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Thermodynamic properties of a three-dimensional defect system
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%e analyze the recently proposed model of defect melting in three dimensions via high- and 1ow-

temperature expansions and compare the internal energy and specific heat with the result of Monte

Carlo simulations. The transition is found to be strongly of first order mth a Lindemann number

I. & 112 and a transition entropy M = 1.2, thus very much resembling a crystalline melting process.

Recently, a simple model has been proposed' to study the process of crystal melting from the point of view of defect
proliferation. This point of view has been advanced as early as 1952 by Shockley but because of the complexities of de-

fect systems and their long-range interactions it has been very difficult to test this idea quantitatively. This obstacle is

overcome by the model which combines both, elastic and defect degrees of freedom, in the simplest possible way, name-

ly, via the Gaussian partition function
r
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[There also exists a version of the model involving the
cosines of the strains, cos(V;uj+Vju;). This has been
studied elsewhere; see the last reference in Ref. 1.] Here
u;(x) is the displacement field, rescaled to a lattice
spacing of 2m, x runs over all N sites of a simple cubic
lattice, the labels i,j refer to the link vectors,
Vtuj(x)=uI(x+i) —uj(x) are lattice derivatives, p„g,A, are
elastic constants,
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and P=pa /(2') T is the inverse temperature in reduced
units (p times the cell volume a ). The sum over n;I(x)
(which is equal to an integer for i =j, to a half-integer for
i+j ) accounts for jumps of u;(x) across Volterra sheets.
They are the integer versions of the well-known plastic
strains u,J. in material science. This integer nature ac-

I

counts for the discreteness of the defects. They are gauge
fields of defects with the gauge transformations
u; ~u; + 2m%;, n;~ ~n;, + ,

'
(V;N~ +—VJÃ~ ), ensuring the

irrelevance of the shape of the Volterra sheets. The boun-
daries of these sheets are the defects. The gauge-invariant
defect tensor

itj(x) =e'tktEplln Vk Vlllntll(*+ i+J)

is the source of stress.
Notice that, structurally, the model lies halfway be-

tween the Villain model of superfluidity, in which there is
only one u (x) field instead of three, and the Villain form
of U(1) lattice gauge theory, which involves the antisym-
metric combination V;uI —VJ u; instead of the symmetric
one V;uj+ VIu;.

By a standard duality transformation, ' the model can
be rewritten in two different forms.

(1) The stress representation, convergent for small P,
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where y—=3/+(2pg //(, } and the sum over o;1 covers all

integer-valued stress field configurations with vanishing

lattice divergence, V;a,z(x}=V;cTJ(x—i)=0. In the gen-

eral dimension D, the prefactors become
(N/2)D(D —1)/2 (,N/2)D N/2

1-D&
y.

exp —4m P g t}; (x)rl;.(x')
X, X

+ q;;(x)qJJ (x') U4(x —x')
ll

with

with y =Dg—+kg'/A. .
(2}The defect representation, convergent for large P,
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K; = i(—e ' —1), K; = i(—l —e '), KK;=2—2cosk;,

and v—:1/(y —1}. The exponent l((,A, /p) in the prefac-
tor is the anisotropic version of the phonon fluctuation in-

tegral

d k
3

1n E;E; = 1.67339,—~ (2m)

where in the isotropic case /= 1, the exponential is simply
I
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with

A; =(2(—1)K;K;+KJKJ+KkKk (i,j,k =cyclic) .

The lowest contribution to the stress representation (2) is
3N/2 ' 3N/2 N/2

z=
2m P 2n.2P( y

X ( 1+6¹—() /p)(2+ s/g —s/r ) +. . . (6)

coming from

TABLE I. Transition points and entropy jumps of defect
melting for A, /p=0. 'The zeroth-order approximation is given

by

1 1 1 1
~ l(g', 1,/p }

41/3 g
' ' )/3

1 3A,

0 2S

with 1(g', X/)u) defined in Eq. {5),and p'" can be seen in Fig. 1.

p(0) p(() pMC ~MC

FIG. 1. Free energy of the a=3 melting model (Villain type)
for various g'=0.2, . . . , 1.2. The stress corrections are so small

that they are practically invisible on this figure. The defect
correction is shown explicitly for (=1.
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o)i(0)=1, oi)(2)= —2, o'ii(2+2)=1,

o22(0) = 1, oi2(1)= —2, cr22(1+ 1)= 1,
o i2(0) = 1, o ip(1) = —1,

o i2(1+2)= 1, o i2(2) = —1

(for graphical techniques see Ref. 6). For the defect repre-
sentation we find for g= 1

)4

U

3%/2
1

2

—(3X/2)l(1 A, /p, )

x(1+6~ —)use [(1/12+[2/(1 —v)]002106)+. . . ) (7)

The prefactor refiects the Dulong-Petit law (I/2P in the
internal energy U and —,

'
in the specific heat C per poten-

tial degree of freedom; the kinetic terins would have to be
added separately).

From the intersection of the free energies we find the
transition point for (= 1, A. /p =0, at

P")=0.524. (8)
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1/3

p(0) v
e 1.67339 0 534

1+v 2m 4' v=o

The free energy Pf= ln Z/—N, the internal energy
u = —(8/BP)( Pf ), an—d the specific heat
c = —P(BIBP)u are plotted in Figs. 1, 2(a), and 2(b). In
Fig. 1 the stress graphs are so small that they can be ig-
nored. The effect of the defect graph is shown only for
the isotropic case g= l. The transition points are listed in
Table I.

In order to obtain more precise results we have per-
formed a Monte Carlo (MC) simulation on 8 and 16 lat-
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FIG. 2. (a) Internal energy and (b) the specific heat of defect
melting for (= 1 showing the contribution of the first defect and
stress correction. The Monte Carlo data are taken on 8 (16 )
lattices with 500 (50) svreeps for equilibrium and 1000 (100) for
measurement. In the inset of each figure we have given a blow-
up of the transition region.
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FIG. 3. (a) Equilibration of the internal energy of a mixed in-
itial state (half solid, half liquid) near the melting point
P =0.5175 (g'=1) and (b) the stability of the solid and liquid in-
itial states at the melting point P =0.5175 ((=1).
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FIG. 4. Development of the internal energy (from a liquid initial state) over 10000 iterations on a 4 lattice and histograms of their
distributions for /=1. The melting point lies where the double peak is symmetric, i.e., at P =0.5342. The peak-to-peak distance
gives hu = 1.5 and M =0.8 (g= 1).

tices with periodic boundary conditions. To save comput-
er time, the variables u;(x)H( —lr, n. ) are discretized to
(2m/N)n with N= 16 or 32. The results for P( 1 turn out
to be insensitive to the choice of N. For the particular
case g= 1, the internal energy and specific heat are shown
in Figs. 2(a) and 2(b), respectively. Notice that c drops as
the system melts. Experimentally, this is usually the op-
posite. We have therefore studied the g dependence of hc
and found that it is very sensitive on g and becomes,
indeed, negative for g (0.7 [see Fig. 5(c)]. (Experimental-

ly, /=0. 14 for K, 0.25 for Pb, 0.3 for Cu, Ag, and Au,
and 0.82 for Al. )

In order to obtain the transition temperature and entro-
py, we have placed the system into a mixed initial state
(half solid, half liquid) and observed the development of
the internal energy over many iterations. The model turns
out to equilibrate quite fast and even in the neighborhood
of the melting point it relaxes quite rapidly into one state
[see Fig. 3(a) for the case /= 1]. There is no critical slow-

ing down since the transition is of first order, as predicted
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on qualitative grounds. The precise value of the transi-
tion temperatures, P, was confirmed by placing the sys-

tern once in the solid state and once in the liquid state and
watching the stability over many iterations [see Fig. 3(b)
for the case (=1]. The distance between the energies
gives b.u and hs =13 b,u (for (=1, 13~ =0.5175
b, u =2.33, b,s =1.21).

Another way of seeing the first-order nature is by tak-

ing a smaller system (4 ) and now watching the probabili-

ty of the internal energy being in the solid or liquid state,
as shown in Fig. 4, for (=1, in particular, in the histo-

grams. At P (which on a 4 lattice is shifted to

P =0.534) the two states have equal probability. The
distance between the peaks gives again hu (for (=1,
du=1.5) and M (for (= 1, &=0.8). By going through
the same procedure for various values of g, we determine
the g dependence of P, of the transition entropy and of
the specific-heat jump at P [see Figs. 5(a)—5(c)]. Plot-
ting P logarithmically we see that there is an excellent
it:
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FIG. 5. The g dependence of (a) P and (b} M. We see that

P =0.5175$ 0's and &=1.53—0.32$. (c) Difference of the
specific heat between the solid and liquid phase as a function of
the anisotropy parameter g.

with p, and X being the averaged elastic constants
iu(3+ 2()/5 and A, —5 hatt(1

—g), respectively. For small X,
r =1/2 ~ . The result (10) implies that P of the model
(1) agrees with the experimental findings in most atomic
crystals. 9 For M there is a rough fit around /=1

b,s =1.53—0.32( .

This number also agrees with experiment.
In conclusion, we see that the simple model involving

elastic and plastic fiuctuations can easily be studied
analytically in high- and low-temperature regions and that
computer simulations display a first-order transition
which looks just like crystal melting. Both the Lin-
demann number and the transition entropy have the mag-
nitude observed in many materials. Finally, it may be
worth mentioning that in our model the defect formation
is related to the Debye temperature in accordance with
Mukherjee's relation. '
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