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The overall zero-field susceptibility f of a finite-sized spherical model of spins under various

antiperiodic boundary conditions is reexamined with a view to explaining the finite-size effects of an
algebraic nature found recently by Singh and Pathria. The cause of this "unexpected" behavior at
temperatures above the bulk critical temperature T, ( oo ) is seen to lie in the spatial variation of the
local susceptibility which, on averaging over the system, leads precisely to the effects found previ-
ously. Below T, ( 00 ), the influence of antiperiodic conditions is even more severe, in that not only
are the finite-size amplitudes for J modified but, for the local susceptibility, new exponents also ap-
pear.

I. INTRODUCTION

In recent papers, ' hereafter referred to as I and II,
Singh and Pathria have derived explicit expressions for
various thermodynamic functions of a spherical model of
spins on a hypercubical lattice, of size Li X XLd
with 2 & d & 4, under both periodic and antiperiodic
boundary conditions. The expressions thus obtained were
found to be in full conformity with the Privman-Fisher
hypothesis on a finite system, of volume L~, near the
bulk critical temperature T, ( oo ). Subsequently it was

shown that for a system in general geometry L" X oo

where d'+d'=d and d'&2, these expressions conformed
equally well to a generalized form of the aforementioned
hypothesis which extended its validity to all temperatures
below T, (m).

An integral part of these investigations was to study the
limiting behavior of the scaling functions governing the
various quantities of interest in different regimes of the
temperature variable t (=[T—T,(ao)]/T) and thereby
deduce the precise nature of the finite-size effects appear-
ing in the system or the manner in which the actual physi-
cal quantities pertaining to the system approach their
standard bulk behavior as L~oo. For t&0, the ap-
proach turned out to be through power laws if d' was less
than 2; for d'=2, however, exponential behavior was
found instead. For t )0, on the other hand, the approach
was generally exponential, except for the surprising
behavior of the zero-field susceptibility of the system
under antiperiodic boundary conditions which displayed a
finite-size effect determined mainly by the surface-to-
volume ratio of the lattice. To be precise, the overall sus-
ceptibility (per spin) of a system with d =3 under these
conditions turned out to be

X(LJ,T)= 1— 1 1 1+ +
P2

+— + +4 1 1 1

~ls3 3233

6 1 + 8'(L i,L2,Li )
~ P&7273

where yl's are the thermogeometric or scaled length pa-
rameters of the system,

yj = , NJ V p= ,—LJlp (NJ =—LJla; j=1,2, 3); (2)

here, p( =a lv p) is a measure of the correlation length in
the given system, N'(Li, Lz,L3) denotes terms decaying
exponentially with the LJ., while other symbols have their
usual meanings. In view of the fact that, for t)0 and

LJ~ ao, the yj are directly proportional to the L&, this re-
sult portrays the existence not only of "surface" effects
but of "edge" effects and "corner" effects as well. Cus-
tomarily, such effects are regarded as foreign to both
periodic and antiperiodic boundary conditions and are ex-
pected to appear only in the case of free (i.e., Dirichlet)
boundary conditions. To discern the true cause of this
"anomaly" and to examine its consequences for the gen-
eral problem of susceptibility in a finite system under an
tiperiodic boundary conditions constitute the main pur-
poses of the present comm. unication.

The basic point to emphasize here is that, while in zero
field the system is translationally invariant under both
periodic and antiperiodic boundary conditions, in nonzero
field this invariance is retained only for periodic boundary
conditions and is broken for antiperiodic ones; this makes
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the local susceptibility in the latter case a function of the
space coordinates r .It can then be argued that, while the
difference between the local susceptibility X(r;LJ ) and the
corresponding bulk limit X(r; 0o } would be exponentially
small (at least for t & 0), the difference between the ouerall
susceptibilitp

X(rI,LI ) —= (s(rl))
1

S f1 S P1
H=0

1

and the corresponding bulk limit X( Oo ) may well be alge-
braic in nature. To see this more clearly, we may refer to
Fig. I which shows a one-dimensional situation in an en-
semble environment, with the antiperiodic boundary con-
dition

s(i +XI )= —s(i)

imposed on the spina of the system. The zero-field local
susceptibility X(r I,'L I ) may then be derived from the stan-
dard formula

the»gn convention on the spins s, ,sz, . . . , sl, with no ef-
fect on the zero-field free energy of the system —the appli-
cation of an external field H converts the "seam" into a
local inIIomogeneity in the lattice since spins on opposite
sides of the seam are, in effect, coupled to the field in op-
posite senses (relative to their preferred local alignment).
It now follows from relations (6) and (7) that a number of
terms in sum (5) cancel in pairs and, apart from a minor
end effect arising as k~ —,'(%1+1), we are left with the
expression

1
rl —1

X(rl', Ll)= „ k= —i)+I
(s (r l )s (r I +k) )

1
rl —1

G(0)+2 g G(k)
8 k=1

G(0) ( '(1))
ksT ksT ksT ' (9)

thus, X(rl,L l ) turns out to be a monotonically increasing
function of r I for 1 & r I & —,

' (N I + 1). For the special case
r~ ——1, which corresponds to a "corner" of the lattice just
at the antiferromagnetic seam, we have the simple result

where H is the magnetic field which acts uniformly on all
spins. Now, in view of condition (4), the correlation func-
tion (s (r I )s (r', ) ) must satisfy the relations

which is independent of the interaction parameter J.
Next, in view of the symmetry of the lattice, we must
have

(s(ri)s(NI+ri —k)) = —(s(rl)s(rl —k)) = G( X(r„LI ) =X(E,+1 r„L,), — (10)

(6)

provided 1&rl & p(&1+1) and rl & ~k
~

& I(&1+1)
whereas, under the same restrictions,

(s(rl)s(rl+k)) =+G(
~

k
( ) .

Physically these relations refiect the fact that although the
"antiferromagnetic seam" introduced into the lattice at
r I EI by the con—dition (4) has no local effects in a strict-
ly zero magnetic field —indeed, the "seam" may be moved
to any other position in the lattice, merely by changing

so that, for rl & —,'(%1+1), X steadily decreases (as a
mirror-image of the first half } until we reach the other
"corner" of the lattice, r, =XI, where X has exactly the
same value as at r1 ——1.

We now observe that, since the correlation function
G(k) is significant only for k less than (or of order) g, the
correlation length in the system, the susceptibility func-
tion X(rl,'L, ) varies significantly with rl only so long as
ri is less than (or of order) g. For rl »g, X essentially
levels off to a limiting, "long-distance" value, X&(LI),
which may differ from the corresponding bulk limit only

X(r(, L))

-2 Qg
-I I N, -2

/
/

, N +I N, +5

N, +2

FIG. 1. Schematic diagram showing the local susceptibility g(rI, LI) in a one-dimensional chain as a function of rl under
alltlperlodlc boUlldary coildltlolls.
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by exponentially small terms. The space dependence of X,
however, will lead to an overall result of the form

X(L i ) =X (L i )[1 0—(g/L i ) ]

=Xb~k[1 —«O'L
1
)+@'«i ) l

It is now very plausible that an extension of the foregoing
argument to three dimensions will lead to a result of the
form (1). Clearly, no such effects are expected in the ease
of periodic boundary conditions where, in place of (4), one
has s (i +Ni ) =+s (i).

In Sec. II we present an exact formulation of the quan-
tity X(r;LJ ) for a spherical model of spins under
antiperiodic boundary conditions and examine the one-
dimensional situation, Li X aoe ', in complete detail.
The general geometry, L X oo, is considered in Secs.
III and IV. It turns out that, while for t p0 the physical
nature of the space-dependent function X(r;LJ ), and hence
of the overall function X LJ ), is precisely the same as out-

lined above, the corresponding results for t &0 are affect-
ed even more seriously. This is essentially due to the fact
that the correlation length g in the latter regime assumes a
macroscopic value; as a consequence, the effects explained
above now prevail throughout the system, are no longer a
simple correction to the corresponding bulk results, and
affect not only the amplitudes of X(r;L/) and X(LJ ) but,
for r «L~, the various exponents as well.

II. LOCAL SUSCEPTIBILITY g(r;I.) )

UNDER ANTIPERIODIC BOUNDARY CONDITIONS

Using the framework of Barber and Fisher, we can
readily show that for a partially infinite system, with
periodic boundary conditions imposed in the directions in
which the system is infmite and antiperiodic boundary
conditions in the dirtx:tions in which it is finite, the local
susceptibility X(r;L~ )[—=8(.s (r) )/BH] in the limit of zero
field is given by

X(r;LJ ) =
ff sin[it(nj+ —,

'
)(2rj —1)/NJ ]/sin[n(nj+ —,

'
)/N&]

1 j=l
X

ugN, '"' /+4 g sin [m(nj+ —,
'

)/NJ]

[nj ——0, 1, . . . , (NJ —1)], (12)

where r=(r„. . . , r&, ), while other quantities have their

usual meanings; in the sequel, the lattice constant a will
be set equal to unity, so that NJ =LJ. The parameter P, a
measure of the correlation length in the system, is de-
fined by the relation

X(L, )=
2J gN, '(")

d~

ff cosec'[m(n + —, )/N ]
j=1

(()+4 g sin [n(nj+ —,
'

)/Nj]

(() =(A,/J) —2d, (13) (15)

N)

g sin[aj(2rj —l)]=sin (aJNJ)/sina~,
rJ =1

(14)

with the result

where A, is the usual spherical field, and is determined by
the constraint equation of the system; see„ for instance,
Eq. (26) of II. For obtaining the overall susceptibility,
X(LJ ), from Eq. (12), we make use of the formula

%'e thus obtain

(r =1,2, 3, . . . ) . (16)

as in Eq. (63) of II.
To render Eq. (12) into a more tractable form, we fol-

low the procedure developed in earlier work, ' supple-
menting it with the formula

r —1

cos(2xk) =sin[(2r —1)x]/sinx
k= —r+1

d~

X(r L, )= f e-""'~"g g ( —1)'
0 j=1 q. = —oo

[e I„(x)] dx,

where vJ=NJqj+kj and I„(z) is the modified Bessel
function. The special case d' = 1 can be handled straight-
forwardly; see the Appendix. For P « 1, the resulting ex-
pression can be written in the scaled form

N i cosh(yi —z& )
X(r„Li)= 2

1—
8Jy 1 coshy 1

for ri, N»&1,
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X (L, ) = (1—sechy~ }= (1—
sechy ),

which may be compared with the standard bulk result

1X(ao)=

(20)

For small z, , on the other hand, the local susceptibility
approaches the asymptotic "short-distance" form (indicat-
ed by a subscript & ) given by

Ni2 P'j

X((r, ;Li)= zz) tanhyi —— tanhy ),

where, as before,

yl 2 +1~4 2 L I /e zl r 1 ~0 "I/4

In the limit as zi —my i (i.e., r, ~ ,
'

N—i), the local suscepti-
bility (18) approaches the "long-distance" value (indicated
by a subscript & ), viz. ,

On averaging over the lattice, this leads to an overall
reduction, in X, of order (1/y, ). The cause of the "anom-
aly,

" at least for d' = 1, is thereby explained.
In passing we observe that, while g &, the long-distance

local susceptibility, is proportional to {t
' and hence to

t ~, the short-distance local susceptibility diverges as

X(-t ' (r, fixed), (28)

and

N)
X(ri,L, )= sinz'i, X&(Li)=

2 Je 2mzJe
(29)

where y( ——y —v; in writing this result we have made use
of the fact that the variable z, in this regime is simply
r, /g and is therefore proportional to t". Thus, the
short-distance local susceptibility X((ri,'L, ) is not only
much smaller in value than the long-distance local suscep-
tibility X&(Li },but is also less singular.

(ii) t&0, Li~oo. Here yi- —6/4, with the result
that

(22)
X)z(

X((ri',Li)= 2
(z'( «1),

2m Je
(30)

which applies close to the antiferromagnetic seam where
r, «Ni. Note that the ratio of the short-distance to the
long-distance local susceptibilities is

X((r, ;L, ) /X & (L i ) =z i eoth( —,
'
y, ) .

where

l( —y i)l'"= (31)

X(L()= X(z, ;yi )dzi —— 1—tanhy
&

(24)

The overall susceptibility, X(Li), can now be obtained
straightforwardly from Eq. (18) as

while (for LJ =L)

I [(3—d)/2]
(d &3),

4m ix)
/ (32)

—,
'

exp( —4m
~
x,

~
) (d =3),

in agreement with Eq. (72) of II.
We shall now examine these results in different regimes

of interest.
(i) t &0, Li~ ao. Here y~ is of order Ni and hence is

much greater than unity. We then obtain

2 N)2
X(r»Li)= 2(1 —e '), X&(Li)= z (25)

8Jy i SJy ~

and

X)zi2

X((ri,Li)= i (zi «1);
8Jy I

deviations from the corresponding bulk results are in this
case exponentially small, as indeed one expects under
antiperiodic boundary conditions. The overall susceptibil-
ity, however, turns out to be

X(Li)= 2
1— (27)

the deviation from the corresponding bulk result is, evi-
dently, now algebraic. The reason for this, hitherto
"unexpected, " behavior is now clear—it arises from the
fact that the local susceptibility X(r, ;L, ) is significantly
less than the long-distance value X&(Li) unless z»&1.

in which xi C,L" t—a——generalization of the fmite-
size scaled variable, proportional to L'r"t, introduced by
Privman and Fisher. The overall susceptibility is now
given by

2X(Li)= i =—X (Li),
m3Je

(33)

X -L ', with g =g—1 (ri fixed) . (34)

(iii) In between regimes (i) and (ii) lies the "core" region
where ~x,

~

=0(1). The value of yi in this region has
generally to be determined numerically. For d=3, how-
ever, the constraint equation is sufficiently simple to yield
an explicit expression for y& in terms of x&, namely

yi(xi) =cosh '( —,
'

e '); (35)

see, for instance, Eq. (60) of II. This enables us to evalu-
ate the quantities listed in Eqs. (18), (20), (22), and (24) as

which implies a significant reduction below the limiting
value X . Once again, we observe that the short-distance
local susceptibility g& is not only much smaller than the
long-distance value 7&, but is less singular as well; thus,
while X & diverges as L ~ (when L ~ ao ), with
/=2/(3 —d), one finds
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explicit functions of L, and t over all regimes of interest,
including the "core" region. Thus, at the erstwhile criti-
cal point (t=0), we obtain

9W12

X(r„L,)= 2cos ——(z', ), —1
8 2J 3

2'(L )X(r;L )=F(z )

oo z= f e-"pe& ' du
2 u

& 1 (zj r~ [——P(L& )]'~ ),
9%1

X,(Li)=
Sm J (36) which may be compared with the corresponding bulk re-

sult, viz. ,

9~3%i (z j ),
X,(ri,Li)=, [(zi), «I],

Sm J
where

(z i ),=, [(—y i ),]' (3g)

The overall susceptibility is now given by

X(I., )=, (3~~—~)= X,(L, ),3v3 —m

Sm J (39)

which again represents a significant reduction below the
bulk value. We also observe that, while the long-distance
susceptibility X& in this region varies as L, the short-
distance susceptibility X& (for fixed r, ) diverges only as
L '. We now proceed to examine the situation in a general
geometry where d' may exceed unity.

III. LOCAL SUSCEPTIBILITY IN A GENERAL
GEOMETRY FOR t ~0

We start with Eq. (17) and, on the basis of our experi-
ence with the case d =1, observe that for t&0 and

LJ~ a& terms with qJ+0 give rise to exponential correc-
tions only; terms with qj

——0, on the other hand, lead to
corrections which may in the end turn out to be algebraic
instead. Concentrating on the latter, we write

l
ge r —1

X(r;LJ ) = f e "~ '~ ff g [e "Ik,(x)] dx.
j=1 k =—r+1J J

av yg
0 2 u

2V u yjn
( 1 erfct)dt-

y. 0J

2v'(u /m )

3'j
(46)

2JP(ao)X(m)=l .

In view of the fact that in this regime (where yj »1)
the difference between the quantities P(LJ) and P(ao ) is
exponentially small, the influence of antiperiodic
boundary conditions on the susceptibility of the system is
mainly determined by the function F(zj ). For zj »1, i.e.,
for rz »g, the function F(z/) approaches unity, which
means that the local susceptibility X(r;LJ) is essentially
equal to its limiting value X& (LJ ) which, in turn, is prac-
tically the same as the bulk value X( oo }. If, however, one
or more of the zj happen to be less than (or of order) uni-

ty, the corresponding factors in the integrand will reduce
the value of E(zJ ) below unity. For instance, points near
the "surface" of the lattice, where only one of the ri (say,
r, ) is less than (or of order) g, will lead to an overall di-
minution in X of order g/Li —1/yi. Those near the
"edges" of the lattice, where two of the rj (say, r, and rz }
are less than (or of order) g, will lead to an overall effect
of order g /LiL2 —1/y, y2. And, finally, for those near
the "corners" of the lattice, where all three r& play a de-
cisive role, the effect will be of order g /L iL2Li
—1/yiyzyq. Accordingly, the overall susceptibility X(L~ )

of the lattice will indeed be of the form shown in (1). For
a quantitative assessment of this effect, we may average
over r right away and obtain

Now, making use of the asymptotic results

er —v /2x
I„(x)=

27rx

r —1 —k2/2xe " ~~=i/2nx erf
k= —r+1

where erfz is the well-known error function, we obtain

d fj
X(r;L ) = e -""'~*g erf ' dx4J o, &2x

or, in scaled form,

Substituting this result into (44), we get
40)

2'(L )X(L )= f e "g 1 — du,
0 . y.

whichfor ,d' =3, leads precisely to Eq. (1). Algebraic ef-
fects in the overall susceptibility of the system, which ap-
peared as "surface" effects, "edge" effects and "corner"
effects in the lattice, are thus fully accounted for.

For an analysis of the short-distance local susceptibili-
ty, X & (r;Lj ), for zj « 1, we make use of the relation

erft—= e "du- te ' (0&a&1),
'tr

and the integral'
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' v/2
00 Sx" 'e '/ dx =2 — K„(2v st ),0

(49)

where K„(z) denotes the second modified Bessel function,
to obtain

z, (d'=1), (50)

where cz and cz are constants. One may at this stage ex-
amine the t dependence of X& which enters through the
parameter {t]. On invoking a critical exponent y&, as
in (28}, we find from (50} that X& varies as {t]-t "+"-t " '" for d'=1 but, from (51), as

y-'g 'lng-r &+'"in(1/t)-ln(1/F)

for d'=2, so that one is tempted to conclude generally
that

y (d'&d) .

For d'=3, this would lead to an expected dependence of
the form {(} 'g whereas the actual result shown in (52)
is of the form P 'g which, in the present model, is t in-
dependent! The resolution of this dilemma lies in the fact
that the term appearing in (52) belongs to the nonsingular
part of X& while the singular part is determined by the
next higher-order term in P: a short calculation yields

(S4)

T

Z122 12'(LJ )X & (r;Lj ) ~ In +cz (d' =2),
zl+z2

(51)
c3z]zzzp/(z ] +zz +z3 )'/ (d' =3)

(S2)

which indeed conforms to the relationship (53).
The case d'=d is, however, special. While Eq. (53)

now seems to suggest y = —2P= —1, a detailed exam-
ination of the case d'=d=3 shows that the leading
singular term in X& is not of the form t ' but is rather of
the form t . This may be understood in terms of the ar-
guments presented in the Introduction, according to
which the leading singular term in X& for d'=d should,
in view of the role played by the correlations G(r, r'), be
of the form t ', i.e., t

The "corner" site (rj =1, all j}presents a rather excep-
tional situation: Eq. (12) yields

X(1;LJ) = 1 1

d'
2J ff NJ ' /+4 g sin [m(n~+ —,

'
)/NJ]

[X(1;LJ)]d,
8

(56)

in perfect agreement with (9). The specific influence of
G(r, r') shows up as soon as any of the r 's exceeds unity,
and the temperature dependence of X(r;Lj ) then changes
qualitatively.

IV. LOCAL SUSCEPTIBILITY IN A GENERAL
GEOMETRY FOR t g0

For a study of the situation with t &0 and LJ~ oo, we
go back to Eq. (17) and employ the asymptotic expression
(41) and the Poisson identity

(55)

For d'=d, the sum appearing on the right-hand side of
(SS} is exactly the same as the one appearing in the con-
straint equation of the system: see Eq. (26) of II. This
fact leads to

J J, ,q —]vz(q +e )z/2x V 21rx —2/xr n +(1/2}]2/N2( —i) e ' ' ' = cos 2ir(n + —)e ]eJ 2 J 7

gJ = —Ce J n= —ceJ
(57)

to obtain

X(r'L )= I e
4J J n= —oo k =—r)+1J

(58)

The summation over kJ and the integration over x can be readily carried out, with the result

X(r;Lj)= 1 00

X
2J AN,

"J

g sin[a(nj + —,
'

)(2rj —1)/N&]/sin[a. (nj + —, )/N )

/+4' g (nj+ —, ) /NJ
j=l
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X(r;LJ ) = 1 4
m'

siiizj
j=l

p+ir g (1/lilj )

(60)

where

zj =r««I/lief (j = 1, . . . , d') . (61)

This now leads to the following results.
(i) For d =1, the previous expression (29) is precisely

recaptured, thus confirming the derivation presented in
Sec. II.

(ii) For d'=2 (and N, =lil2), one obtains

2N ~SInz ~sInz2
X(«i,«2) =

Jn (y2+W/2)

which, in terms of the scaled variable x i, reads

(62)

Since P in this regime is very close to its minimum value

g. ( I/NJ ), the leading behavior of X(r;LJ ) is deter-

mined by the most dominant terms in the sum, viz. , the
ones with nj ——0 or —1. We thus obtain, for «/»1,

tures above T, (00 ). To achieve this end, we have carried
out a detailed study of the local susceptibility X(r;LJ ) of
the system whose variation in space is seen to be respon-
sible for the algebraic corrections in the oue«all suscepti-
bility X(LJ). For T & T, (oo), this variation is significant
only over short distances, of order g, from the antifer-
romagnetic "seams" in the system; accordingly, the main
effect in X turns out to be a correction behaving as g/LJ,
which is clearly algebraic in nature. For T &T,(oo),
however, the infiuence of antiperiodic boundary condi-
tions turns out to be more severe because the spatial varia-
tion of X(r;LJ) now extends throughout the system. A
qualitative difference nevertheless exists between "long-
distance" regions with «J =0 (LJ ) and those with «J «L/,
i.e., close to the seams. While in the former the manner in
which X approaches 1ts standard bulk behavior, as
L,&~00, remains the same as under periodic boundary
conditions, viz. , as L, with (=2(d —d')/(2 —d'), and
only its amplitude is modified, in the latter the manner of
approach is also modified: X(r,L), at fixed r, diverges

only as L ', with g &
——g—d '.
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2N ~ s1nz ~ SInzz 4—d
X(«i,«2)=

2
2m ~xi

~

/I
Jm3
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8N I slnz
), s1nzz s1nz 3
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Ji«'(y 2+ 3i«2/4)

8N ) s1Ilz ) s1Ilzzsinz3
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APPENDIX

X i«~xi ~/I
5— 2/| 5 —4)

(64)
To evaluate X(«, ;L i ) from Eq. (17) in the special case

d'= 1, we first integrate over x, using the formula'

With each sinzJ replaced by its average value 2/m, Eqs.
(63}and (64} yield expressions for X which are in complete
agreement with Eqs. (93) and (95) of II. It is now
straightforward to see that for zJ =0(1) one has X(r)-L&,
with (=2(d —d')/(2 —d'), but for zJ « 1, one obtains

X((r)-L ', with g( ——g —d' («J fixed) . (65)

p +
(&2 p2)1/2[&+(&2 p2)1/2]vf e I„(Px)dx =

(a&p, v& —1),
and obtain

X(«i,'Li)=
2J(co —1)

In the special case d'=d, the leading behavior of the
short-distance susceptibility X & (r) is smn to be L-
independent. It is then probable that terms with nj ——0
and —1 are no longer dominant, in which case 7 & cannot
be determined from Eq. (60) as such. One must then go
back to Eq. (59) and assess the contribution of terms with
nj+0, —1 as well. This would entail an even more com-
plex analysis of the problem than presented here.

X g ( —1)'
kl ———r)+1

where

pi=(1+ —,$)+ —,i/Q(4+4 }

—IX,q, +k, ~

QP

(Al)

V. CONCLUDING REMARKS
Carrying out the summations over k& and q&, we obtain
the exact result

The main purpose of the present investigation has been
to demonstrate how finite-size effects of an algebraic na-
ture arise in the susceptibility of a finite-sized spherical
model under antiperiodic boundary conditions at tempera-

X(«i,Li)=
( pi+ 1)(~ '+ 1)
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As expected, X(ri,L, ) is symmetric about the point
—,
'

(lit'2 + 1).
Zy]For P «1, we have to=1+2/P, whence to =e and

to '=e ', where y i ———
2' Xi Wp and z i r& v——p. Equation

(A3) then assumes the scaled form

2

X(ri,'Li)= (1—e '), (A5)

It is important to note that, for y»~1, this reduces to

cosll(yi —zi )
X(ri',Li)= 2

1—
8Jy 2& coshy

&

(ri,Ni ))I) .

(A4)

which follows directly from (Al) by retaining only the
term with q) ——0.
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It follows that

P(L) —P( oo )
(('i( ao )

2d'ml/2

4 —d
2

2$( oc2 )

L

' (d —1)/2
—L/g(tN )e 7
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To see this, we refer to the constraint equation of the system,
which is given by Eq. {45)of II, and note that, for y &&1, the
function

W(v
~
d;y) = 2d K„—(2y)/y"= d "n'/2e—~~/y "+'/2

&& 1 .

A comparison of the given (finite) system with the corre-
sponding bulk one, both at a common fixed temperature
T & T,{00 ), then gives

[y( )]Id —2)/2


