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Pressure-induced electronic and structural phase transitions in solid hydrogen
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Possible induced electronic and structural phase transitions in solid hydrogen are studied using a
unified theoretical approach —the local-density total-energy full-potential linearized-augmented-
plane-wave method —which has the precision to treat the highly anisotropic Pa3 molecular phase on
the same footing as the monatomic close-packed phases. The pressure-induced metallization by
band overlap and bond length relaxation within the Pa3 structure of molecular solid hydrogen is
described and discussed; the calculations predict an insulator-to-metal phase transition at 1.7+0.2
Mbar. At a much higher pressure of 4+1 Mbar, a structural phase transition takes place to a mona-
tomic metallic hcp phase with a high superconducting transition temperature.

I. INTRODUCTION

The possibility of a metal-insulator phase transition in
solid hydrogen at high pressure has been the focus of con-
siderable research ever since %'igner and Huntington' pro-
posed that a structural transition from a diatomic molecu-
lar phase (which is the stable phase at normal conditions}
to a monatomic metallic phase might occur. Obviously,
in order to obtain reliable information about the existence
of this transition, a careful study of the thermodynamics
of both phases should be performed. Only then will it be
possible to predict the structural transition pressure and
the corresponding equation of state. The accuracy of
most previous theoretical investigations of the electronic
structure, however, was limited because different approxi-
mations had to be invoked for the diatomic and mona-
tomic phases, because of the large difference in crystal
structure of molecular and atomic hydrogen. In this pa-
per we report the results of our unified approach for both
crystal structures and a precise comparison establishes the
existence of the structural phase transition.

Diatomic molecular solid hydrogen has a number of
features which are different from those of other molecular
solids. Most importantly, the rotational motion of the
isolated molecules is not suppressed even in the solid be-
cause of the small moment of inertia. Because of this ro
tational degree of freedom, molecular hydrogen appears in
two different modifications, parahydrogen and orthohy-
drogen, which have even ( 1=0) and odd ( 7= 1) rotational
quantum numbers, respectively. The stable ground state
is para-H, but the energy difference from ortho-H is only
170.5 K ( —1.1 mRy or 15 meV}. At low temperatures,
ortho-H shows an order-disorder phase transition in
which the long axis of the molecules align along specific
crystalline directions. Much work was devoted to this
orientational ordering in the past decade in an attempt to
understand the phase transition and ground-state struc-
ture. It is generally accepted that the ordered ground
state of ortho-H has a Pa3 space-group structure with
four molecules per unit cell (see Fig. 1). The molecular

centers are located on the sites of an fcc lattice and the
molecular axes are oriented along specific body diagonals.
This configuration has the lowest energy for a three-
dimensional arrangement of J=1 molecules interacting
through electric quadrupole-quadrupole (EQQ} interac-
tions. Parahydrogen, which has a spherically symmetric
distribution of molecular axes, is also expected to have an
orientationally ordered phase at high pressure due to the
increased effect of anisotropic molecular interactions. We

FIG. 1. Pa3 structure and its z~ irreducible Brillouin zone of
molecular solid hydrogen. a is the lattice constant and 2D is the
molecular bond length.
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therefore assume the structure of static diatomic molecu-

lar hydrogen to be Pa 3.
Our theoretical approach to investigate the structural

transition is to calculate the total energy of both phases
using a very precise local-density band-structure method.
The structure of Pa~ molecular hydrogen is very anisotro-
pic in contrast to the case of monatomic metallic hydro-
gen. For a precise description of the charge density in
this open, anisotropic structure, a full-potential band-
structure method (in which no shape approximations to
either the density or the potential are made) is essential.
We performed total-energy calculations for both diatomic
and monatomic solid hydrogen using our full-potential
linearized-augmented-plane-wave (FLAPW) band-struc-
ture method within the local density approximation
(LDA). Since in the FLAPW method the large anisotro-
pic molecular interactions of molecular hydrogen can be
treated precisely, a direct and consistent comparison of
the total energies of both phases is possible. Combining
the results for monatomic metallic hydrogen, which were
reported in a previous paper, and the results for the elec-
tronic structure and total energy of diatomic molecular
hydrogen (as studied in this paper), we arrive at a con-
sistent description of the structural and corresponding
metal-insulator phase transitions between the two phases.
We also investigate the pressure-induced metallization by
band overlap and bond relaxation within the Pa& structure
of molecular solid hydrogen. A similar transition is ob-
served5 in the comparable molecular solid Iq. It should be
kept in mind that our band structure and total energy cal-
culations are done at T=O. Thus we investigate, in this
paper, the Gibb's free energy without the inclusion of the
entropy contribution; this latter can, in principle, be in-
cluded later on for the complete description of phase tran-
sition.

The methods we have used are briefly presented in Sec.
II, and the results of our band structure and total energy
calculations for molecular solid hydrogen are given in Sec.
III. Structural transitions are discussed in Sec. IV and, fi-
nally, we give a discussion and summary in Sec. V. Nu-
merical details are found in the Appendix.

II. METHOD

For the band-structure calculations of molecular solid
hydrogen, we use the self-consistent FLAPW method in
which one makes no shape approximations to the poten-
tial or the charge density. For convenience, the unit cell is
divided into two distinct regions of space in a standard
way by surrounding the atomic nuclei with so-called
muffin-tin spheres. The potential (and charge density) in
the two regions is expanded in spherical harmonics and
plane waves, respectively:

V(r) = g Vi (r) Y~ (7) (inside spheres)

= g V(G)exp(l G'I') (iilterstltlal) .
6

The introduction of inuffin-tin spheres is a purely numeri-
cal construction which facilitates the calculation because
it allows the potential (and charge density) to be represent-

ed by two rapidly converging series. If we consider only
the first terms in each series, we recover the muffin-tin
approximation. This approxiination is reasonable for
close-packed metals, but it breaks down severely in ma-
terials with an open structure like solid molecular hydro-
gen.

In solving the effective one-electron Kohn-Sham equa-
tions, we use the local density approximation for the ex-
change and correlation potential as given by Hedin and
Lundqvist. The total energy per unit cell is given by

E =pe; ——,
' f n (r) Ve(r)d r

n r V„, r —e„, r r ——,
' Z„V~ r„

(2)

where Z„, e;, and n (r) are the nuclear charge, eigen-
values, and charge density. Ve(r), V„,(r), and VM(r)
denote the Coulomb, exchange-correlation, and Madelung
potentials and e„, is the exchange correlation energy.

It needs to be re-emphasized that because all contribu-
tions to the potential and charge density are completely
taken into account in this full-potential approach, it is
possible to treat the highly anisotropic nature of the in-
teractions in solid molecular hydrogen with the same level
of precision as was done for the metallic interactions in
monatomic hydrogen. Since the FLAPW method does
not contain uncontrolled numerical parameters, i it allows
one to obtain well converged results using analytical con-
vergence rules (see Appendix). As a result, the only ap-
proximation influencing our final results is connected to
the use of the LDA itself.

III. BAND STRUCTURE AND TOTAL ENERGY

We have performed self-consistent band-structure cal-
culations on solid molecular hydrogen in the Pa& space-
group structure. The basic Bravais lattice of this struc-
ture is simple cubic with four molecules per unit cell. The
periodic potential and charge density were expanded with
up to 6043 plane ~aves in the interstitial region and with
l up to 4 (which includes 9 Kubic harmonics} inside the
spheres. The Bloch eigenfunctions were expanded with up
to 751 LAPW basis functions. In the self-consistent itera-
tions, energy eigenvalues were calculated for 80 k points
in the (—„)th irreducible Brillouin zone (see Fig. 1).

Next we consider the total energy for the ease where we
keep the interproton length 2D fixed at the free molecule's
bond length. It is this very small bond length that deter-
mines the maximum size of the muffin-tin radius. When
it is small compared with the intermolecular distance (i.e.,
when D/a small, with a the lattice constant}, the compu-
tational problem becomes numerically exceedingly diffi-
cult. This results in a lower precision of the total energy
in the low-density region. In this case, where we have a
large lattice constant, we need many plane waves to
describe proper1y the charge density and potential in the
large interstitial region. For example, we should use 5800
LAPW basis functions at r, =3.1 in order to get the same
level of precision as in the case of r, = 1.0, which is clearly
impossible. (Here r, is the Wigner-Seitz radius in a.u. ,
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characterizing the density as defined by 4mr, /3=1/n,
where n is the electron number density). On the other
hand, the dependence of the total energy on the number of
k points is minimal in this low-density region, where the
material is an insulator. The situation is reversed in the
high-density metallic region, where a very large number of
k points is required. This makes the application of the
FLAPW method to solid molecular hydrogen more diffi-
cult compared to the other molecular solids which have
larger values of D/a. Detailed convergence tests are
presented in the Appendix. As a result of this problem,
the numerical errors in the total energy in the low-density
insulating region are rather large compared with those in
the high-density metallic region. For example, while hE
is about 20 mRy at r, =3.1 a.u. , the numerical errors in
the total energy in the high-density metallic region, in
which the structural transition occurs, are less than 1

mRy, which is sufficient for our needs.
Figure 2 shows the band structure of molecular solid

hydrogen at the experimental lattice constant, r, =3.1 a.u.
The overall shape of the band structure is similar to that
of Friedli and Ashcroft. The energy gap between the
valence and conduction bands, 9.3+0.3 eV, is close to that
of Friedli and Ashcroft (9.2 eV) but is much smaller than
the experimental value or that of a Hartree-Fock calcula-
tion. ' The absorption spectrum" of solid Hi exhibits
two broad structures at about 12.5 and 17 eV; the first
peak has been interpreted as an exci.ton transition and the
latter as an interband transition. This discrepancy is ex-
pected since the LDA usually underestimates the value of
the energy gap.

The band structure at a much smaller lattice constant
(r, =1.5), cf. Fig. 3, shows the mechanism for metalliza-
tion by band overlap under pressure within the Pa3 struc-
ture. With decreasing lattice constant, the indirect energy
gap between the eigenvalues at R and X becomes smaller
and smaller until finally a band overlap occurs. Figure 4
provides the size of the energy gap as a function of r, .
Band overlap sets in at r, =1.44 a.u. corresponding to a
pressure of about 1.7 Mbar. This metallization mecha-
nism is similar to that in Iz, in which an insulator-metal

3.0

0

0.0

—l.0

FIG. 3. Band structure of Pa3 molecular solid hydrogen at
r = 1.5 a.u.

transition also occurs without structural change.
The results of our total energy calculations as a func-

tion of r, are given in Fig. 5. The minimum in the total
energy curve is located at r, =2.5(+0.1) a.u. ; the error
given is rather large due to the large numerical error in
the low-density region. Our value is larger than that of
Chakravarty et al. ' (r, =2.1 a.u.), but it is still much
smaller than the experimental value (r, =3.1 a.u.). This
large discrepancy finds its origin in the assumption of a
static crystal structure. We have calculated the band
structure of Pa& molecular hydrogen with orientationally
ordered molecular axes, whereas the real structure is solid
para-H with almost freely rotating molecules. Because of
these rotations, ground-state solid parahydrogen at nor-
mal pressure behaves like solid helium with isotropic in-
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FIG. 2. Band structure of Pa3 molecular solid hydrogen at
r, =3.1 a.u.
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FIG. 4. Band gap of Pa3 molecular solid hydrogen (energy
difference between eigenvalues at R and X}as a function of r, .
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FIG. 5. Total energy of Pa3 molecular solid hydrogen per
proton as a function of r, .
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teractions between the rotating molecules. %e can simu-
late this isotropic intermolecular j.nteraction by retaining
only the spherical term' in the multipole expansion of the
potential. In this way, we obtain the equilibrium density
r, =3.15 a.u. , which is close to the experimental value.
The total energy ( —1.047 Ry), however, is rather high in
this case, since the anisotropic interactions are not con-
sidered. This result indicates that the molecular axes of
solid para-H at normal pressure do not order and hence
that a direct comparison of our calculated quantities with
experiment at low pressures is not possible. In the follow-
ing sections we focus on the high-pressure region where
even para-H orders orientationally and where the rotation-
al degrees of freedom do not play a significant role.

IV. STRUCTURAL TRANSITIONS

A. Diatomic to monatomic transition

At high pressure we find a first-order structural phase
transition from the diatomic molecular phase to a mona-
tomic metallic phase. A coinparison of the total energies
of both phases makes it possible to predict the transition
volume and corresponding pressure. The solid line in Fig.
6 denotes the total energy of molecular hydrogen with the
value of D fixed at the molecular bond length. Since the
energy differences between the structures are very small,
we show relative energy differences referenced to the me-
tallic hcp structure which is the stable monatomic phase
near r, =1.0 a.u. Our results for the monatomic metallic
phases indicate that the simple cubic (sc) structure is most
stable in the low-pressure region, that the hcp and bcc
phases become more stable with increasing pressure, and
that the fcc phase is always the highest in energy. The
transition volume and pressure in the transition from sc to
hcp are r, = 1.25+0.05 and p -4.4 Mbar, respectively. As
expected and discussed in our previous report, the sc
structure cannot be observed due to the more stable
molecular Pa i structure and a structural transition occurs
between the Pa3 and the hcp phase at r, =1.2+0.1 a.u. ,
which is close to the transition point from sc to hcp.

In order to predict the transition pressure, we fit the
value of our total energies to the random-phase-
approximation formula for the uniform electron gas as
was done in our previous paper. However, when we fit
the energy values over the whole range of r„ it is very
hard to obtain an accurate fit. Restricting the region of r,
allows us to have an rms error of 1 mRy to our fit in the
high-density transition region. Using this interpolation
formula, we obtain the pressure and Gibb's free energy,
which are to be compared with those of the monatomic
metallic phases. Table I provides the total energy and
pressure as a function of r, in the high-density region of
the Pa& structure. The structural transition from the Pa3
to the hcp phase occurs at P =4+1 Mbar with about a
4% volume change. This transition pressure is rather
large and beyond current experimental static pressure lim-
its.

4.0—
CL
E

2.0—

TABLE I. Energy and pressure as a function of the electron
density, r, . The bond length is fixed to be that of the free mole-
cule (1 a.u. of pressure is 147.08 Mbar).
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FIG. 6. Total energy of diatomic hydrogen relative to hcp
monatomic hydrogen. The solid line corresponds to the energy
with fixed bond length {D=0.7 a.u. ) and the dashed line to the
energy with the configuration of D/a =0.2676 {see Sec. IV 8).

0.8
0.9
1.0
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Energy (Ry)

—0.178
—0.528
—0.742
—0.877
—0.964
—1.023
—1.064
—1.092
—1.113
—1.128
—1.140

Pressure (a.u. )

0.558
0.264
0.133
0.071
0.039
0.023
0.014
0.009
0.005
0.004
0.002

Pressure (Mbar)

82.0
38.9
19.6
10.4
5.8
3.3
2.0
1.2
0.8
0.5
0.4
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TABLE II. Madelung constant 0;~ for values of D/a in the
I'a3 structure. For comparison, the Madelung constants of the
other monatomic structures are also given.
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FIG. 7. Total energy of molecular hydrogen in the Pa3 struc-
ture as a function of the half bond length for different r, values.

bcc
fcc
hcp
sc
Diamond

1.791 86
1.791 75
1.791 68
1.760 12
1.670 12

B. Relaxation of the interproton bond length

Up to now we have assumed that the interproton bond
length 2D is constant as a function of pressure. It is ex-

pected, however, that the bond length changes beyond a
certain pressure due to the change in the electron distribu-
tion. With increasing pressure, the distribution of the
electrons becomes more uniform, resulting in a weakening
of the covalent bonding interactions between the protons
in a Hz molecule.

In order to investigate this effect, we performed total
energy calculations with varying bond length for certain
r, values. The results in Fig. 7 indicate that, indeed, the
bond length changes beyond a pressure corresponding to
r, =1.1 a.u. At low pressure, we are very close to the ex-
perimental hydrogen molecule bond length and this value
is stable up to r, =1.1 a.u. Beyond this density the bond
length starts to increase. We expect, however, that this in-
crease is limited up to the distance corresponding to
D/a=0. 2676, at which 2D becomes the same as the
next-nearest-neighbor interproton distance. The Made-
lung energy contribution is lowest in this configuration.
We give in Table II the Madelung constant a~ for several
values of D/a in the Pai structure. When D/a =V 3/4,
the Pa3 structure corresponds to the sc structure. Since
the Madelung energy ( as'/r, ) determi—nes the stable
structure at very high densities, the bond length will even-
tually follow the rule D/a=0. 2676 with increasing pres-
sure.

The dashed curve in Fig. 6 shows the total energy as a
function of the density for D/a=0. 2676. The intersec-
tion of the sohd and dashed curve near r, = 1.1 a.u. indi-
cates that relaxation of the bond length will start in this
region. Actually, the transition from D=0.70 to
D/a=0. 2676 is sharp as is seen in the top of Fig. S. The
calculated bond length at r, =1.0 a.u. already obeys
D/a=0. 2676 and it decreases afterwards with pressure
following D/a=0. 2676. Interestingly, near r, =0.81 a.u. ,
the equilibrium bond length with the configuration

D/a=0. 2676 is 0.7 a.u. , which is the same as that of a
free molecule. Hence the total energy curves of both con-
figurations, D=0.7 and D/a=0. 2676, intersect again at
this density, but they do not cross. As already seen in Fig.
6, the total energy of Pa3 hydrogen for fixed D has an in-
triguing structure in that the difference in energy from
the hcp values is clearly nonparabolic. These deviations
from a second-order polynomial are related to the compli-
cated variations of the distance of a hydrogen nucleus in
one molecule to hydrogen nuclei in the other molecules,
which results in an infiection point in the total energy

/ —= 0.2676a
/

a 0.8—
0-0.70 o.u.

I

0.8
I I I

l.0 l.2 l.4 l.6 r, (o.u. )

l9.4 5.8 2. 1 0.9 P (Mbor)

I I

I.2 l.4 l.«s ( o.u. )

FIG. 8. Upper panel: bond relaxation as a function of r, .
Points are computational results. The broken line represents the
bond length satisfying the relation D/a=0. 2676. Lovrer panel:
general shape of the total energy of Pa3 solid H~. The solid line
represents the total energy curve arith fixed bond length
(D=0.73 and the dashed line corresponds to the configuration
D/a =0.2676.
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near r, =0.9 a.u. The lower part of Fig. 8 shows this in a
qualitative way; we plot the total energy of the I'a3 stnlc-
ture with D fixed (solid line) and Dja fixed (dashed line).
Because the energy differences are small compared to the
overall change in total energy, these lines are indistin-
guishable as the latter scale; we therefore show this differ-
ence only schematically. It is seen that the energy with D
fixed increases with increasing pressure, and that a curva-
ture change occurs. Hence, there occurs another intersec-
tion between the two curves near r, =0.81 a.u. , in addition
to the crossing near r, = 1.1 a.u.

It should be noticed that the relaxation of the bond
length occurs for r, ~1.1 a.u. and it does not affect the
structural transition discussed in the last section. This is
clearly seen in Fig. 6 where the total energy curve for
D/a =0.2676 (dashed line) is always above the hcp values.
Additionally, at r, =1.2 a.u. our results show that the
bond length D still has the molecular value.

V. DISCUSSION

We have performed precise first-principles FLAPW
band-structure and total-energy calculations for both
monatomic and diatomic solid hydrogen in order to inves-
tigate the structural transition between these phases. As
mentioned earlier, the numerical error in the low-density
insulating region is rather large because of the very small
value of the muffin-tin radius required and the limit on
the number of basis functions, which is governed by com-
puter time and memory. The dependence of the total en-
ergy on the number of basis functions should be treated
very carefully in this region to get reasonable precision.
On the other hand, in the high-density metallic region the
dependence of the total energy on the number of k points
is much more important than that on the number of basis
functions. As discussed in the Appendix, a converged
value of the total energy is obtained using an extrapola-
tion scheme based on the analytical error behavior of the
linear tetrahedron method. This leads to a better than 1

mRy precision in the total energy in the high-density me-
tallic region. It should be mentioned, however, that the
value of the transition pressure is very sensitive to the er-
rors in the total energy and the extrapolation used. Our
total uncertainty in the transition pressure from the I'ai
structure to the hcp structure is around 1 Mbar.

Up to now we only have considered static lattices of all
phases. Due to the quantum solid nature of solid hydro-
gen, however, the zero-point motion of the protons plays
an important role in the determination of the stable struc-
ture, as discussed by Chakravarty et a/. ' A characteris-
tic of quantum solids, which solid hydrogen shares with
solid helium, is a large compressibility because the parti-
cles are not located at the minimum of the attractive po-
tential well of the neighbors, and anharmonic effects be-
come very important. Thus, an approach such as the
self-consistent harmonic phonon approximation' is essen-
tial for the study of the lattice dynamics of quantum
solids.

Phonon effects increase the overall total energies of
both phases of solid hydrogen. It is expected that the ef-
fect is larger in the high-density region in both cases, since

the energy from the proton motion is inversely propor-
tional to r, .Quantitative conclusions about the effects of
the phonons on the transition pressure can only be drawn
by including the consistent and elaborate methods of lat-
tice dynamics for both systems. The results of Chakra-
varty et al. , ' however, suggest that the corrections are
similar but somewhat larger in the diatomic phase; thus
our value of the transition pressure is expected to be an
upper bound for the real theoretical value including pho-
non effects.

There occur two different transitions at high pressure.
The first, an electronic transition, is a pressure-induced
metallization by band overlap in the diatomic molecular
phase which occurs without a structural change, and the
second is a structural transition from the diatomic to a
monatomic phase. The first is a second-order phase tran-
sition and the second is a first-order phase transition. A
molecular metallic phase exists for densities with
1.2 & r, g 1.44 a.u. It is expected that all the other molec-
ular solids, for example N2, Oz, and especially Ii, behave
in a similar way. ' The calculations on these systems will
be easier to perform than in the hydrogen system because
of the much larger values of D/a.

Bond relaxation has been discussed before by many au-
thors. ' While the general trends in our results are similar
to previous results, the density at which relaxation sets in
is somewhat different. For example, Wood and Ash-
croft' also predict that the bond length 2D will follow
the rule of Dja=0.27 in the high-density limit, but they
find that the density at which 2D increases above the
value of the hydrogen molecule is r, =2.8 a.u. In our re-
sults the molecular bond length is maintained down to
r, —1.1 a.u. Between r, = 1.1 and 1.0 a.u. , the value of D
increases rapidly and reaches the high-density prediction
at r, = 1.0 a.u.

Among the monatomic metallic structures we have
studied, the simple cubic phase has the lowest total energy
for r, p 1.3 a.u. In general, however, paramagnetic simple
cubic structures are not supposed to be stable and it is ex-
pected that the formation of either a charge-density wave
(CDW) or spin-density wave (SDW) will destroy the sym-
metry of this state. Our results indicate that in the low-
density limit, ' the antiferromagnetic sc phase has a lower
total energy and this shows the instability of the paramag-
netic simple cubic phase with respect to the formation of
a SDW in the low-density limit (r, & 3.0 a.u.). Magnetic
instabilities do not occur at the densities considered in this
paper. There are, of course, structural instabilities be-
cause molecular phases have a lower energy for r, & 1.3
a.u. In this respect it is interesting that the sc structure is
a special case of the Pai space group, with D/a =v 3/4.
Table II indicates that the Madelung contribution to the
total energy favors distortions of the sc structure which
decrease D/a. This is in agreement with a general obser-
vation for other systems that a simple cubic structure is
often unstable with respect to distortions. ' The stability
of solid molecular hydrogen indicates that in this case the
sc phase is unstable with respect to a (111)CDW dimeri-
zation, similar to the mechanism of a Peierls distortion.
Thus the simple cubic hydrogen system is an interesting
example showing both CDW and SDW phase transitions.
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0.3610
0.4981
0.7637
1.2345

—1.1746
-1.1478
—1.1346
—1.1478

AE (Ry)

0.0011
0.0002
0.0009
0.0017

TABLE IV. Extrapolation of the total energy as a function
of RK at r, =3.1 a.u. ; E =Eo+al(RK )".

The small values of the energy differences between the
different structures require a careful consideration of the
numerical parameters which affect the total energy and a
careful analysis of their convergence tests. The numerical
parameters to be checked for each system are (i) the num-
ber of nonspherical terms in the representation of poten-
tial and charge density inside the muffin-tin spheres, (ii)
the number of plane waves in the representation in the in-
terstitial region, (iii) the energy parameters which enter
into the LAPW calculations, (iv) the number of basis
functions, and (v) the number of k points in the irreduci-
ble wedge of the Brillouin zone carried in the self-
consistent cycles. In the band-structure calculations on
solid hydrogen we have found that, as usual, the most im-
portant parameters are the number of basis functions and
k points. In the following we show the effect of all these
parameters separately.

(i) Nonspherical terms. It is expected that this effect is
more important in the low-density insulating region since
the density becomes uniform in the high-density limit.
We performed total energy calculations including terms
up to 1=3 or 1=4 at r, =3.1 a.u. The number of non-
spherical terms (Kubic harmonics) is 6 for l=3 and 9 for
1=4. The change in total energy upon including terms up
to 1=4 is negligible (less than 0.1 mRy) and hence we

only included terms up to l=3 in most of our calcula-
tions.

(ii) Number of plane waves for representing the intersti-
tial potential. This parameter is chosen in such a way
that all contributions of reciprocal-lattice vectors used in
the set of basis functions are incorporated into the expan-
sion of the charge density in the interstitial region. In the
potential, however, larger lattice vectors are important,
and, therefore, the number of plane waves as defined in
the previous sentence is only a minimal value. In the case
of molecular hydrogen at r, =3.1 a.u., the use of this
minimal value of the number of plane waves still results
in an error of 156 mRy in the total energy. In the actual
calculations at r, =3.1 a.u. we had to use more than 6000
plane waves (more than 190 stars) in order to describe the

potential sufficiently accurately (errors in total energy less
than 1 mRy).

(iii) Energy parameters. These parameters, inherent to
linear band methods, ' give the values of the energy at
which the radial functions and the energy derivatives of
the radial functions are calculated. They are usually
chosen at the center of the occupied band. In the case of
solid hydrogen, the sensitivity with respect to the choice
of energy parameters is small; even when we change the
position of the energy parameters by 0.6 Ry, the total en-

ergy is changed by less than 1 mRy.
(iv) Number of basis functions. This parameter de-

pends on the ratio of the interstitial volume and the total
volume. Since this ratio is very large in the case of low-
density molecular solid hydrogen, the effects of this pa-
rameter are very important. The number of basis func-
tions is conveniently determined by the quantity RK,„,
which is the product of the muffin-tin radius and a sphere
radius K in reciprocal space. For a given point k, our
basis set includes all reciprocal-lattice vectors G with

~

G —k
~

&K . In close-packed metals good precision
for the total energy is usually obtained with RK,„&8.
The dependence on the number of basis functions at
r, =3.1 is given in Table III. Because of the small
muffin-tin radius, the dependence on this parameter is
very large and the converged value of the total energy will
be far from the results in Table III. Hence we should
have to obtain the converged value using an assumed
power-law behavior for the error as a function of RK,„,
see Table IV, such as E =Eo+a(RK,„)

The resulting variations of the total energy are very
large. For example, if we choose the average of the values
with n =3 and 4 then Eo 1.1412+0.0093—(large uncer-
tainty of —10 mRy). Hence our errors are large in the
low-density region. In contrast to this behavior, the re-
sults in the high-density metallic region at r, =1.0 a.u.
show negligible dependence on this parameter, see Table
V. Due to the small size of the interstitial region in this
case the effects are negligible. Hence sufficiently con-

NB E„,(Ry)

TABLE III. Dependence of the total energy on the number
of basis functions (NB) for solid molecular hydrogen at r, =3.1

a.u.
TABLE V. Dependence of the total energy on the number of

basis functions (NB) in high-density metallic hydrogen for
r, =1.0 a.u.

1.785
1.996
2.232
2.404
2.525

257
389
515
691
751

—1.0603
—1.0851
—1.1033
-1.1121
—1.1166

4.793
5.534
6.188
7.452

257
389
515
691

—0.6920
—0.6921
—0.6921
—0.6921
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20
40
80

rg ——3.1
E„, (Ry)

—0.9240
—0.9241
—0.9242

20
40
80

r, =1.0
E„, (Ry)

—0.7057
—0.7189
—0.7273

verged results with respect to RE are easily obtained in
the high-density region where the phase transitions take
place.

(v) Number of k points. This parameter becomes im-
portant since we employ the analytic linearized tetrahe-

TABLE VI. Variation of the total energy on the number of k
points ( Nk ) used for two extreme values of r, .

dron method for the integrals in reciprocal space, which
appear in the construction of the charge-density and the
total energy. It depends critically on the Fermi surface
topology. Hence the effects are only important in the me-
tallic phase and are small in the insulating phase. In
Table VI we show the variation of the total energy with
the number of k points for two extreme values of r, .

These results indicate that indeed the effect is negligible
in the insulating phase (r, =3.1 a.u.), while the effect is
very important in the metallic phase ( r, = 1.0 a.u.). In the
linearized tetrahedron method, the error in total energy
scales with Nk' ~ ' (Nk is the number of k points).
From this behavior of E„,as a function of Nk we obtain
a converged value of the total energy Eo ———0.7414
+0.0005 at r, =1.0 a.u.
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