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Fractal sandstone pores: Automated measurements using scanning-electron-microscope images
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An automatic technique has been developed to measure precisely the fractal dimension of the mi-

crostructure of sandstones from scanning-electron-microscope (SEM) images of fracture surfaces.

The technique involves digitizing the images, filtering, counting geometrical features as a function

of feature size, and fitting feature histograms. The magnification of the SEM is changed to cover

2.5 orders of magnitude in feature sizes. A po~er-law model, which includes the resolution of the

digital filter, accounts for the feature size distributions for all magnifications and the scaling from

magnification to magnification. Results have been obtained for a dozen sandstones, and the fractal
dimension is observed to range from 2.55 to 2.85. The precision for averaged images is +0.01. In

addition, a long-length limit to the fractal regime is defined and measured.

I. INTRODUCTION

Katz and Thompson' have proposed that the pore
spaces of sandstones are fractals, and they presented
several measurements to support their proposal. These in-
cluded manual feature-counting measurements on
scanning-electron-microscope (SEM) images and auto-
correlation measurements on thin sections. They
developed a nucleation and growth model of diagenesis,
the rock-formation processes occurring after deposition,
which could account for fractal pore spaces with different
fractal dimensions for different sandstones. In addition,
they discussed implications for the sandstone porosity and
transport properties.

We have developed an automated technique for making
SEM measurements, and a large body of data has been ob-
tained for sandstones that confirms the fractal nature of
many of the pore spaces. The technique allows the deter-
mination of the fractal dimension with high precision,
and the values agree with other methods. In addition to
the fractal dimensions which vary from sample to sample,
the long-length limit to the fractal regime has been mea-
sured. The effect of varying and averaging positions on
the sample as well as other aspects of the technique have
been investigated.

Fractal properties are often determined by measuring
the length of an interface as a function of the unit of mea-
sure. Unfortunately, the SEM intensity for a fracture
surface is not directly correlated to the surface profile,
and a length along the surface is not easily measured. In
addition, the intensity changes with particle size and posi-
tion as well as with magnification. Any method which
explicitly uses the intensity of the SEM beam, for exam-
ple, a power-spectrum measurement, is suspect. Serra
used the autocovariance to measure the fractal dimension
of clay rocks assuming the same behavior of relative in-
tensity for large and small particles at all magnifications.
This assumption is not generally valid. To avoid this
problem, we developed a statistical counting method
which does not depend directly on the SEM intensity.

We determine the number of structural features found

at the interface between rock space and pore space and
compare that number to the feature size. The edge of a
feature is defined to be a change in contrast in the
secondary-electron intensity of the SEM which results in a
local maximum in intensity. Typically, edges appear
bright on SEM images. Features represent grains or clay
particles as well as pits and bumps along the surfaces of
grains and clay particles. The feature size is the distance
between adjacent maxima. An analysis based on the
counting of features will indicate if features of a particu-
lar size dominate the pore geometry, or if there is an ab-
sence of features of a particular size.

The method chosen here for measuring the fractal di-
mension reflects the physics of interest. We are interested
in the transport properties of fluids in the pore space.
The influence of the pore wall can be characterized by
determining the number and size of geometric features
that protrude into the pore space and scatter ions or fiuid
elements in the pore space. %e envision the structure on a
fracture surface of a porous rock to be primarily associat-
ed with the pore-rock interface. This will be particularly
true for fine structure smaller than the size of a grain ly-
ing below the fracture surface. Reference 1 supports this
assumption by showing that the measured fractal parame-
ters correctly predict trends in porosity.

Katz and Thompson' treat a single horizontal scan of
the SEM beam as a line intersecting the rock-pore inter-
face. For fractal behavior, the number of features count-
ed per centimeter N(l)/cm for features of size I can be
expressed as

N(1)/cm ~1

where D is the fractal dimension and I includes all feature
sizes from I l to I2. The limits for fractal behavior I l and
I2 are expected to extend from around 10 A to 100 pm in
a typical sandstone. Beyond the long-length limit l2, the
sample appears homogeneous, and the exponent in Eq. (1)
relating the number of features to the feature size should
be equal to —1. In this regime, the geometrical features
appear as statistically random noise.
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In the rest of this paper, the technique and results will

be described and discussed. The description of the tech-

nique includes the feature-counting method, a derivation
of the model feature distribution, and the fitting pro-
cedure. The technique wi11 be evaluated including a corn-
parison of the automatic technique and other methods,
the effect of varying and averaging position on the sam-

ple, and the effect of noise and filtering on the results. Fi-
nally, data from a number of sandstones are presented,
and the confidence in the observed results is evaluated.

II. TECHNIQUE
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The technique includes image digitization, filtering,
counting features, and fitting the resulting feature histo-
gram. In this section, the feature-counting method, the
model feature distribution, and the fitting procedure are
described.

A. Image digitization

The signal-to-noise ratio and the geometrical accuracy
of the image digitization are important for a feature-
counting technique. Most commercial SEM digitization
systems either involve operating the beam at TV scan
rates with a very poor signal-to-noise ratio, or rely on TV
camera digitization of photographs which have very poor
geometrical accuracy. To overcome these limitations, we

built a SEM digitization system based on the Hewlett
Packard 9836C computer. Images were digitized in the
photo mode of the SEM; 512 points were digitized per
line, and 512 lines were digitized per image with a 12-bit
analog-to-digital ( A iD) converter. The geometrical accu-
racy and the signal-to-noise ratio of the images were limit-
ed by the JEOL 35C SEM and not by the digitization sys-

tem. The geometrical accuracy was better than 0.09%,
and the signal-to-noise ratio was better than —47 dB. A
number of images could be quickly digitized, displayed on
the cathode ray tube (CRT), and transferred to magnetic

tape or Winchester disc.
Before digitizing an image, a position was selected on

the fracture surface. This position could have been

chosen at random if many locations were being digitized.
Instead, a highly structured area was selected because it
was not feasible to collect such a large amount of data. In
particular, a position was chosen where the structure per-
sisted to the highest magnifications. To obtain the best
signal-to-noise ratio, areas were chosen with minimal re-

lief or the smallest change in average intensity for dif-
ferent sections of the image. At each location, 18—20 dif-
ferent magnifications were digitized. Each digitized im-

age was stored on a Winchester disc and output to mag-
netic tape. In the analysis, the images could be examined,
and areas could be eliminated from feature counting if
they were off the edge of the sample or were out of focus.

B. Filtering

A digital low-pass fjjter was colivolved wltli the data ill

order to establish a resolution which was uniform at all
magnifications and independent of the optics of the SEM.
This filter must be both transient free and linear phase. A
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FIG. 1. Digital filter characteristics. (a) Frequency response
showing cutoff by amplitude threshold. Impulse response is in
inset. {b) Probability of resolving a feature as a function of the
feature size.

transient-free filter is one which does not have an oscillat-
ing impulse response function; its response to a square
wave should be smooth without any overshoots. Such
overshoots added to the SEM signal would be counted as
extra features. Linear phase is required so that the time
shift for each feature does not vary for different frequen-
cies resulting in erroneous feature size measurements.

A finite-impulse-response (FIR) filter was designed
with a Gaussian impulse response which was truncated by
setting anything less than 0.5% of the Gaussian peak
equal to zero as shown in the inset of Fig. 1(a). Typically,
the Gaussian half-width was set equal to 1.75. With this
value, the filter had 11 nonzero values. One hundred lines
of the image were convolved with the filter and the
derivative of the filter to produce the filtered data and the
filtered derivative.

C. Counting features

Local maxima were defined to be feature edges. In
counting the features, care was taken not to count features
which corresponded to noise by setting an amplitude
threshold for the counting of features. The procedure for
counting features without counting noise was as follows:
The first pair of neighboring maxima and minima which
had a difference in intensity above the threshold was
found; then, the next pair was found; the distance between
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the two maxima was measured, and any pairs between

were ignored. In addition, the total dead space in the im-

age was computed so that the number of features could be
normahzed by the area measured. Dead space corre-
sponded to space between the first or last maximum in a
line and the edge of the image. In addition, the option ex-

isted to exclude poor data areas from the image.
Setting an amplitude threshold to distinguish between

signal and noise establishes a cutoff for the resolution.
Figure 1(a) is a graph of the filter response. The ampli-
tude cutoff sets a limit to the high frequencies which are
counted. However, the threshold needs to be set as a frac-
tion of the signal size at each magnification to ensure a
constant frequency cutoff. The signal size was measured

by counting the features using a constant threshold, and
measuring the average amplitude difference between
neighboring minima and maxima for features of a size
less than the cutoff of the filter. Typically, the amplitude
was measured for features of size between, -',', and, ",, of
the field of view. The threshold for the magnification
with the lowest value of the averaged amplitudes was set
at a voltage which was higher than measured noise from
the SEM such as 0.03 V (—44 dB for a 5-V signal). Then,
the thresholds for the other magnifications were set pro-
portionally to their averaged amplitudes, and the count
was repeated.

The result of the counting procedure for a number of
repetitive lines is a histogram of the number of features of
each feature size. A small bin size was used in computing
the histogram by interpolating between pixels for the loca-
tions of zero crossings and measuring feature sizes to
one-tenth of a pixel. Figure 2 illustrates the procedure for
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FIG. 2. Illustration of feature counting. (a} Digitized SEM

data for a single horizontal line. (b} Same data filtered arit
edges of counted features marked by vertical lines. (c) Histo-
gram for 100 lines with fit of histogram using Eq. (6). "P"
marks a feature in scan (b) which is not counted at this magnifi-
cation.

counting features. Panel (a) of the figure is a plot of the
intensity of the SEM beam for a single scan. Panel (b)
shows the filtered intensity, and the locations of all
feature edges which were counted. The counting of
features for a hundred such lines yields a feature histo-
gram which is shown in panel (c) of the figure.

D. Model feature distribution

in this section, the model feature distribution will be
derived based on a power-law relationship between the
number of features per unit length and the feature size,
Eq. (1). Since the measurements were made from images,
a convenient measure of the feature size is in terms of pix-
els, where a pixel is», of the image. The digitized data
are represented by a sequence of intensities I(J), where J
is a pixel ranging from 1 to 512. The feature size L for a
feature with an edge at Ji and at Ji is J2 —Ji. The width
in centimeters of the field of view for each image is 12 di-
vided by the magnification or 12/M. Thus the number of
features per centimeter from Eq. (1) becomes

N(L)/em=A (12L/512M)

where L is the feature size in pixels, A is a proportionality
constant, and M is the magnification.

The number of features actually counted N(L) in the
feature histogram is equal to the number of features per
centimeter times the probability of detecting a feature
times the distance in centimeters over which the features
are counted. We write,

N(L) =N(L)/cmP(L)R (L) (cm) .

The probability P(L) of detecting a feature of size L is
set by the digital filter, and it can be determined explicitly
by performing the Fourier transform of the impulse
response and expressing the amplitude as a function of
distance rather than frequency. The Fourier transform of
the Gaussian filter is also a Gaussian in the frequency
domain, and the gain is 1.0 at zero frequency. The proba-
bility of resolving a feature is directly dependent on the
amplitude of the filter, with the probability equal to 1.0 at
the largest feature sizes. To simulate the amplitude
threshold for the removal of noise, we set the probability
to zero for L less than the value Lo where the amplitude
of the filter becomes less than the signal-to-noise thresh-
old for the detection of features. The value Lo is the
same for all magnifications and was typically around, ",„
of the field of view. This expression works well in
describing the resolution of the counted features, but it
was more plausible to smooth the transition at I.o by us-
ing a Gaussian probability of detecting the features slight-
ly above Lo. This filter function is shown in Fig. 1(b).

The distance R(L) available for counting features of
size L is the product of the width of the field of view
times the fraction of that field of view which is unoccu-
pied by smaller features, i.e., large features are not seen if
small features on top of them are resolved. For example,
in Fig. 2(b) the particle marked as P will not be counted
as a feature at this magnification because smaller features
sitting on top of P are resolved. P will be counted at a
lower magnification. Thus R(L) can be expressed as a



33 FRACTAL SANDSTONE PORES: AUTOMATED MEASUREMENTS. . .

function of the number of features counted for sizes less

than L. The fraction of the field of view F(L —1) occu-

pied by features of size less than L is

E=L —1

zx(ro, (&)

where E is a feature size smaller than L. The function

F(L) will be called the cumulative feature distribution in
this paper. As L gets large, F(L) must become equal to
1.0. Since R (L} is the width of the field of view in cen-
timeters tiines the fraction of the field of view unoccupied
by smaller features, then

R(L}=[(12cm)/M][1 F(L ——1)] . (5)

where F(L —1) is given by Eq. (4). This expression has
only two unknown parameters, A and D. The feedback
term [1 F(L —1—)] ensures that F(L) equals 1.0 at large
L. In other words, as larger and larger features are count-
ed, the field of view eventually fills up, and fewer features
are counted. In addition, this expression shows that at
low magnifications where many small features are detect-
ed in each image, few large features are detected. At
higher magnifications where fewer small features are
detected in each image, more large features are detected.
Also, it can be seen that it is not possible to divide out the
parameter A because of the feedback. Thus A and D
must be determined together. Figure 2(c) includes a fit of
Eq. (6) to the measured histogram.

E. Log-log plots of the feature histograzns

The measured feature histograms for each magnifica-
tion can be placed on a log-log plot using Eq. (3). The
number of features per unit length is obtained by dividing
the histograms by P(L), the probability of dete:ting a
feature, and by R(L), the measuring distance. R(L),
which is defined in Eq. (5), is determined from the mea-
sured cumulative feature distributions. A linear least-
squares fit to the results demonstrates power-law behavior
and gives good starting parameters for fits of the histo-
grams themselves.

F. Fitting the feature histograms

Equation (6) was used to fit the measured histograms.
The object of the fitting routine was to determine if the
measured feature distribution could be described by a
power law over a certain range of lengths, and to deter-
mine the fractal dimension. Fits of a model to the feature
histograms have several advantages over a linear least-
squares fit to linearized data as described above. When
the data are linearized, the errors for each magnification
are inappropriately weighted in determining the parame-
ters. In particular, computing the logarithm generates a
larger error for the higher magnifications than for the

Substituting for X(L)/cm in Eq. (3), an expression for
the feature histogram is obtained:

N(L)=A(12L/512M) P(L)(12/M)[1 F(L ——1)],
(6)

lower magnifications; thus, the fit will depend inappropri-
ately on the values from the higher magnifications. In ad-

dition, the fits to the feature histograms have the advan-

tage that the parameters are adjusted to match the shape
of the curve and having too many or too few counts at
one feature size will not change the value of the fitted pa-
rameters as much as it would if all the points were linear-
1zed.

The fitting routine was done iteratively. An initial
range of magnifications was selected from log-log plots of
the data, and a single fit was done simultaneously to the
feature histograms for all the magnifications in that range
using single values of A and D. After performing the fit,
the residues (sum of the measured values minus fitted
values) for each magnification were examined. If low
magnifications which were not in the fractal regime were
included in the fit, the residues became systematically
negative. Performing repeated fits and checking the resi-
dues allowed the range of fractal behavior to be deter-
mined precisely. Once the range was determined, tests of
the errors in the fitted parameters were made by checking
the variation in the parameters as magnifications were re-
moved from the range included in the fit.

The best fit was selected by minimizing the weighted
sum over all the magnifications of the sum of the errors
squared. The magnifications were weighted so that the
magnifications with the better statistics had a greater in-
put into the fit. The weights were equal to the square root
of the total number of features counted at that magnifica-
tion divided by the square root of the total number of
features in the magnification range. The sum of the er-
rors squared for each magnification was limited to the
feature sizes which were larger than two tiines Lo, the
length at which the probability of detecting a feature be-
came larger than zero, and less than the length where the
histogram value decreased to 10%%uo of the maximum.

In order to observe the scatter in the data from magni-
fication to magnification, individual fits were also done
for each magnification. The number of features
X(L)/cm for a point L near the peak of the fitted histo-
gram was selected as representative of that magnification
and plotted on a log-log plot. The points representing
each magnification were then compared to the results ob-
tained from the simultaneous fit to all the magnifications.
Beyond the fractal regime, a line of slope —1 was fitted to
the points representing each magnification.

The results of the fitting procedure included evaluating
whether or not there was power-law behavior, determining
if there was a limit to the power-law regime, and measur-

ing that limit. The error in the fractal-dimension mea-
surement was also estimated. Additional positions could
be naturally included in the analysis by averaging the
feature distributions for each magnification.

III. RESULTS

A. Fits of the feature histogram

Figure 2(c) demonstrates how well the model feature
distribution fits the measured one. The model, which uses
only two adjustable parameters, is able to match the histo-
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FIG. 5. Log-log plot of the number of features per microme-
ter versus the feature size for novaculite. The peak in the curve
indicates that the sample is not a fractal. The slope of the so i
line is —1.
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FIG. 7. Results comparing two sandstones with extreme
values of the fractal dimension. Plus signs represent fits to indi-
vidual magnifications, solid lines are the result of simultaneous
fits to a range of magnifications, and dashed lines are lines with
slope of —1.0 which match data beyond the fractal regime.

FIG. 8. Results for a 81ackhawk sandstone showing behavior
for a single position (squares) and for the average of four posi-
tions (plus signs). {a) Log-log plot of the number of features per
micrometer with a slope of 2 —D. (b) Log-log plot of the num-

ber of features per image with a slope of 3 —D.

Results for five sandstones are shown in Figs. 7—10.
The individual points represent the fits to the individual
magnifications. The solid lines are the results of fitting
the feature distributions for a range of magnifications and
are generated from the parameters A and D. The fractal
dimensions range from 2.55 to 2.85. The dashed lines
represent lines of slope —1 which are fitted to the lower
magnifications. This is the expected behavior for magni-
fications beyond the fractal regime where the data looks
like statistically random noise. In this homogeneous re-
gime, the individual cumulative feature distributions no
longer scale as in Fig. 6, but they overlap.

The absolute values for the number of features per mi-
crometer and for the parameters A and D agree for all the
methods of analyzing the data discussed above. For ex-
ample, the log-log plots of the feature histograms such as
in Fig. 4 overlap the plots made by fitting individual mag-
nifications as in Fig. 8. In addition, the parameters A and
D determined by fitting Eq. {6) to the data are the same

parameters as the slope and the y intercept determined by
a linear least-squares fit to the log-log plots, as in Figs. 4
and 8.

IV. DISCUSSION
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In this section, the technique will be evaluated. In par-
ticular, the effect of including more positions and making

FIG. 9. Results for a Blackhawk sandstone showing the tran-
sition to nonfraetal behavior at the long-length limit.
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changes in the technique, such as using a different filter

frequency, noise threshold, etc., will be discussed.

A. Comparison of different samples

A dozen sandstones, a chalk, and a shale have been

found to be fractal from the highest magnification which

could be examined to some lower magnification. The
measured fractal dimensions ranged from 2.55 to 2.85, as

shown in Figs. 7—10. The samples include standard

outcrop rocks such as Boise, Berea, and Coconino as well

as sandstones from the Blackhawk formation from a well

near Price River, Utah. There is a large range in porosity
and permeability of the samples as shown in Table I. The
long-length limit lq, which represents the end of the frac-
tal range, can be seen as a transition from a slope that is

less than —1.0 to one which is equal to —1.0. In general,
smaller values of the long-length limit correlate with

lower values of the fractal dimension. As can be seen in
Table I, neither the fractal dimension nor the long-length
limit is related to the averaged grain size of the sand-

stones.
Log-log plots of the number of features counted per mi-

crometer are not sensitive to the scatter in the data be-

cause the data are scaled by the field of view at each mag-
nification. Figures 8(a) and 9(a) are replotted as the loga-
rithm of the number of features counted per image. In
this case, the points can be fit to a slope of 3 D, —and

points beyond the fractal regime are fit to a line with

slope of zero. The transition from the fractal regime to
the nonfractal regime is more striking on a plot like Fig.
9(b) than a plot like Fig. 9(a).

Only one sandstone, a novaculite, was found not to
have fractal behavior. The novaculite or Arkansas stone
is an unusual, clean sandstone composed of uniform mi-

crocrystalline quartz which appears to be thermally
metamorphosed. Arkansas stone is commonly used as a
whetstone. The peak in the number of features in Fig. 5

correspond to the size of the microcrystals, and the de-

crease in the number of small features is explainixl by the
total lack of clays and fine structure in this rock. At
lengths larger than the peak, the curve has a slope of
—1.0 corresponding to the homogeneous regime. Similar
behavior with a narrower distribution was measured for a
slide of I-pm latex spheres. We consider the novaculite to
be an atypical example of sandstone behavior.

B. Comparison to a manual technique

Figure 10 compares data analyzed by the automatic
technique and data for the same sample analyzed manual-
ly. The fractal dimensions measured with the two
methods agree within the statistical uncertainty of the
data. The manual results were reported by Katz and
Thompson. ' The measurement was made by placing a
scale on SEM photographs. Using the full discrimination

TABLE I. Properties of samples used in the fractal measurements.

Sample

Berea
Boise (Table)
Coconino
Navajo
St. Peter' s

Blackhawk sandstones from well

near Price River, Utah.
137.3 ft
154.8 ft
161.7 ft
169.3 ft
224.8 ft

Austin chalk
Carboniforous shale

Porosity
(%)

20
35
9.9

18
9.3

12
4.3

11.5
14.3
7.5

17

Permeability
(mD)

123
4933

0.037
246

5.15

1.8
0.02

21.7
13.6
0.02

Grain size
(pm)

190
330
120
210
140

120
100
180
200

70

Fractal
D

2.85
2.55
2.75
2.74
2.61

2.60
2.59
2.66
2.72
2.73
2.59
2.74

a

(pm)

)32
5

&50
&50

18

18
20
11
22

~50
6.3

&10

'Limits L2 marked with the ~ symbol were not seen with the SEM data. The SEM data then set a
lower bound for L&.
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of the eye, a count was made of the number of scale units

which were occupied by edges. To compare the two tech-

niques, the manually acquired data were offset by a con-
stant to match the automatic data; the offset is consistent
with the higher number of counts found for the larger
unit (histogram bin) size used by the manual technique.

C. Comparison to autocorrelation measurements

The results plotted in Fig. 8 were compared to auto-
correlation measurements by Katz and Thompson in Fig.
2 of their paper. ' The autocorrelation measurements were

made on a thin section of an epoxy-impregnated sample.
The data from the SEM measurements of a fracture sur-

face match the autocorrelation function for the smaller

length scales. In addition, their estimate of a long-length
limit to the fractal regime of about 65 pm is in agreement
with the fact that no limit was measured by the SEM
technique for this sample, an indication that the limit was

larger than 50 pm.

D. Effect of varying the position

The results for a single position on a sample are shown
in Fig. 8 along with an average of four positions. The
averaged data show less variance from the fitted line than
the data for the single position. The values of the fractal
dimension obtained do not change appreciably. The frac-
tal dimensions for the individual positions were 2.73, 2.70,
2.74, and 2.73. The averaged value was 2.73. The first
position with D =2.73 represents a best choice of loca-
tions based on the criteria given in Sec. II.

Sometimes the results from a single position are not
enough to determine whether the rock is a fractal, either
because a poor location has been chosen or because that
particular sample requires measurement of a larger area to
obtain good statistics. The resulting cumulative feature
distributions do not scale in a proper way to get a good fit
as shown by the residues. In these cases, averaging several
positions was found to produce acceptable data. The es-
timated precision for measuring the fractal dimension for
the sample in Fig. 8 with four averages is +0.01. For
only one position, it can be as good as +0.02 for a good
set of data, as shown in Fig. 9.

E. Effect of noise and filtering

If noise is counted as features, the effect is to greatly in-
crease the number of features counted at the higher mag-
nifications while only slightly increasing the number of
features counted at the lower magnifications. The result
of counting noise is to increase the measured fractal di-
inension. (White noise has a slope of —1.0 on the log-log
plots. ) To confirm that noise was not a problem, we made
measurements with two different scan speeds of the SEM;
more noise is seen at the faster rates. The two measure-
ments gave the same fractal dimension; this indicates that
the amplitude threshold is adequate to prevent erroneous
results.

The measured results are insensitive to changes in the
resolution for detecting features, changing either the filter
or the noise threshold. If the resolution is drastically

lowered, fewer features are counted: The statistics are
poor and the results are not as dependable.

F. Effects of losing microscope resolution

The smallest feature size which can be measured with
this technique is limited by the JEOI 35C SEM. At mag-
nifications above 4000)&, there is a decrease in the relative
resolution of the image. These images do not appear as
sharp as lower magnifications, and the resulting feature
histogram shows a lack of features detected at the smaller
feature sizes. At magnifications higher than 4000X the
capabilities of the SEM rather than the digital filter deter-
mine the resolution. This decrease in resolution is so sub-
stantial that merely changing the digital filter is not
enough to extend the measurement to smaller lengths.

Several additional problems are found at high magnifi-
cations. Since fewer features are counted, the statistics
are not as good. Also, it is possible to find bigger
discrepancies between images from different positions.
Finally, features at higher magnifications have poor
signal-to-noise because of the decreasing feature ampli-
tudes found at the high magnifications. Features are
small because they are frequently found on top of light
underlying objects. To get the best data requires care in
selecting the positions. If possible, extra positions at the
higher magnifications should be included.

V. CONCLUSIONS

A body of data has been collected which confirms frac-
tal behavior for the feature distribution measured along
the pore-rock interface of sandstones. These measure-
ments allow the determination of the fractal dimension
with a high precision of 0.01. In addition to the fractal
dimension, the long-length limit for the fractal regime
was defined and measured on some samples. Beyond the
long-length limit in the homogeneous regime, the data on
a log-log plot could be fitted with a slope of —1; this indi-

cates that the geometrical features appear as statistically
random noise. A short-length limit for the fractal regime
could not be determined by these measurements; it is less
than 0.2 pm, the smallest feature size which could be ex-

amined.
Most sandstones measured demonstrated fractal

behavior over some length range. The one exception is
novaculite which has a feature distribution dominated by
the size of its microcrystalline-quartz grains. The fractal
dimensions ranged from 2.55 to 2.85. The long-length
limit to the fractal regime was directly correlated with the
fractal dimension and uncorrelated with the grain size.
The lack of correlation with grain size implies that di-

agenesis and not depositional processes determines the
fractal properties.

Confidence in the fractal behavior is given by the suc-
cess of the model feature distribution in describing the
statistics for all of the feature sizes in each image. In par-
ticular, the model accounts correctly for the scaling with
magnification, which is a sensitive indicator of a power-
law distribution of features. Variance of the data from
the fitted curves is reduced with the addition of more po-
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sitions in the analysis demonstrating that the variance
arises from statistical fluctuations. Tests for errors in the
technique showed that the results are not dependent on
such factors as noise and filtering. In addition, the results
of the automatic technique agree weil with other tech-
111ques.
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