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Critical exponents, amplitudes, and correction to scaling in nickel measured
by neutron depolarization
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The magnetic induction 8 was measured vrith a precision better than 2X 10 T around the phase
transition in a temperature region from T, —20 K to T, +15 K in fields below 1550 A/m. An

asymptotic value equal to 0.390(3) was found for the critical exponent P. An effective critical ex-

ponent y,ff ——1.315(15) is given in the range 5&10 &t &2g10 . Four critical amplitudes and

one correction to the scaling amplitude are reported.

I. INTRODUCTION

The ferromagnetic-paramagnetic phase transition in
nickel has been studied by several authors since the first
measurement of the magnetic induction 8 around the crit-
ical temperature T, by Weiss and Forrer in 1926.'

Critical exponents derived on the one hand by fitting ex-
perimental data to asymptotic power laws were assumed
to be valid near T, along suitable thermodynamic paths.
On the other hand, the analysis of (B,H, T) data (H is the
magnetic field, T is the temperature) to "scaled equations
of state" have been performed to yield the critical ex-
ponents. The reported values for the exponents P and y,
defined by

8,(T)=t~, X=t r

(8, is the spontaneous magnetic induction, X the suscepti-
bility, and t=

~
T T, ~/T, is the —reduced temperature),

are in most cases located around 0.37—0.39 and
1.28—1.35, respectively. These values deviate slightly
from P=0.365 and y=1.387 calculated for a three-
dimensional (3D) Heisenberg system. '

Since the experimental data are outside the asymptotic
critical region, correction-to-scaling terms should be con-
sidered in the analysis. ' ' The existence of correction
terms has been seen experimentally in the phase transi-
tions of fluids. ' The observation of these small correc-
tion terms in magnetic systems is hampered by the fact
that most experimental methods for measuring P are not
precise enough. Only Mossbauer experiments in iron gave
some information about the correction term. 's However,
the reported universal P and P,tr's show some inconsisten-
cies.

Recently, it was demonstrated that the neutron depolar-
ization technique, applied to ring-shaped samples with
vanishingly small demagnetization factors, is a very sensi-
tive method for measuring 8 in ferromagnets. ' In form-
er neutron depolarization experiments on nickel, a value
for the exponent P could be derived from the measured
depolarization 8, 5 (8, is the spontaneous magnetic in-
duction) within 1 degree close to T„where the mean
domain size 5 was shown to be constant in that tempera-
ture range. ' ' The analysis of the field-dependent mea-

surements was hampered by the depolarization caused by
demagnetizing fields. The high resolution in 8 below
2X10 T, achieved in the experiments presented here,
permits the measurement of 8 in the close vicinity of T,
independent of the external field H. The fields applied
are on the order of a few hundred A/m.

In this paper we aim to determine the asymptotic value
of the exponent P and to give a close estimate of the
correction terms to scaling in the asymptotic power law
which describes the temperature dependence of the spon-
taneous magnetic induction B, just below T, .

Secondly, we aim to check the increase of the exponent

y, tr while approaching T„observed from analyzed data
of a "perturbed angular correlation" experiment within
t &4X10 . The latter experiment gives, so far, the only
data available in this small reduced temperature range just
above T~.

Thirdly, the lack of experimentally determined values
for critical amplitudes, which are needed to test predicted
universal amplitude ratios, has motivated us to derive am-
plitudes from our data without using any equation-of-
state analysis.

II. EXPERIMENT

The neutron depolarization experiments were per-
formed on a pure (0.99997) polycrystalline nickel ring
(outer diameter of 16 mm, inner diameter of 10 mm,
d =3 mm), which had been annealed for 60 h at 1050 K
to reduce present internal stresses.

The magnetic induction 8 was derived from the total
angle of Larmor precession y, that a polarized neutron
beam experiences during traversal of the sample. Figure
1(a) shows the geometry of the neutron depolarization set
up used. ' The magnetic induction B is given by
8 =y, /cd with c =y/v, where y is the gyromagnetic ra-
tio of the neutron, v is the velocity of neutrons. The angle

q, is determined from the directly measured x and z com-
ponents D~ and D~, respectively, of an incident beam
polarized parallel to the x axis by

D
y, =tan +2&Pl
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FIG. l. {a) Principal geometry and system of reference in the
neutron depolarization setup. The shaded area indicates that
part of the ring traversed by the neutrons. P is the polarization
vector of the neutron beam. {b)Example of a measured depolar-
ization element D versus temperature. The physical meaning
of D is visible in Fig. 1{a).

8(T) could be determined within 0.01 K and it was as-
sumed to correspond to the value of T, . Figure 2 shows a
measurement at H= 8 A/m. Adjacent data points in that
measurement differ by about 0.01 K in temperature. In
larger fields the phase transition smears out and the "defi-
nition" of T, becomes more difficult. One way to obtain
r, is to fit the data both below and above the phase tran-

sition to asymptotic power laws (1) with T, as an adjust-
able parameter. The comparison of the T, 's obtained
from such fits gives some indication of the precision in
the value of r, . This standard method was applied by us
to neutron depolarization data for iron. ' However, as is
well known, slightly different values of T, give fits of
nearly the same quality with somewhat different values of
the critical exponent and amplitude. To avoid this prob-
lem measurements of 8(H) along isotherms were per-
formed at a few temperatures around T, (Fig. 3). In these
experiments a magnetic field of triangular shape in time
with a frequency of one cycle per sec was applied periodi-
cally to the sample and the neutron intensity, which deter-
mines D and D, was counted in time channels syn-
chronized to the applied field. ' This sort of measure-
ment will be referred to as "quasistatic". It will be noted
that each data point 8(H) represents an average value in
an interval ~. In this way the temperature in the experi-
ments with larger fields was calibrated to those in lower
fields and T, could be determined with an error below
+0.01 K in all the measurements up to 1550 A/m.

n counts the multiple rotations of the polarization vector
P [see Fig. 1(b)]. The 8 resolution achieved in our experi-
ments on nickel was better than 2& 10 T.

The temperature of the sample was measured within
0.01 K. The long-term drifts in temperature were below
0.025 K/24 h. More details are reported elsewhere. ' The
maximal field strength that could be applied was about
1550 A/in. Stray fields at the sample position were below
10 A/m. Measuring series at a given field strength were
performed by continuously decreasing and successively in-
creasing the temperature with a constant change of r
versus time. Each data point 8(T) equals an averaged
value over a temperature interval hT, determined by the
chosen temperature change with time and the required
resolution in 8. The latter is determined by the counting
statistics.

The quantity hT amounts from 0.01 to 0.05 K in our
measuring series. Typical cooling (heating) rates in a
series were about a few 0.01 K/min. All data points of
the decreasing and increasing temperature run were con-
sistent within 0.02 K.
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B. Paramagnetic phase

The singularity of the initial susceptibility above T, is
characterized by the exponent y:

X=G+r "'"

III. EXPERIMENTAL RESULTS
AND DATA ANALYSIS

A. Critical temperature

The magnetic induction 8 was measured at different
field strengths between H= 1 and 1550 A/m in a tem-
perature region from T, —20 K to T, +15 K. In the
measurements with H (20 A/m the point of inflection in
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FIG. 2. Magnetic induction 8 versus temperature measured
at different field strengths. The arrow indicates T, and was
determined from the inflection point in the measuring series at
0=8 A/m.
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where 6+ is a critical amplitude. The susceptibility is de-
fined by X=8m/BA with m identical to the magnetic in-
duction normahzed to the spontaneous magnetic induc-
tion 8, at zero temperature [8,(T =0)=0.65 T], and h

identical to the magnetic field H normalized to
ks T, jn~ ——1.21&(10 A/m for nickel (ns is the magnetic
moment per atom).

First, isotherins 8(H} were measured at different tem-
peratures close to T, (Fig. 3). From these measurements a
lower bound in the reduced temperature of about 5 X 10
was found, above which m is linearly dependent on h for
H & 1550 A/m and m jh is a good measure of the initial
susceptibility. Least-squares fits to Eq. (2} were per-
formed on the data in the reduced temperature range
5X10 to 2X10 at a few field strengths H between
390 and 1550 A/m. The upper bound t=2X10 111

temperature and the minimum field strength of 390 A/m
were chosen to keep the relative error in rn below a few
percent.

All fits within the above T region yielded values for y,ff
between 1.30 and 1.34 with a mean value about 1.315.
The qu:mtity 6+fr amounts to 1.40(3).

C. Ferromagnetic phase

Including the first-order correction to the scaling, the
temperature dependence of the ordering parameter m near
the phase transition is given by

m =hri'(1+at a), (3)

with b, a and p, h as two critical amplitudes and two criti-
cal exponents, respectively. Effective critical exponents
obtained by fits of data 8 (T}in a finite T region near T,
to a simple power law

t&.a (4)

are related to the asymptotic value p by

I I { ( }
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FIG. 3. Magnetic induction 8 versus magnetic field 8 at dif-
ferent temperatures around T, .

p,rf=p+ab, t a, (5)

to be 1.52(2) [see Fig. 4(b)]. ( ),„denotes an averaging in
the reduced temperature range under investigation.

with t a mean reduced temperature of the covered T re-
g1on.

To derive the spontaneous magnetic induction 8,(T)
from the measured 8(T,H) one has to consider two
corrections. First, a field induced induction 8 of
paramagnetic origin has to be taken into account.
Secondly, the presence of magnetic anisotropy causes the
measured 8 to be below B„with B approaching B, only
in fields much larger than these anisotropy fields.

From the constant slope of 8 versus the external field
plot at H & 150 A/m, with the data along the (T, —0.44
K) isothem (Fig. 3), we estimate a critical amplitude
Gerr-0. 41(4). The critical exponent y below T, was as-
sumed to be identical with the one found above T, . The
measured m was corrected for this paraeffect by subtract-
ing G,grt h. Despite this correction, the data used to fit
Eq. (4) were limited to those obtained below T, —0.7 K
(t=1.1X10 ) in order to restrict the correction in 8
below 2% at the maximum temperature in the highest
external field used. Moreover 8(H} looses its linearity
with H upon approaching T, so that the applied correc-
tion becomes invalid.

The strength of anisotropy fields present was derived
from a study of the law of "approach to saturation" and
will be discussed in detail elsewhere. In this way we
could extrapolate the measured 8 at the different field
strength to obtain a value of 8, with an estimated error
below 2% at the lowest temperature. It is evident from
Fig 2tha. t 8(T,H=390 A/m) is already close to satura-
tion (&8/8, &2%) above T, —12 K. Within 1 K below
T„ the anisotropy fields are much smaller than 150 A/m,
and this justifies attributing the change in 8 with H at
H & 150 A/m to paraeffects. On the other hand, paraef-
fix:ts are negligible below T, —2 K at fields below 550
A/m, and 8 (H) is dominated by anisotropy fields.

The data from different measuring series with field
strengths between 390 and 1550 A/m were fitted to Eq.
(5). The least-squares fits were performed in different T
regions to obtain the change of p, rr with t [Fig. 4(a)]. It is
evident that p, fr increases on approaching T, . The rather
similar change of P,rr with t analyzed from measuring
series at different field strengths, gives support to the
proper choice of the applied corrections to B. The best
least-squares fit of p,rgt) to Eq. (5) yields an asymptotic p
of 0.390(3) and a correction to the scaling amplitude
a = —0.42(4). The errors in p and in the quantity result
from the uncertainty in T„possible errors in the applied
corrections to B, and the standard deviation obtained in
the fit. The value 5 was kept at 0.55 calculated for the
three-dimensional Heisenberg system. ' The change of b,

with the dimension of the order parameter is small for
three-diinensional systems' and the effect on the value of
p is within the quoted error.

The asymptotic value of b was derived from'
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D. Data near the critical isotherm

On the critical isotherm, h (m) is given by

h=Dm im i

' (7)

with D and 5 as a critical amplitude and critical exponent,
respectively. The critical exponent can be calculated from
the found p and y to be 4.38(6), using the scaling relation
5=1+y/p. Data of m and h with t&1.5X10 5 were
obtained from the temperature series. From these data a
value of D=0.32(10) was estimated for H&390 A/m.
The error is caused by the uncertainty in both 5 as well as
in T, . To get reliable data of h(m) on the critical iso-
therm by a "quasistatic" measurement was impossible be-
cause of small temperature drifts during the measuring
time of a few hours needed to perform such a measure-
rnent.

The data above T, + 0.06 K, including those outside
the "linear" h(m) region, were transformed to the re-
duced quantities m =m/t~ and h =h/t'~+"'. The nearly
linear relation between rn and h/m (Fig. 5} shows that
the scaling function is well approximated by
h =f(m)=c&m+cim, with ci ——0.72(3) and ci
=0.92(10). It will be noted that in comparison with data
obtained at fields about 1000 times larger, the value of ci
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FIG. 4. (a) Effective critical exponent p~t versus reduced

temperature t (see text). The errors in the data account for the

uncertainty in T, and possib1e drifts in temperature. [The same

is valid in Fig. 4(b}]. Dashed lines denote the result of least-

squares fit to Eq. {5}.{b) Effective amplitude b,tt versus t. The

symbols have the same meaning as in Fig. 4(a). Dashed lines

denote the result of least-squares fit to Eq. (6) with fixed param-

eters 6=0.55, a = —0.415, and only one fittable parameter b.
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FIG. 5. Plot of m against h/m for data obtained in
measuring series at three different field strengths. m =m/t~
and h =A/t~+~ are the reduced order parameter and the re-
duced field. The error bars of data paints indicate the effect of
a shift of 5 mK in the value of T, .

agrees quite well while the value of cz found here is about
a factor of 2 larger. Data were used from measuring
series at H above 236 A/m. Data obtained at smaller
fields were excluded because m can be measured with a
small relative error only very close to T, at these small
field strengths and the reduced quantities m and h be-
come very sensitive to the choice of T, in that case.

IV. SUMMARY AND DISCUSSION

All critical quantities obtained in this study are summa-
rized in Table I and compared with theoretical calcula-
tions for the 3D Heisenberg system, which is assumed to
be the universality class that describes best the critical
behavior in nickel.

The value of 0.390(3) found for P in nickel is well above
that calculated for the 3D Heisenberg system, 0.365(1).'

The effective exponents p, tt's found in our study are in
agreement with most values obtained from the analysis of
other data in corresponding temperature ranges. ' ' '"
Our analysis shows that correction terms to the scaling
are present. These correction terms cause the experimen-
tally found p,tt's to be below the asymptotic value p in the
case of nickel.

Due to the small absolute values of 8 above T, for
fields H& 1550 A/m, the exponent y could only be de-
rived with a relatively large uncertainty. The possibility
of obtaining data in very small external fields makes an
extrapolation of m (h) data to zero field unnecessary for
y eld ng a mneme of the imtid susceptibility. io li The
value for y,tt=1.315(15}is based upon data within a re-
duced temperature range t (2/10, which was accessi-
ble up to no~ only by a perturbed angular correlation ex-
periment in the small-field region. The data of the latter
experiment indicated an increase of y,~ upon approaching
T, at t &4X10 to perhaps a value of 1.387(1) for the
30 Heisenberg system. Our data do not corroborate this
effect, and the value of 1.315 is within the limits of error,
in excellent agreement with the analyses of data in a wider
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TABLE I, Critical exponents, amplitudes, and amplitude ratios in nickel. Explanations and defini-
tions of the symbols used are given in the text. All amplitudes are based on a magnetic induction nor-
malized to 0.65 T and a magnetic field normalized to 1.21' 109 A/m.

This work

Results of scaled
equation of state analysis

on nickel taken from Ref. 21
Linear mode Modified MLSG

y
b

6.+

6
D

6+&'-'D
6+/6-

0.390(4)
1.315(15)
1.52(2)

—0.42(4)
1.40(3)
0.41(4)
0.32(10)
1.8(5)
3.4(4)

0.365(1)'
1.387(1)'

1.23,1.33
0'

0.38
1.35
1.5

1.5
0.38
0.29
1.7
3.9

0.38
1.33
1.4

1.3
1.1
0.29
1.4
1.3

'Reference 12.
First value is calculated from a high-temperature series; second value by e expansion (Ref. 21).

'Reference 23.

temperature region and at much larger fields ((y )
129 135) z

Using zero-order results for universal ratios of correc-
tion amplitudes, ' a correction amplitude of about —0.5
can be estimated which results in a difference of 0.006 be-
tween y,tr at t= 1 X10 and the asymptotic value and,
hence, cannot be resolved within the low-field region.

The four derived critical amplitudes b, G, G, and D
allow one to calculate two universal ratios G+/G and
Rz G+ b s 'D——. The values quoted in Table I agree well
with those obtained by a scaled equation-of-state analysis
of the Weiss-Forrer data for the linear model, however,
they depart from the values obtained by the application of
a modified Missorl, Levelt Seilgers, aiid Gl'cell (MLSG)
equation of state to the Weiss-Forrer data.

The calculated values of Rz ——1.23 (high-temperature
series) and 1.33 (e expansion) do not contradict the experi-
mental value of 1.8(5). The amplitude ratio G+/G is
theoretically predicted to be zero for systems with n )2

(n is the dimension of the order parameter), but the ratio
found experimentally is significantly different from zero;
this may be due to the effect of dipolar interactions. 25

V. CONCLUSIONS

The (B,H, T) data presented have a higher precision
than those reported by other methods so far and more-
over, they are located closer to the asymptotic region.
The accessibility of data in the region of low fields allows
one to get reliable data of the initial susceptibility without
applying nonlinear extrapolations to zero field.

Our experimental data give clear evidence for the ex-
istence of a correction term to the simple power law
m =br close to r, in nickel. An increase of yeff to the
3D Heisenberg value with T~T, is not observed.
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