.. For periodic arrays of spheres and for
an equilibrium distribution of impenetrable spheres, the
condition that Az «L is satisfied for all Pz, except at the
close-packing or percolation-threshold value for such sys-
tems. Similarly, lower-order upper bounds should provide
useful estimates of o, /cr, for n »1, provided that Pz is
above its percolation-threshold value and A~ g~L, where
A& is the mean cluster size of phase 1. The accuracy of
the lower-order bounds of course will improve as n in-
creases. Analogous statements apply as well to bounds on
E, .

For example, even though lower-order upper bounds on
K, become very large when phase 2 is highly rigid relative
to phase 1 (Gz»Gt), lower-order lower bounds on K,
should yield good estimates of K, for this case, provided
that Pz is below its percolation-threshold value and that
Aqg&L, . Similar statements can be made regarding the
utility of lower-order bounds for dispersions in which
oqggcr& and Gq ~~GI.

We first consider evaluating the third-order bounds on
the effective conductivity of suspensions of impenetrable
spheres. The most interesting cases for the conduction
problem occur when the spheres are more conducting than
the matrix (a & 1). (For the opposite case of nonconduct-
ing impenetrable spheres in a matrix, the effective con-
ductivity is insensitive to the details of the microstructure
and hence the simple Maxwell result or, equivalently, the
HS upper bound provides an excellent estimate of o in
such cases. ) For most values of a and Pz, the Milton
lower bound (2.6) is only marginally better than the Beran
lower bound (2.1). When both a and Pt are large, howev-
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FIG. 3. As for Fig. 2 with t)it ——0.5.

er, the Milton lower bound is appreciably sharper. For
example, when a= ec and Pz

——0.6 for the random distri-
bution of impenetrable spheres studied here, (2.1) and (2.6)
yield the lower bound on o, /tr~ equal to 6.96 and 7.69,
respectively.

Figures 2 and 3 compare the second-order HS bounds
on cr, /cr, to the Beran upper bound (2.1) and the Milton
lower bound (2.6) for an equilibrium distribution of im-
penetrable spheres in a matrix for 1 &a& 100 at Pq

——0.2
and Pz ——0.5, respectively. For finite a, it is seen that the
third-order bounds, which include information about the
three-point probability function S3 for the model as em-
bodied in gz, always improve upon the second-order HS
bounds, which do not incorporate this information. Most
of this improvement is due primarily to a dramatic im-
provement of the upper bound, rather than the lower
bound. For low to moderate sphere concentrations, the
third-order lower bounds are sharp enough to provide

20
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= l0.8

IO-
e Q

o,

I

5 IO 2O
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FIG. 2. Upper and lower bounds on the reduced effective
conductivity o, /a~ for the range 1 & a &100 at Pq=0. 2.
HS (Ref. 8) bounds; ———Beran (Ref. 2} upper bound (2.1}
and Mi)ton (Refs. 4 and 5} lower bound (2.6) for the random
impenetrable-sphere model. Here, a =o~/o. l.

0
0.0

FIG. 4. Upper and lower bounds on the reduced effective
conductivity o., /ol as a function of the sphere volume fraction
Pz at a=10.8. HS bounds; ———Beran upper bound
(2.1) and Milton lower bound (2.6) for the random
impenetrable-sphere model. Solid circles are Turner*s data (Ref.
29) for a fluidized bed of equal-sized impenetrable spheres.
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FIG. 5. As for Fig. 4 with a =160.

good estimates of cr, /o i when the particles are two orders
of magnitude more conducting than the matrix phase.
When the sphere volume fraction is large, the third-order
bounds are not as restrictive; nonetheless, they provide
useful estimates of the effective conductivity for the range
1&a&100.

Figures 4—6 show the Beran upper bound (2.1) and the
Milton lower bound (2.6) on cr, /oi for our equilibrium
impenetrable-sphere model for a=10.8, 160„and ae,
respectively. Included in these figures are the HS second-
order bounds and Turner's measurements of the reduced
electrical conductivity o, /crt of a fluidized bed of equal-
sized impenetrable spheres. It is not fully clear whether
the static and random distribution of impene-
trable spheres implied by an equilibrium distribution of
such spheres is a good model of a fluidized bed of im-
penetrable spheres for all P2. However, we are not aware
of any better data available for comparison to the model
examined here for the wide parameter range of interest.

The third-order lower bound rather than the third-order

25
20

IO

FIG. 7. Upper and lower bounds on the reduced effective
bulk modulus E,/Ei for the range 1&a(100 at Pi ——0.2.

HS (Ref. 9}bounds; ———BM (Ref. 3) bounds for the
random impenetrable-sphere model. Here, x =Kq/K&,
y~ ——G~ /K~ ——0.6, and y2 ——6&/K2 ——0.6, and hence
P=Gi/6] =K. On the scale of this figure, the third-order lower
bound is indistinguishable from the second-order lower bound.

upper bound provides the best agreement with Turner' s
experimental data for the three cases depicted in the fig-
ures, as expected. For a = 10.8, Fig. 2 shows that
Milton's lower bound is in excellent agreement with the
measured conductivity values. Although the correspon-
dence between the third-order lower bound for our model
and the fiuidized-bed data is not as close for the cases
a= 160 (Fig. 3) and a = ao (Fig. 4), the lower bound does
yield a reasonable estimate of the measured values, the
greatest discrepancy occurring at very high sphere concen-
trations. The largest deviation is expected to occur when
both a and P2 are very large since the effective conduc-
tivity is most sensitive to the details of the microstructure
for this parameter range. However, the discrepancy be-
tween the third-order lower bound and the data in such
cases can also be due to two other important factors that

4Q-
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2= 0.6
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"~ 20-
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IQ-

0
0.0 0.2 Q4 0.6 0.8

FIG. 6. As for Fig. 4 with a=00. Turner's data is for
a=14400. The second- and third-order upper bounds do not
appear here since they become infinite in the limit a~ Oo.

0
I IO 20 50 IOO

FIG. 8. As for Fig. 7 with P& ——0.5.
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FIG. 9. Upper and lower bounds on the reduced effective
bulk modulus IC, /IC~ as a function of the sphere volume frac-
tion at «=Ez/K~ ——10 and P=G2/G~ ——10. HS bound;
———BM bounds for the random impenetrable-sphere model.
Here, y~ ——y2

——0.6.

FIG. 10. As for Fig. 9 with «=P=50.

ing the third-order bounds is due generally to a significant
improvement of the lower bound, rather than the upper
bound.

we have already discussed. First, it is not wholly clear to
what extent a fluidized bed is well represented by an
equilibrium model. Second, the use of the superposition
approximation to compute gz is expected to underestimate

gz (Ref. 16) and hence underestimate the third-order lower
bound.

Fourth-order lower bounds on o, of course should pro-
vide an even better estimate on the effective conductivity.
Indeed, a highly accurate expression for the conductivity
of dispersions in which Az ppL has recently been derived

employing a rigorous fourth-order lower bound on cr,
' .

We now turn our attention to the evaluation of the BM
bounds on the effective bulk modulus for suspensions of
random impenetrable spheres. It is useful to define the
following parameters: «= Xi/E i, P=Gq /6 i,
y, =Gi/Ki, and y2

——Gi/Ki. Only three of these ratios
are independent since «y i

——Py2. Moreover, because

y =(3—6v)/(2v+2), where v is Poisson's ratio and
0&v&0.5, then 0&y &1.5.

In Figs. 7 and 8 we compare the second-order HS (Ref.
9) bounds on E, /Ei to the third-order BM bounds for an
equilibrium distribution of impenetrable spheres in a ma-
trix for 1(«=P(100 at P2 ——0.2 and 0.5, respectively.
These bounds are also given as a function of the sphere
volume fraction for «=P=10 and «=P=50 in Figs. 9
and 10, respectively. In all of these four cases

y, =yz ——0.6. The behavior of the third-order BM bounds
for random suspensions of impenetrable spheres relative
to the second-order HS bounds on K, /K& is qualitatively
similar to the behavior of the third-order bounds on cr,
for this inodel relative to the corresponding second-order
HS (Ref. 8) bounds.

Results corresponding to Figs. 7—10 for the cases in
which the particle phase is less stiff than the matrix phase
are not presented here. It should be noted that in these in-

stances, however, most of the improvement derived in us-

V. CONCLUSIONS

In general, it is desirable to relate the effective property
of a composite material to its microstructure; one then
can relate changes in the microstructure quantitatively to
changes in the bulk properties of the medium. Apart
from a few special cases, however, the infinite set of sta-
tistical functions that characterize the microstructure (i.e.,
the n-point probability functions S~, Si, . . . , S„, n~oo)
is never known. Rigorous bounds provide a means of es-

timating the effective property using limited micro-
structural information on the composite. The bounds ex-
amined here require not only the volume fraction P2 but
an integral gq which depends upon Si. For the model of
an equilibrium distribution of impenetrable spheres, the
third-order bounds on cr, and K, are found to be restric-
tive enough to yield good estimates of the bulk properties
for the entire range of Pz, even when the phase property
values differ by as much as two orders of magnitude.
Moreover, when the spheres are highly conducting or rig-
id relative to the matrix, the third-order lower bound on
the respective effective property provides a reasonable es-
timate of it for a wide range of Pi.

We are currently in the process of obtaining analogous
results for the effective shear modulus. Moreover, we
shall also compute third-order bounds on the conductivity
and elastic moduli of the two-dimensional analogue of the
model studied here (i.e., random distribution of impene-
trable disks).
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