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Critical ultrasonic behavior near the not-timbal-incommensurate phase transition in NaNOz
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The acoustic velocity and attenuation of the c22 longitudinal wave have been measured as a func-
tion of frequency (10—74 MHz) and temperature (165—180 C) in single-crystal sodium nitrite. Crit-
ical behavior in the high-temperature disordered (normal) phase near the normal-incom-

mensurate phase transition can be well described in terms of a phenomenological dynamic-scaling

theory. The static sound velocity exhibits a temperature dependence like that expected for the heat

capacity. The velocity dispersion and the attenuation are well described with a critical relaxation
time ~=(1.55)&10 ")t ', where t =(T—T, )/T, . The velocity and attenuation exhibit the expect-
ed scaling behavior, and their ratio satisfies the Kramers-Kronig relation.

I. INTRODUCTION

The sodium nitrite crystal contains local dipole mo-
ments consisting of a NO2 ion and a nearest-neighbor
Na ion. The flipping of the NO& ion in its double-
minimum potential causes an associated displacement of
the Na+ ion. Since the dipoles have two possible orienta-
tions (parallel or antiparallel to the b axis), this system
can be described in terms of an Ising pseudospin. Howev-
er, NaNo2 exhibits complex order-disorder phenomena
since an incommensurate (antiferroelectric) phase exists
over a narrow temperature range between the high-
temperature paraelectric phase and the room-temperature
ferroelectric phase. ' The high-temperature "normal"
phase is orthorhombic, space group Immm (Dg), and
disordered with respect to the dipoles. On cooling,
NaN02 undergoes a second-order transition at T,=438.5
K to an incommensurate phase with a sinusoidal modula-
tion of the polarization. The incommensurate polariza-
tion wave in this phase is characterized by a wave vector

q, =Sa', where 0.101 &5 &0.122 with no lock-in at ra-
tional fractions like —,'. On further cooling, there is a
first-order transition at Ti-437 K into an ordered com-
mensurate phase with space group Im 2m ( C2„).

%e are concerned here with a detailed acoustic investi-
gation of the critical behavior in the normal phase near
the normal-incommensurate phase transition. Ultrasonic
studies can provide information about both the static and
dynamic critical behavior near second-order phase transi-
tions. Indeed, a considerable amount is already known
about the overall acoustic behavior of NaNO2 from an ex-
tensive series of ultrasonic and Brillouin scattering
studies. Hatta and co-workers have shown that
longitudinal-acoustic waves in the normal phase are cou-
pled to the order parameter Q via a quadratic term of the

g y;(q)e;(k)Q(q)Q ( —q —k),

where Q(q) and y;(q) are Fourier transforms of Q(r )

and the coupling constant y;(r r„), and e—;(k) is the

elastic strain associated with a longitudinal-acoustic mode
with wave vector k propagating along the a, b, or c axis
(i =1—3, respectively). The relative magnitudes of the
coupling constants are y&(q):yz(q):y3(q) =1:2.7:-0.
Thus critical behavior associated with the cl& and c2q
modes differs only in magnitude, and no critical behavior
is observed for the c» mode. Furthermore, none of the
shear modes exhibit pretransitional behavior in the normal
phase. 4

The temperature dependence of the acoustic velocity
and attenuation of the cz2 longitudinal wave (k~ ~b) have
been measured as a function of frequency with a phase-
sensitive ultrasonic technique. The eQ coupling gives
rise to strong fiuctuation damping of this acoustic mode,
and critical relaxation behavior is observed near T, . The
experimental procedures are summarized briefiy in Sec. II,
the experimental results are presented in Sec. III, and the
analysis of our data in terms of current theory for the
critical dynamics of sound propagation" is given in Sec.
IV. Section V contains a discussion of our results and a
comparison with previous work.

II. EXPERIMENTAL PROCEDURES

Large single crystals of NaNO2, grown from the melt,
were obtained from the Laboratoire de Physique Cristal-
line in Orsay, France. Two samples were used for acous-
tic measurements. Crystal A was light yellow in color
and contained a few growth defects; the sample cut from
this crystal did not contain visible defects and was used to
characterize the overall behavior of the c22 wave over the
range 150—180'C. Crystal 8 was almost colorless and
was free from any visible defects; the sample cut from this
crystal was used for all the detailed measurements in the
disordered normal phase. Each sample had a pair of pol-
ished (010) surfaces that were flat and parallel to within
+0.001 cm. The sample length in the [010] direction was
0.585 cm for sample A and 0.7765 cm for sample 8.

A pulse-echo method was used at 10 MHz to determine
the absolute ultrasonic velocity in the normal and com-
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mensurate phases at temperatures far from T, .Values of
the attenuation and changes in the velocity were obtained

as a function of temperature with a Matec MBS 8000 sys-

tem, which provides for the coherent phase detection of
two echo pulses. ' Four sample-and-hold devices and a
multiplexed 14-bit analog-to-digital converter provide di-

gital output of the phase-detected signals. The system is

controlled by a microcomputer which averages 100 read-

ings and then calculates the attenuation and velocity.
Since the signal-to-noise ratio is good for weak signals

(-55 dB dynamic range), samples with large path lengths

and well-separated echo pulses can be used.
Quartz transducers were used for measurements at 10.5

and 29.5 MHz, and lithium niobate transducers were used

at 46.7 and 74.4 MHz. The transducers were bonded to
the NaNO2 sample with a very thin layer of Dow-Corning

200 silicone fiuid. The sample holder was mounted in a
large and well-regulated cylindrical oven, and the sample

temperature was measured with a platinum resistance
thermometer. The measurements on sample A were made

during a very slow warming run: Typically a data point
was taken after a wait of 30—60 min to ensure thermo-

dynamic equilibrium, but a period of 1 day was necessary

to achieve equilibrium when the sample went through the
first-order commensurate-incommensurate transition.
Measurements on sample 8 were made for both warming

and cooling runs. In either case, at least 30 min was al-

lowed for equilibration after changing the sample tem-

perature (usually by a few tenths of a degree or less).

Data presented at 10.5 MHz were obtained in three cool-

ing and two warming runs; data at 29.5 MHz were ob-

tained in one cooling and two warming runs. Since there

were no systematic differences between data points from

these warming and cooling scans, data at 46.7 and 74.4
MHz were taken only on cooling.

III. RESULTS

The temperature dependence on the LA [010] velocity u

and attenuation a for sample A at 10 MHz shown in Fig.
1 over the range 165—176'C. Note that there is no pre-
transitional critical attenuation in the commensurate

phase on approaching the commensurate-incommensurate
transition at TI. The pretransitional behavior observed in

the velocity just below T~ is presumably due to the
anomalous thermal expansion; the same type of velocity
variation is observed for the shear modes which do not

couple directly with the order parameter in any of the
phases. The first-order discontinuity in u and a at TI is

quite pronounced: Uc —UI ——114 ms ' and aq —a~ ——4.5
dBcm '. Substantial critical variations in U and a are
observed near the second-order incommensurate-normal
transition at T, and over an appreciable range in the nor-
mal phase. The temperature-independent background at-
tenuation a0-=2.3 dB cm ' is comparable to the values re-

ported in Refs. 5 and 6. Such background attenuations,
which are roughly independent of frequency, ' must be due
to strains and defects in the NaNO2 crystal rather than
noncritical relaxation effects. Fortunately, ao was close to
zero for all the runs carried out on sample 8 (see below).

The detailed variation of the [010] longitudinal velocity
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FIG. 1. Temperature dependence of the velocity v (0) and
attenuation a ( X ) of longitudinal ultrasonic waves propagating
in the [010] direction. These measurements were made at 10
MHz on sample A. The temperatures of normal ( X)
-incommensurate ( I) ( T, ) and incommensurate (I) -commensu-

rate ( C) ( T& ) transitions are indicated by the arrows.
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FIG. 2. Detailed [010] sound velocity variation in the disor-

dered (normal) phase; these data were obtained on sample 8.

as a function of frequency and temperature in the normal
phase is shown in Fig. 2. Phase-detection data at all four
frequencies were tied in with an absolute velocity of 4097
ms at 175'C. This value is consistent with our pulse-
echo velocity measurements at 10 MHz. The resulting
10-MHz (and 30-MHz) velocity of 4107.5 m s ' at 170'C
agrees well with a cluster of 170'C values in the
(4000—4195)-ms ' range for frequencies from 24 to 8.0
MHz, as reported by Hatta et al. The accuracy of the
absolute velocity values given in Fig. 2 is not very high
since our pulse-echo values had uncertainties of +80
ms . However, this is not important for the analysis of
critical velocity effects.
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The variation of the [010) longitudinal attenuation as a
function of frequency and temperature in the normal
phase is shown in Fig. 3. The quantity displayed is
a/co =(a,b, —ao)/co, where co=2nf. The temperature-
independent background attenuation ao is taken to be zero
for runs at 47 and 74 MHz, but small ao values of about
—0.7 and about + 1.0 dBcm ' have been assumed for
the various IO- and 30-MHz runs, respectively. These
choices lead to a/co values that are independent of fre-
quency at temperatures far from T„as expected for relax-
ation processes when co~ &~ 1.

It would also be of considerable interest to study the
critical acoustic behavior near the normal-
incommensurate transition as a function of the apphed
electric field E. The temperature range of the incom-
mensurate phase stability, which is narrow even at E=O,
decreases to zero at a triple point (critical end point) locat-
ed at -438 K, -3.4 kV/cm. ' An attempt was made to
carry out such an investigation with our present NaNO2
samples. Unfortunately, the resistivity of NaNOi de-
creases markedly as the crystal is heated above the
normal-incommensurate transition temperature. As a re-
sult, there was considerable Joule self-heating which gave
rise to a substantial temperature gradient within our rath-
er large crystals. This made it impossible to carry out
well-characterized acoustic measurements in the presence
of an applied field of even 1 kV/cm.

IV. ANALYSIS OF DATA

c =co+he,
where co ——puo is the bare stiffness (i.e., the elastic con-
stant in the absence of any coupling between strain and
the order parameter} and b,c is the complex critical contri-
bution. The quantity bc contains information about the
critical temperature dependence of the static velocity
u(co=0) as well as the frequency and temperature depen-
dence of the critical attenuation ha(co) and the critical
velocity dispersion u (co) —u (0). p is the mass density and
uo( T) is the bare sound velocity.

From Eq. (2) one obtains

p(uz —uo) =Red,c,
2pU ha/co= —Imhc .

(3)

(4)

When the quantity b,v =vo —u is small, Eq. (3) can be
rewritten in the convenient form

2pU AU ——Rekc (5)

where v =(u +uo }/2=const. Using the dynamic scaling
form given by Fossum" for hc in the case of eg quadra-
tic coupling, we find

A. Revie~ of theory

The critical behavior of the acoustic velocity and at-
tenuation can be described with a phenomenological
theory based on linear-response theory and dynamic scal-
ing. " One starts from a complex, frequency-dependent
elastic stiffness constant c(co, T} which can be written in
the form
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FIG. 3. Detailed [010]attenuation variation in the disordered
(normal) phase; these data mere obtained on sample B.

uhu =At i'(1+Dt ' )G(co~),

u ba/co=(p/zu)At "(1+Dt )corF(co~), (7)

where t = (T —T, )—/T, is the reduced temperature, p is a
static critical exponent (see Ref. 11 for details), and
r =rot '" is the critical relaxation time. (z is the dynamic
critical exponent defined by r—P, where )=got "is the
correlation length. ) The functions G(cow} and F(co~) are
defined by

G(cow)=cos arctan(cor) [cosarctan(cov)]" *",
ZV

(8)

ZV IF(cd ) = sin arctan(cor) [cos arctan(cov )P'~'" .
P COP ZV

In the limit cue ~g I,

G (cd « 1)=F(cor « 1)= 1,
and in the opposite limit cor » 1,

r

G(cor»1) =cos — (cor)p
2 ZV

(10)

F(cd »1)= sin —' (cd) ' +" '"' .
ZV . K LL —1

P 2 Zv
(12)

The general forms of F(cor) and G(cov') given in Eqs. (8)
and (9) represent empirical functions that provide a
smooth crossover between the asymptotic cow&&I and
co~&&1 limits. ' lt should be noted that Eqs. (6) and (7)
automatically satisfy the Kramers-Kronig relations.
Since the treatment given in Ref. 11 is phenomenological,
the critical exponents p and zv can be viewed as effective
values describing the range of data fitted and may differ
from the expected asymptotic values.
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bu =A it i'(1+Dt ) (13)

For data obtained in the limiting region coz «1 (low co

and large hT), we will use
b, ulhu(co~&&1) =G(cor),

ha/ha(co~ &&1)=F(cor),

(zv/p)coR =co&F(cow)/G(cow ) .

(19)

(20)

(21)

ba/co = t "(1+Dt )~p A

ZV U3
(14a) B. Fitting of data

=A, t 'I'+'"'(1+Dt") (14b)

1 Imhc
co Rehc

It follows from Eqs. (4) and (5) that

u b,a/co

vhU

(15)

(16)

where ha should be expressed in Npm ' (experimental
b,a values in dB cm ' must be multiplied by
100/8.686= 11.51). In determining the experimental
value of R with Eq. (16), we will take into account the
weak temperature and frequency dependence of both u

and U. The theoretical behavior of R is obtained by sub-
stituting Eqs. (6) and (7) into Eq. (16):

p F(co~)
zv G (cov )

(17)

This has the following limiting values:

R~pv/zv for cow&&1

—+my/2zvco for cov»1 .

(18a)

(18b)

Finally, we give scaling forms for the velocity, the at-
tenuation, and the Kramers-Kronig ratio:

where A~=A/u and Az=p~pA/zvv can be taken as
constants since v=4070 ms ' within +60 ms ' and
v =6.82)&10' m s within +0.11X10' m s over
the investigated range of co and T. For a non-symmetry-
breaking strain like the czz longitudinal mode in an
orthorhombic crystal, one expects the static EU to vary
like the heat capacity. "' Thus the exponent p, should be
the critical heat-capacity exponent a and a correction-to-
scaling term should appear as in the case of Cz. We have
extended the treatment of Ref. 11 by including the
correction-to-scaling term Dt with the critical exponent
h~ taken to be 0.5, which is its theoretical value. ' Note
that Eq. (13) appears to give a divergence in hu (and thus
a negative velocity) at T„which is not physically correct.
In principle, one should consider the critical behavior of
the bulk compliance near T„however, the form given in

Eq. (13) is valid as long as hu/up « l. In the case of
NaNOz, it will be shown below that the maximum value
of Du/up-0. 036. Note also that Eq. (14a} corresponds to
the well-known form' ha —t "co ~, except that a
correction-to-scaling term Dt ' appears. It will be seen
that our NaNOz data require such a theoretically expected
correction-to-scaling term.

Let us now define the Kramers-Kronig ratio R by

Before the NaNOz data can be analyzed in terms of the
theoretical expressions given in Sec. IVA, it is necessary
to establish the temperature-dependent bare velocity
up(T). Figure 4 shows a superposition of our static velo-

city data with those obtained from Ref. 5. Static velocity
data consist of all the velocity values that do not exhibit
frequency dispersion, i.e., values of u(co, T) that equal
v(0, T) at any given temperature T. The data points tak-
en from Hatta et al. have been shifted by —92 ms
and —1.0 K in order to correct for different absolute
velocity values and different T, values for sample 8 and
the sample used in their work. Comparable shifts in v

and T, occur between the data in Refs. 4 and 5, and the
T, values for our samples A and 8 differ by 0.15 K.

Two choices of up(T) are shown in Fig. 4. In both
cases a linear variation is assumed: Line a is a visual fit
to the experimental points over the range 220—230'C,
while line b is the best least-squares line through the data
points over the range 210—230'C. If the bare velocity is
expressed in the form

up(T) =Up(438. 4 K)—S(T—438.4 K), (22)

then vp(438.4 K}=4233.56 ms ' and the slope S=6.50
ms 'K ' for line a, while up(438. 4 K)=4198.21 ms
and S=5.927 ms ' K ' for line b. We consider line cz to
be the more plausible choice for up( T}but will explore the
consequences of both choices.

Figure 5 shows the dependence of b v (co, T)
= Up(T) —U(co T) on hT = T —T, when up(T) is
represented by line a. The value of T, was taken to be
165.25'C=438.4 K, which is 0.1 K above the temperature
when a(10 MHz) achieves its maximum value. This
choice is consistent with the conclusions drawn from ex-
tensive heat-capacity, dielectric, and ultrasonic data re-
ported by Hatta et al. ' The curve labeled co~&&1 in
Fig. 5 represents a least-squares fit of the static values of
b,u with Eq. (13); the resulting parameters Iz, Ai, and D
(as well as A =A iu} are those of fit 1 in Table I. Note
that the value 0.116 for p is very close to the Ising heat-
capacity exponent (at=0.11). If Up(T) is represented by
line b in Fig. 4, the values of hu are, of course, modified,
but an equally good fit to the static hu values can be
achieved. This alternate set of parameters p, A, and D is
given in fit 2 of Table I. Note that the exponent p in-
creases to 0.164. %"e have also tested the effect of chang-
ing T, to 438.3 K, which corresponds to the temperature
of maximum attenuation at 10 MHz and is thus the
lowest possible value for T, . The resulting p, A, and D
parameter values are given in fits 3 and 4 of Table I.
Even this unrealistically large change in T, has very little
effect on the parameter values. Since fits 1—4 give almost
identical X„values (0.95 to 1.00) for fitting b,u with Eq.
(13},there is no statistical basis for choosing one in prefer-
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TABLE I. Parameter values obtained from fitting the limiting (co~ &&1) critical velocity and attenuation data with Eqs. (13) and

(14). The bare velocity choices (a and b) are shown in Fig. 4 and described with Eq. (22). The p„values indicate the quality of the fit
to ha/u with the indicated vo and zv when p, 3, and D are held fixed at the values obtained from the velocity fit.

uo

438.4
438.4
438.3
438.3
438.4
438.4

0.116
0.164
0.127
0.179
0.116
0.116

A

(10 m s )

3.162
1.817
2.998
1.695
3.162
3.162

—2.6S7
—3.229
—2.596
—3.163
—2.657
—2.657

1.02
0.93
1.07
0.96
1.0
1.28

To

(10—11
)

1.412
2.549
0.897
1.868
1.549
0.435

g2

1.47
1.45
1.46
1.44
1.47
2.30

Ai
(rn s ')

77.69
44.65
73.65
41.65
77.69
77.69

A2
(10 ' dBs' crn ')

6.596
9.441
4.668
7.368
7.393
1.614

ence to another. However, fit 1 is based on the most
physically reasonable choice of uo and T, .

Note that curves representing the frequency dispersion
predicted when ~~ is not negligible are also shown in Fig.
5. These were obtained with Eq. (6) using relaxation
times r obtained below from fitting the critical attenua-
tion data.

The critical contribution to the attenuation is given by

b,a/ro =a/ru —a„,/ru (23)

where a„,/cu is a frequency- and temperature-
independent quantity which represents any noncritical re-
laxation contributions to the attenuation. A least-squares
fit to those attenuation data for which to~ && 1 was carried
out using Eqs. (14a) and (23) with ro, zv, and a„, as ad-
justable parameters. The resulting value of a„,/ru was
0.46)&10 ' dBs cm ', which is quite small compared
with observed a/ro values that range from 2X10 ' to
220&10 ' . The parameters p, 3, and D that appear in
Eq. (14a) were fixed at the values obtained from the velo-
city fit. The least-squares values of zv and 7o (and for
convenience Az) are given in Table I for both choices of
uo(T) and T, .

The least-squares value of the exponent zv obtained
from fits 1—4 summarized in Table I is 1.00+0.07. This
value corresponds to the conventional Van Hove value
rather than the critical value zv=1.28 expected for a
three-dimensional (3D) Ising model or zv=1.36 for a 3D
XI'model. ' In order to compare the quality of attenua-
tion fits that can be obtained with conventional and
Ising-like dynamic critical behavior, we have carried out
fits with zv fixed at 1.00 (fit 5) and zv fixed at 1.28 (fit 6).
The resulting vo (and Ai) values are given in Table I.
Figure 6 shows the variation of b,a/rui with b, T. The
solid and dashed lines represent the fits obtained with
zv=1.00 (fit 5) and 1.28 (fit 6), respectively. The low-

frequency limiting lines (labeled ror«1) were obtained
from the least-squares fits with Eq. (14a); the finite ro~

curves were calculated from Eq. (7) with no further ad-
justment of the parameters.

The temperature dependence of the Kramers-Kronig
ratio [see Eq. (16)] is shown in Fig. 7. As indicated by
Eqs. (18a) and (18b), this quantity provides a direct
evaluation of p/zv and of the r values at large b T. The

4500 -'.
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29. 5 9Hz

46. 7 8Hz
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3800—

120 140 160 180 200 220 240
T ('(:)

FIG. 4. Sound velocity of [010] longitudinal waves over a
wide temperature range obtained from Ref. 5. These 8-MHz
points have been shifted to match our static velocity data (see
text). Two choices for the bare velocity uo(T) are shown by the
solid and dashed lines.

a 1

1

AT (K)

FIG. 5. Critical velocity contribution hu =uo(T) —u(~, T) as
a function of AT =T —T, . Line a in Fig. 4 was used for the
bare velocity uo, and T, =165.25'C=438.40 K. The static limit
(m~&~1) curve was obtained from a least-squares fit with Eq.
(13). The curves for 10.5, 29.5, and 46.7 MHz were calculated
from Eq. (6) using relaxation times ~={1.55&10 ")t ' ob-
tained from fitting the attenuation.
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FIG. 6. Critical attenuation ha as a function of bT. Data
are shown at 10.5 MHz (0 ), 29.5 MHz (Q), and 46.7 MHz (Cl).
In the large-h, T, small-e regime where la is proportional to e2,
a least-squares fit was carried out with Eq. (14a). The finite-

frequency curves were calculated from Eq. (7) with no further

adjustment of the fitting parameters.

theoretical curves given in Fig. 7 are based on Eq. (17)
with p/zv=0. 116, rc 1.55&(—1—0 " s, and zv=1.0.
These parameters values were obtained from our previous
fit 5 to the limiting ha/ei values (toe «1 regime corre-
sponding to large b, T}. The good agreement between
theory and experiment in Fig. 7 confirms the r values ob-
tained from Eq. (14a) and shows that experimental data
close to T, are consistent with p, /zv=0. 116. These con-
clusions are independent of the form At "(1+Dt i) used
in Eqs. (13}and (14a} to represent the temperature depen-
dence of the static velocity and the relaxation strength.

Finally, we present scaling plots for the critical veloci-
ty, the critical attenuation, and the Kramers-Kronig ratio
in Figs. 8—10. In all these plots, the theoretical curve is
based on }rt/zv=0. 116and ~=(1.55)&10 ' )t ' sec.

We have also tested the possibility of fitting our static
b,u data with a negative p value, which would correspond
to the heat capacity exhibiting a finite cusp. Good fits
can, indeed, be achieved with p fixed at —0.026 when
background b is used:

EU = 1074.0—1138.0t (24)

However, this representation of the static behavior does
not change at all the values of zv inferred from the at-
tenuation and dispersion data.

V. DISCUSSIQN

The theoretical analysis of Cowley and Bruce' predicts
that critical behavior at the normal-incommensurate tran-
sition should correspond to that for the three-dimensional
XF (d=3, n=2) universality class. This would lead to
p=u~~- —0.026 and zv=1.36. However, Hatta et ar. '

have extended the Cowley-Bruce theory to provide an ex-
plicit treatment of the critical behavior of long-wave

FIG. 7. Temperature variation of the Kramers-Kronig ratio
defined by Eq. (16}. The smooth curves represent the theoretical
form given in Eq. (17) using the parameters of fit 5 in Table I.
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0. 9.
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0. 6
0. 01 0. 1

FIG. 8. Scaling plot for the critical velocity. The curve
represents G(co~} defined in Eq. (8}.

acoustic modes in NaNOz. They show that in the incom-
mensurate phase longitudinal acoustic waves with wave
vector k =—0 couple with the amplitude fluctuation modes
but not the phase fluctuation modes. The critical fluctua-
tion contribution in the normal phase, which arises from
the coupling given in Eq. (1), is also dominated by ampli-
tude fluctuations. Thus one might expect Ising (d=3,
n =1) universal behavior, as discussed by Hatta, which
would yield p =al ——0.11 and zv=1.28.

Our static velocity data [i.e., v(co, T) points for which
eir «1] are consistent with a sinall critical exponent p,
but the range of these data is too limited to distinguish be-
tween p= +0.11 and —0.03. High-resolution velocity
data obtained at a frequency of 100 kHz or lower are
needed to resolve the static critical behavior of the acous-
tic properties.
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FIG. 9. Scaling plot for the critical attenuation. The curve

represents F(car) defined in Eq. {9).

Direct measurements of the heat capacity indicate
that the critical exponent a is positive. There may, how-
ever, be complications associated with the analysis of the
C«data since correction-to-scaling terms were not used
and scaling was not obeyed (a=0.38 was reported for
T ~T, and a'=0. 18 was reported for T &T, ).t The
present acoustic data are consistent with —0.03
&p, &0.18, but they are not consistent with a p, value as
large as 0.38. If p is fixed at 0.38 and the bare velocity
line is taken to be adjustable, a completely artificial fit is
obtained with Eqs. (13) and (22). In particular, Uo(438.4
K) =3967.12 m s ' and D = —146.96, which means that
the Uo(T) line lies below the observed U(T) values and a
negative correction-to-scaling term dominates the positive
"leading singularity" at almost all temperatures (i.e., for
hT &0.02 K).

The experimental data require a zv value that is much
closer to 1.0 than either the Ising (1.28) or the XY (1.36)
values. These theoretical values of zv correspond to those
obtained with model A of Hohenberg and Halperin. "
This time-dependent Ginzburg-Landau model for a single
n-component order parameter is a purely relaxational
model in which no quantities are conserved and should be
an appropriate model for NaNOt. A direct comparison
between the fits with zv=1.0 and 1.28 is given in Fig. 6.
The ha/co data far from T, require that p+zv=l. l,
which implies that zv&1.1 for large t values. Close to
T„ the value zv=1.28 is clearly too large since it leads to
systematic errors in the magnitude and temperature
dependence of the critical attenuation and critical disper-
sion at finite frequencies. Our conclusion that zv=l.0 is
consistent with Hatta's analysis of his attenuation data,
which is based on the assumption that zv= l. It is also
qualitatively supported by the results of Esaya et al. ,
who reported zv=0. 8. Note also that the values of zv are
fairly insensitive to possible choice of bare velocity or crit-
ical temperature. Table I shows that zv=1.00+0.07 for
two plausible choices of uo and two limiting choices of

C

FIG. 10. Scaling plot for the quantity (zv/p)coR, where 8 is
the Kramers-Kronig ratio, using zv/@=1/0. 116=8.62. The
limiting theoretical values for this quantity are coo. when cov g&1
and ~/2 when co~ &~ 1.

ha(T) (cur)'+«=f (cur) =
ha(T, ) c +(co~)'+«

(26)

The resulting values of the fitting parameters were

y =0.13+0.05 and c =0.103+0.002. Equation (26) was
obtained from a scaling form b,a=Bee' «f(cor) which
gives the limiting expressions

dna( T, ) =Bc''

4a(ra~ &&1)=(B/c)co '+«r.

(27a)

(27b)

Comparison of these expressions with those obtained from
our theoretical analysis yields the following equivalences:

(28)

' 1+@/zv

(29)
2(1+Dt ) &0

where v.oH
——4.4~ 10 ' and our ~0——1.55)& 10 ". Using

our parameters from fit 5, one finds that p/zv=0. 12,

Hatta and co-workers have measured the longitudi-
nal attenuation in both the incommensurate and normal
phases. In the incommensurate phase, there is a linear
coupling between the amplitude fluctuations and the
acoustic phonons which gives rise to Landau-
Khalatnikov —type damping below T, . The relaxation
time for this coupled longitudinal-amplitude mode was
found to show conventional critical behavior,

rg ——4.4X10 '
~

t
(

in the incommensurate phase. The analysis of Hatta's at-
tenuation data in the normal phase is based on the as-
sumption that r is equal to rz and the use of the follow-
ing empirical scaling function:
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8=1.345X10 dBcm 's, and c =0.39—0.58 for
b, T=O 7—K. Thus agreement between Hatta's y value

and our p/zv value is excellent, but the Hatta value of c
disagrees substantially with the average value obtained
from Eq. (29).

A more direct comparison between our theoretical
dynamic scaling expressions and Hatta's velocity and at-
tenuation data ' ' ' is given in Figs. 11 and 12. In Fig. 11,
the velocity variations at 6.3 (Ref. 4) and 8.0 MHz (Ref.
5) are compared with the theoretical curve obtained with

Eqs. (13) and (22) using the parameter values from ftt 5.
These data by Hatta et al. have been shifted to coincide
with our static velocity data (which lie in the range
165—180'C). The shifts were —265 ms ' and + 0.3 K
for the 6.3-MHz points and —92 ms ' and —1.0 K for
the 8.0-MHz points. Such shifts have no effect on the
shape of the velocity variation, which is the feature that is
being tested. Figure 11 shows that Eq. (13) with parame-
ters chosen to represent the temperature dependence of
our static velocity over a relatively narrow range provides
an excellent description of the temperature dependence of
Hatta's static velocity over quite a wide temperature
range. In Fig. 12, the critical attenuation observed by
Hatta ' ' at 4.35 and 9.0 MHz is compared with the
theoretical curves obtained from Eq. (7) using the parame-
ter values from fit 5. The overall agreement between
Hatta's critical attenuation data and our theoretical lines
is quite good although these experimental values close to
T, are systematically larger (by 10—15 %) than the
predicted values. Thus Figs. 11 and 12 show that the
equations and parameter values used in describing our
own data also provide a good description of Hatta s criti-
cal data.

It should be noted that the critical relaxation times
given by our result,

~=(1.55X10-")t ', (30)

are much longer than the correlation time associated with
the flipping of an individual NO& ion. An analysis of
high-resolution inelastic-neutron-scattering data at 200'C
gives a flipping time of approximately 5X10 " s. The
cooperative relaxation times range from 6.79X10 s at
166.25'C (ET=0.1) to 1.95X10 ' at 200'C (ET=34.75)
if one assumes that Eq. (30) is valid that far from T, . It
is also of interest to compare the acoustic relaxation times
with those obtained frotn dielectric-loss measurements. z

The polarization relaxation times ~p were calculated from
e"(co) data at 3 and 5 MHz using a Debye single-
relaxation formalism. The 1/vp values shown in Fig. 3 of
Ref. 22 show a slightly nonlinear dependence on
hT =T —T, for b, T~ 2 K and a distinct curvature close
to T, leading to a nonzero value of 1.36X10 s ' (i.e.,
vt ——7.33X10 s) at T, . The latter feature of the wp

behavior is clearly different from the acoustic w behavior,
since our attenuation and velocity dispersion close to T,
require rapidly varying ~ values that are 10—100 times
larger than the reported rz(max) value. It should be not-
ed, however, that the v.p values over the range ET =3—12
K can be well represented by rt ——(1.86X10 ")t ', in
reasonable agreement with the magnitude of our acoustic
~ values. The exact relationship between rp and the

4150-
Hatta et al. 6. 3 MHz

x Hatta et al. 8. 0 HHz-

4100-

4050—

4000-

3950-
I

165 175 185
T ('c )

FIG. 11. Comparison of the static velocity variation reported

by Hatta {Refs. 4 and 5) with the theoretical curve representing
our present analysis {see the text).

order-parameter relaxation time r obtained from acoustic
measurements is not clear.

In conclusion, we have measured both the static and
dynamic behavior of the cz2 longitudinal mode in NaNOz.
The critical velocity and attenuation behavior near the
normal-incommensurate transition are well described by
dynamic-scaling expressions. The static (i.e., to~&~1)
velocity shows a temperature dependence analogous to
that expected for the heat capacity. The present data are
consistent with either Ising or XF behavior: The critical
exponent p, lies in the range —0.03 to + 0.18 and could
agree with either azr ———0.026 or at ——0.11. We feel that
the Ising fit is somewhat better overall, but new low-

frequency experiments are needed to resolve this question.
The critical relaxation time is characterized by the
dynamic exponent zv=1.00+0.07, which corresponds to
conventional critical slowing down. Both the velocity

10-14

X

10-15
O

a
10-16

10
0. 01

AT (K)
10

FIG. 12. Comparison of the critical attenuation reported by
Hatta {Refs. 5 and 21) with the theoretical curves calculated
with Eq. (7}.
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dispersion and the attenuation over a wide range of fre-
quencies and reduced temperatures are well represented by
our theoretical model. In particular, the data are analyzed
in a self-consistent manner so that the Kramer-Kronig re-
lation is satisfied, and both velocity and attenuation ex-
hibit the expected scaling behavior.
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