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Linear transverse susceptibility of Ising systems
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The transverse susceptibility of Ising systems is measured using Monte Carlo methods and low-

variance estimators. Data are given for a spin- 2 model on an fcc lattice and for a spin-1 (Blume-

Capel) model, with different local anisotropies, on a cubic lattice. In each case a sharp peak is found
just above the transition temperature. Real-time dynamics may also be studied. A low-variance
Monte Carlo estimator is given for an Ising system having an arbitrary spin and lattice structure.

Ising systems have been studied quite thoroughly as
model systems for a variety of classical phenomena and as
nontrivial examples for testing theoretical techniques.
Surprisingly, however, little work has been done on
measuring the transverse susceptibility of such systems.
Analytic solutions exist in one' and two dimensions. In
three dimensions, experimental work ' finds cusplike
behavior, which cannot be explained by simple approxi-
mations, such as mean-field theory, which ignore fluctua-
tions. Some progress has been made by 1/z expansions,
with z the number of nearest neighbors, and, especially, by
linked-cluster expansions. ' The problem is of particular
interest since it involves a quantum observable (transverse
susceptibility) in a clearly classical system (zero transverse
fleld). In this paper the linear transverse susceptibility is
measured for both spin- —,

' and spin-1 Ising systems on
three-dimensional lattices ranging from 8i—203 sites. For
the spin-1 (Blume-Capel ) model, the peak in the suscepti-
bility at T, is studied for several Ising-like anisotropies.

For the spin- —,
'

Ising model, H = QS;S—lx, the trans-
verse susceptibility is

X,=—g J d~(S,'(~)si(0)) .1
(1)
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The effect of both Stx and Six is to flip the spins on sites i
and j, respectively. Thus, the only nonzero contributions
to the sum occur when i =j. Denoting the states of the
trace sum as trt, the expression for Xi becomes
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where m; is the same state as m except with spin i
flipped. Performing the integration over ~ and using im-
portance sampling to generate the states m according to
exp( PE ), the transver—se susceptibility is

P
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where, of course, P(S*)cc exp(pS'y). The form of this es-
timator is the same as that which is found in mean-field
theory. The difference is that in mean-field theory the
average would be over a mean field y; which is chosen
self-consistently while here the average is performed nu-
merically over fluctuations of a function of this field.
This Parisi estimator does not diverge as the temperature
goes to zero. In fact, the variance of this estimator actu-
ally decreases as P increases. This is because the estima-
tor depends only on the sum of the near neighbors, whose
variance decreases as the temperature decreases and the
system becomes more ordered.

Numerical calculations provide evidence of the su-

periority of this estimator. For 100 sweeps of a 10i cubic
lattice at T =0.75T, the lower-variance estimator has a
standard deviation of 5.96X 10,whereas the old estima-
tor has a standard deviation of 2.64)& 10 . For the same
lattice at 0.50T„ the standard deviations are 2.098' 10
and 4.28&(10 for the new and old estimators, respec-
tively. Thus as P increases the new estimator improves
but the old declines in quality.

The transverse susceptibility for a 20 fcc lattice is plot-
ted in Fig. 1. The circles are Monte Carlo data using the
low-variance estimator and the triangles are linked-cluster
data. The agreement is very good. The difference be-
twmn the two data sets near the peak is due to finite-size
effects since the linked-cluster data is for an infinite-
lattice system while the Monte Carlo data is for a 20 lat-
tice.

the sum of the nearest-neighbor spins.
Unfortunately, this estimator is exponentially depen-

dent on both y; and P, giving it intolerable fluctuations ei-
ther for lattices with many near neighbors, such as an fcc
lattice, or for low temperatures. The method we choose to
rectify this situation is described in a paper by Parisi. '
In effect, we sum over the different states at site i given
the nearest-neighbor configuration. Thus,
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FIG. 1. g&( T)/g&(0) for a spin- 2 Ising Hamiltonian on a fcc
lattice. Circles are Monte Carlo results for a 203 lattice and tri-
angles are the result of a linked-cluster series expansion. The
solid line is a guide to the eye. The difference between the two
data sets near the peak is due to finite-size effects.
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A similar analysis may be done for the spin-1 (Blume-
Capel ) model H = QS;Sf—+Dg(S ) to produce a
low-variance estimator. In the diagonal basis of S,', use 0.1—
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FIG. 2. g&(T) for a spin-1, Blume-Capel Hamiltonian on a
cubic lattice with local anisotropies D =0, —5, and —10. (a) is
for a 8 lattice and (b) is for a 20 lattice. In each case the peak
of the curve falls slightly above the critical temperature for the
lattice.
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Here D is the local anisotropy and the average is over all
lattice sites i in zero field. Data from this estimator is
plotted against temperature in Figs. 2(a) and 2(b) for 8
and 20 cubic lattices, respectively, for three different
values of the local anisotropy D. For the larger lattices,

the peak becomes sharper while remaining finite. It is
found, however, that this peak does not correspond with
the peak found in a plot of the parallel susceptibility. The
peak of the parallel susceptibility diverges in the limit of
an infinite lattice, and its position gives the value of T,
for the lattice. The position of the transverse susceptibili-
ty peak is shifted up from T, by a few percent, as was
predicted by Fisher in 1963. For exainple, for D = —10
the transverse susceptibility peak seems to be shifted up
from T, by about 2.5%%uo as determine by extrapolating
finite-lattice data. Thus the behavior at the peak of the
transverse susceptibility must be analytic and cannot be a
cusp.

Typically, quantum Monte Carlo simulations study the
evolution of a system in imaginary time. Since analytic
continuations of numerical data can be very sensitive to
noise, it has proved difficult to obtain information on
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real-time dynamics. " As we have shown, however, the
transverse susceptibility of the classical Ising model can
be made an entirely classical measurement. The trans-
verse susceptibility of a spin- —, system to a uniform ac
field of frequency t(2 is given by the Fourier transform of
the retarded Green's function:

G(t) = i——([m (t),m(0)] }8(t),. 1

where

iHtgs22 iH—2

A low-variance estimator for this susceptibility is

Xt(ts+(s) = —,
'

(tsoh(2)y(/2) io6—(ts+y;) 6(—ss y;—) ), (9)

with e a positive infinitesimal.
Finally, a low variance estimator will be constructed for

the transverse susceptibility of an Ising system of arbi-
trary spin s. Again, we are interested in quantities of the
orm

& s (r)s (o) }=-,' (s+(r)s+(0)+s+(r)s-(0)

+S (r)s+(0)+S (r)s (0)}, (10)

where now the spins are no longer spin —,'. The purely

quantum pieces (S+(r)s+(0)}and (S (r)s (0)}do not
contribute to the sum. The remaining time-evolved opera-
tors, meanwhile, are

S+(r) eyHS+e rH e
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The resultant expression for the transverse susceptibility
will involve

(S'-S }=~(s+1)—((S*)'}+(S'},
and so will be entirely classical. Summing over all values
of S' with relative probabilities exp(Pys') produces the
low-variance estimator

yt= ((2s+1) too[ h2()y/+ s—,')]+coth(tty(/2)()
2p J

for the transverse susceptibility. The functional form of
this estimator is similar to that of the Brillouin functions
found in mean-field theory.
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