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Mean-field treatment of arbitrary anisotropic ferromagnetic spin Hamiltonians
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The solution of the infinite-range magnetization equation for arbitrary anisotropic spin Hamil-
tonians is discussed. The procedure presented is applied to the determination of the phases and
phase transitions in a family of systems involving a quadratic as dwell as a quartic anisotropy.

I. INTRODUCTION

Spin-Hamiltonians of increasing complexity keep ap-
pearing in a large variety of contexts. ' While neither
the isotropic Heisenberg Hamiltonian nor its extreme an-
isotropic counterparts, the three-dimensional Ising and
XY models, can be treated exhaustively, an impressive
number of approaches to the treatment of systems includ-
ing higher than bilinear terms in the spin operators, as
well as to certain classes of anisotropic spin Hamiltonians,
have been developed. The spectrum of methods applied to
the treatment of anisotropic Hamiltonians with multicom-
ponent order parameters ranges from Landau theory" to
the renormalization-group (RG) technique. ' '"

The significance of the Landau theory analysis was re-
cently discussed by Galam, s who pointed out that the
terms of order higher than fourth in the Landau expan-
sion, which are irrelevant in the RG sense, can give rise to
new phases and affect the nature of the various phase
transitions.

Microscopic mean-field theory, while being very close
to Landau theory in both its basic assumptions and gen-
eral consequences, differs from it by taking into account
the specific nature of the order parameters involved and
by retaining a clear distinction between the role of the
internal energy and that of the entropy. Technically, an
expansion of the entropy is avoided, so that this approach
is more suitable for a discussion of first-order phase tran-
sitions as well as second-order transitions between ordered
phases (i.e., involving large values of some components of
the order parameter). Thus, while clearly exhibiting the
difference in the form of the entropy terms in systems in-
volving order parameters of different nature (e.g., spin
systems with different elementary spins, various types of
orientational and translational ordering in liquid crystals
and of structural ordering in ferroelectrics), mean-field
formalism explicitly takes into account the fact that for
systems of a given nature the form of the entropy is in-
dependent of the concrete form of the Hamiltonian.

The equivalence between mean-field theory and the ex-
act treatment of the appropriate infinite-range Hamiltoni-
an enabled the study of spin Hamiltonians more complex
than the isotropic Heisenberg Hamiltonian. The general
isotropic spin Hamiltonian was considered in Ref. (12).
I.ee and co-workers' ' studied the static and dynamic
properties of the infinite-range auisotropic Heisenberg
Hamiltonian of uniaxial symmetry. The general anisotro-

pic Heisenberg Hamiltonian was investigated by Gil-
more. '

These studies were extended in Refs. 18 and 19 to the
general infinite-range uniaxial Hamiltonian

A =EH(s, s, ) .

Reference 18 contains a derivation of the corresponding
magnetization equation. By analyzing the possible solu-
tions of this equation it was found that three types of or-
dered phases have to be considered, namely Ising-like, in-
termediate, and XY-like. A generalization of the magneti-
zation equation to an arbitrary anisotropic spin Hamil-
tonian was derived in Ref. 20. The general infinite-range
Hamiltonian is written in the form

A =EH(s~, ss, ss),

where N is the number of particles and

The axes x,y, z are the principal axes of the tensor of coef-
ficients in the quadratic terms in the spin operators.

The magnetization equation for the Hamiltonian in Eq.
(1) was shown to be

(2)

Here, s; = (s; ) is the thermal average of s;,

. aH . aH aH

a is the elementary spin, B~ is Brillouin s function, and
P= 1 /ktt T.

In the present paper we discuss the procedure for the
concrete application of the formalism derived in Ref. 20.
A certain class of anisotropic spin Hamiltonians contain-
ing both quadratic and quartic terms is analyzed and the
corresponding phase diagrams are constructed. The types
of phases and the location and nature of the phase transi-
tions are determined. An elementary derivation of the
magnetization equation for an arbitrary anisotropic spin
Hamiltonian in the classical limit (tr = 00 ) is presented in
the Appendix.
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II. THE GENERAL PROCEDURE

The magnetization equation for an anisotropic spin
Hamiltonian, Eq. (2), is actually a set of three coupled
nonlinear equations for the spin components. The follow-

ing types of solutions are possible. (a) Paramagnetic,
s„=sy =s, =O, V, H=O. (b) Ising-like (say, z type): Only
one Cartesian component of the magnetization, s;, does
not vanish; V, H=u;BH/Bs;, where u; is a unit vector in
the direction i (c). XF-like: Two Cartesian components
of the magnetization, s; and sj, do not vanish. In general

aH aH
Sl+s~, VgH=u( +uj

Bsl Bsj.

(d) Generalized intermediate (or xyz): All three com-
ponents of the magnetization are nonvanishing.

Altogether, there are seven types of ordered phases
(x,y,z,xy,yz, zx,xyz}. For each phase the magnetization
equation enables the determination of the magnetization
components as functions of the temperature. These, in
turn, can be used to evaluate the free energy in order to es-
tablish the identity of the thermodynamic ground state for
a given temperature. In many cases involving second-
order phase transitions the sequence of phases and values
of the transition temperature can easily be determined by
the intersections of the resultant magnetization curves,
s (T), for the various phases, without explicitly evaluating
the free energy.

From Eq. (2) it follows that the resultant magnetization
s =

~

s
~

satisfies the equation

s=o8 (Pa~ V,H
~
),

which is of the same form as that for an isotropic spin
Hamiltonian, ' with

~
V,H

~
replacing dH/ds. In —addi-

tion we have in the xyz phase

Hamiltonians in Ref. 21.
For future reference we write down the equilibrium free

energy in the form

~ =H+s
[ V,H

~
k,—Tln

sinh[P ) V, H
~

(or+ —,
'

)]
sinh(P [ V,H (

/2)

III. THE GENERAL ANISOTROPIC
QUARTIC SPIN HAMII. TONIAN

The family of Hamiltonians to be considered in more
detail is of the form

H = —,
' (a,s, +a„s„+a,s, ) + ,' ( b,s, +—b„sy+b,s, )

1 22 22 22+T (Czsy Sg +Cysg Sz +Cgszsy ) .

Note that

1 BH 2 2 2~x+bxSx+ y z + z y~ '
Sz Bsz

Equation (4a), corresponding to the xyz phase, becomes

2 2 2 2 2 2az +bzsz +Cysg +Cgsy ay +bysy +Cxsg +Cgsx

2 2 2~z+bzSz +CxSy +CySx s

2 2 2 2
(9)

Sz+Sy +Sz =S

which can be solved for s„st, and s,2 in terms of s . One
obtains

which, for cr= —,', reduces to

2 =H —k&TIln2 ——,
' [(1+2s)ln(1+2s)

+(1—2s}ln(1 —2s)] I . (7)

1 dH 1 dH 1 dH

S» Bs» Sy Bsy Sg Bsg

in the xy phase

1 aH 1 aH
S, =O

s Bs sy Bsy

and in the z phase

(4a)

(4b)

2 2s; =a;s +p;, i=x,y, z

where

a =—[c„(3c—2c ) cb+c b +b—yb, ],1

1
P, =—[c,(4a, —3a) —3a,b —a c

(10)

Sz =S, S~ =Sy =0 . (4c) +a,b, +a„(b,+c,)+a,(by+cy)],

Using Eqs. (4) and the relation s =sz+s„+s, we can
express s, s„, and s, as functions of s. Consequently,

~
V, H ~, whose concrete form is different for each type of

phase, can be expressed in terms of s. Equation (3} can
now be used to determine s as a function of T. Finally,
the expressions for the spin components in terms of s can
be used to determine their temperature dependence.

We note in passing that, at least for o = —,', Eq. (3) can
be written in the inverted form

T =
[

V', H
(

ln"
I —2S

This form can enable a noniterative determination of the
magnetization curve, as mentioned for isotropic spin

Here,

a =(a„+ay+a }/3,
b =(b +by+b. )/3,

c =(c„+c„+c,)/3,
3 1 1 1+

b
+

3bx by bz 6&xcy cz+ " —(c„+c„+c,) —2b.c .
C
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3 1 1 1+ —+-
Cz Cy Cg

Note that a +a»+a, =l and P, +P»+P, =O. This
solution is relevant provided that s; &0, i =x,y,z. The
vanishing of any one of these components, say z, signals a
transition into an xy-type phase. If the corresponding
transition is of second order, this is actually the transition

—
i V,H i

=s(ys +5), (12)

point. Otherwise, the temperature corresponding to this
point is the lowest metastability temperature of the xy-
phase, the actual (first-order) transition occurring at some
higher temperature. To obtain the temperature depen-
dence of the magnetization we write

y [b byb +2c cyc (b c +bycy+b c )]x y x

5=—[(a„+a„)(c,cy b,c,—)+(a„+a,)(c»c, b, c—, )+(a,+a, )(c,c, b»c»)—1

+ a~b»b, +a»b, b, +a,b,b„(a,c,—+a„c„+a,c, )] .

Equation (3) can now be used to determine s versus T.
To study the xy-type solution we write Eq. (4b) in the

oD11

2 2
a» +bzsg +cosy =ay +bysy +czsg

$2+$2 $2

and obtain

and b &0, it follows that s, &s» &s, and that
(a —a, )/b &0 so that the condition s,2 & 0 is only satisfied
or

z 3(a, —a)
s p S~yg

For the xy solution

s„=[(b»—c, )s +a» —a, ]/6,
sy~ = [(b c)s2+a— ay ]/6, —
—

~
V, H

~

=s [s2(b, b» —c, )+a,b»

+ayb —(a +ay)c ]/b,

(14)

s 2 ay —az 2 s 2 a„—a„
$2 + y 2 y

2 2b
' " 2 2b

so that s» &0 provided that

a —a„2~ 2
zy b

h=b„+by —2' .

In analogy with the xyz solution, this solution is pmsible
provided that both s2 and s„as given by Eqs. (14) are
non-negative, the vanishing of, say, s„signaling a transi-
tion into the y-type phase. Finally, for the z-type solution

2 $2

—
~
V,H

~

=s [b,s'+a, ] .

IV. PHASE DIAGRAMS FOR ANISOTROPIC
QUARTIC SPIN HAMILTONIANS

Leaving the systematic study of the possible phase dia-
grams for Hamiltonians of various symmetries for the fu-
ture, we shall now consider a few special cases which ex-

hibit some typical phenomena associated with the system
specified by Eq. (8).

A. b =b„=b,=b, c =c„=c,=O

In this case the xyz solution satisfies

a —az
Sz 3$ + so ~ a

b

where a =(a +a„+a,)/3. Assuming that a &a„&a,

These results imply that the transition from the paramag-
netic phase, if it is of second order, has to be into a z-type
solution. For s sufficiently large, both the z-type solu-
tions and the xy-type solutions are possible, the ground
state depending on the free energy. Finally, at yet higher
s, the xyz solution is possible.

Note that for the z-type phase —
~
V,H

~

= s (a + bs )

Since b &0 the transition from the paramagnetic to the
z-type phase will always be of second order. The same
can be shown to apply to the transition from the z to the
xy type and from the xy to the xyz phase.

As an illustration, Eq. (3) was solved for a = —,',
ay 2 s az 1 and b 15 The temperature

dependence of the resultant magnetization is presented in
Fig. 1, and that of the three components, in Fig. 2. The
results indicate a monotonic increase of the resultant mag-
netization upon lowering the temperature. The magneti-
zation is directed along the x axis for T„y ~ T ~ T„, ro-
tates in the xy plane in the temperature range
T„~ & T & T~, and finally rotates in space upon further
reduction of the temperature. A similar phase, with two
nonzero components of the order parameter, whose rela-
tive magnitude is temperature dependent, was obtained by
Galam and Birman ' who studied the cubic xy model
with eighth-order anisotropy, as well as in a mean-field
treatment of the three-component spin system with uniax-
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ial symmetry. ' Galam and Birman ' discussed the

relevance of this behavior to the interpretation of the ex-

perimentally observed temperature dependence of the fer-
roelectric ordering in Tb2(Mo04) 3.

0.5

Q. 8» (Qy (Qg +0, 5», &@sing +Os C» —Cy —Cg —0

In this case we readily obtain for the xyz phase

b z ~y —~x &s —&x
0.5

This immediately implies that apart from quantitative
differences, this case is very similar to the previous one.

The transition between the xyz and the xy phases will

occur upon vanishing of s„when

z ~x ~z ~y
ac b

+
X

As one can readily check by noting that the coefficient of
s in —

~
V,H

~
is positive, all the transitions will be of

second order. Note that whereas the quartic anisotropy
associated with b is qualitatively irrelevant, the suppres-

sion of the quadratic anisotropy, i.e., taking

a„=ay =a, =a results in s, =(b/3b„)s, . . .. In the

latter case the xyz phase will be the only stable ordered

phase. It is obtained from the paramagnetic phase at

T, =o(o + 1)a/3. In this case the magnetization direc-

tion is temperature independent, the direction cosines be-

ing (b/3b;) ~ i =x,y, z. This is a generahzation of the di-

agonal phase (s„=sy ——s, ) in the case of cubic anisotropy. ~

A similar phase with a frozen direction in the plane was

obtained for the cubic xy model by Galam and Birman. 's

0.2

O. I

0. i
~

0'~ 0.3 0'4
1

0.5 06
TXJZ TX)f TX

FIG. 1. Resultant magnetization for 0 = z, a = —3,

a„=—2, ag = —1, b» =b» =bg = 15, exhibiting the sequence of
transitions x~xy~xys upon lowering the temperature. The
solid curve denotes the stable phases and the dashed curves

present the unstable solutions.

C. a„ga~ ~a, gO, b=O, c =C~=O, c, ~O

In this case the interesting phases are the x and xy
phases. For the latter,

Q~ —
Qy 2 l 2 eely

—Q~

2Cz z

This phase will only exist for

Clx Qy
s )s@

Cz

The interesting point is that the transition between the x
and xy phases will be of first order if

~

c
~

is large
enough. This is presented in Fig. 3 for o =—,, a„=—3,
ay ———2, and cz = —16. The transition temperature is ob-
tained by evaluating the free energy in both phases, using

Eq. (7). In order to determine the value of c, at which the
transition becomes of first order, we write the magnetiza-
tion equation for cr = —,

'
in the inverted form

0.3

T =[—(a„+ay)s —cps )/In
1+2s

O. l ) 0.2 0.3 0.4
)
0.5 Q6

Txjjz Txy Tx

and note that at s =s„y we should have ds/dT= oo or
dT/ds=0. Using the magnetization equation and the
value of s~ obtained above we obtain the transcendental
equation

FIG. 2. Components of the magnetization for the case
presented in Fig. 1.
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APPENDIX: DERIVATION OF THE MAGNETIZATION
EQUATION IN THE CLASSICAL LIMIT

Using the procedure presented in Ref. 24, the magneti-
zation equation for an isotropic spin Hamiltonian obtains,
in the classical limit (cr = 00 ), the form

0.3-
S)

'IIL

s =( cos8}=

where

(Al)

0.2— eZ= f dy f d8sin8e = sinh(a)
0 0

(A2)

and

O. I-

0.5 0.6

I

07

Substituting Eq. (A2) in Eq. (Al} we obtain

1
s =coth(a) ——=L (a),

Q

FIG. 3. The magnetization and its components for e= 2,
a„=—3, a~= —2, a, = —1, c,= —16, exhibiting a first-order
phase transition between the x and xy phases.

where

l =X,P,Z,
a;

(A3)

where L is Langevin's function. For an anisotropic spin
Hamiltonian, the above procedure results in

1+2s„y
ln

1 —2s„y

3$~y

1 —4s„y
and

Z= y sin e (A4)

which can be solved numerically to yield s~=0.29433.
For a„=—3, and a~ = —2 this corresponds to
c, —11.54.

V. CONCLUSIONS

The magnetization equation for arbitrary anisotropic
spin Hamiltonians, derived in Ref. 12, was shown to lead
to a straightforward procedure of analysis. This pro-
cedure was applied to the quartic spin Hamiltonian, Eq.
(8). While the possible ordered phases (x,xy, xyz) were
identified, and the most typical sequences of phase transi-
tions (x-+xy —+xyz; second or first order) exemplified, a
comprehensive search of all the possible sequences
remains to be carried out.
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a=Pal, H,

s=( sin8coap, sin8sin(p, cos8) .

Defining

a„=ao cosqo, a~ =ao sinpo (ao ——a, +a~ )
2 2 2

we carry out the integration over y, obtaining
—a cos8Z =2n d 8 sin8e ' Io(ao sin8)

0

=4m sinh(
/

a
[
)/ [

a /,

where

Substituting Eq. (A5) in Eq. (A3) we finally obtain

V,H
L(Pi V, Hi ),

S

which is the classical limit of Eq. (2}.
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